Acessibilidade / Reportar erro

Molecular detection of Toxoplasma gondii and Neospora caninum in seabirds collected along the coast of Santa Catarina, Brazil

Detecção molecular de Toxoplasma gondii e Neospora caninum em aves marinhas coletadas ao longo da costa de Santa Catarina, Brasil

Abstract

Toxoplasma gondii and Neospora caninum are two closely related protozoans that infect a wide range of animals, including birds. However, the occurrence of N. caninum and T. gondii in seabirds is unknown. Therefore, this study aimed to determine the presence of T. gondii and N. caninum DNA in tissue samples of seabirds. Tissue samples of the pectoral muscles, heart, and brain were collected from 47 birds along the coastline of Santa Catarina State, SC, Brazil. The DNA was extracted from the tissues and screened using nested-PCR (nPCR) targeting internal transcribed spacer 1 (ITS1). T. gondii DNA was detected in tissues from seven seabirds (7/47, 14.8%), kelp gull (Larus dominicanus) (5/21), and Manx shearwater (Puffinus puffinus) (2/8). N. caninum DNA was detected in tissues of nine seabirds (9/47, 19.1%), the kelp gull (L. dominicanus) (4/21), Manx shearwater (P. puffinus) (2/8), neotropic cormorant (Phalacrocorax brasilianus) (1/4), brown booby (Sula leucogaster) (1/5), and white-chinned petrel (Procellaria aequinoctialis) (1/1); however, no co-infection was observed. In conclusion, this study showed the circulation of N. caninum and T. gondii in seabirds along the coastline of Santa Catarina State. Further studies are required to clarify the role of these birds in the epidemiology of neosporosis and toxoplasmosis.

Keywords
: Marine environment; seabirds; neosporosis; toxoplasmosis

Resumo

Toxoplasma gondii e Neospora caninum são dois protozoários intimamente relacionados que infectam uma ampla gama de animais, incluindo-se aves. Entretanto, a ocorrência de N. caninum e T. gondii em aves marinhas é desconhecida. Portanto, este estudo objetivou determinar a presença de DNA de T. gondii e N. caninum em amostras de tecidos, coletadas de 47 aves marinhas. Amostras de tecidos dos músculos peitorais, coração e cérebro foram coletadas de 47 aves marinhas mortas ao longo da costa do estado de Santa Catarina, SC, Brasil. O DNA foi extraído dos tecidos e testado, usando-se a reação em cadeia da polimerase nested (nPCR), tendo em vista o espaçador interno transcrito 1 (ITS1). O DNA de T. gondii foi detectado em tecidos de sete aves marinhas (7/47, 14,8%), como gaivota (Larus dominicanus) (5/21) e bobo-pequeno (Puffinus puffinus) (2/8). O DNA de N. caninum foi detectado em tecidos de nove aves marinhas (9/47, 19,1%); gaivota (L. dominicanus) (4/21), bobo-pequeno (P. puffinus) (2/8), corvo-marinho (Phalacrocorax brasilianus) 1/4), atobá-pardo (Sula leucogaster) (1/5), e pardela-preta (Procellaria aequinoctialis) (1/1). No entanto, não foi observada coinfecção. Em conclusão, este estudo demonstrou a circulação de N. caninum e T. gondii em aves marinhas ao longo da costa de Santa Catarina, Brasil. Mais estudos são necessários para esclarecer o papel dessas aves na epidemiologia da neosporose e da toxoplasmose.

Palavras-chave:
Ambiente marinho; aves marinhas; neosporose; toxoplasmose

Introduction

Seabirds are a diverse group of species that have adapted to marine environments, including coastal areas, estuaries, islands, coastal wetlands, and open sea areas (Schreiber & Burger, 2001Schreiber EA, Burger J. Biology of marine birds. Boca Raton: CRC Press; 2001.). These birds are predators and considered ecological sentinels for environmental health because they feed over large geographic areas at different trophic levels (Parsons et al., 2008Parsons M, Mitchell I, Butler A, Ratcliffe N, Frederiksen M, Foster S, et al. Seabirds as indicators of the marine environment. ICES J Mar Sci 2008; 65(8): 1520-1526. http://doi.org/10.1093/icesjms/fsn155.
http://doi.org/10.1093/icesjms/fsn155...
; Votier & Sherley, 2017Votier SC, Sherley RB. Seabirds. Curr Biol 2017; 27(11): R448-R450. http://doi.org/10.1016/j.cub.2017.01.042.
http://doi.org/10.1016/j.cub.2017.01.042...
).

The Apicomplexa protozoans, Toxoplasma gondii and Neospora caninum, are two closely related coccidian parasites that form cysts and are linked to important diseases in animals (Donahoe et al., 2015Donahoe SL, Lindsay SA, Krockenberger M, Phalen D, Šlapeta J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int J Parasitol Parasites Wildl 2015; 4(2): 216-238. http://doi.org/10.1016/j.ijppaw.2015.04.002.
http://doi.org/10.1016/j.ijppaw.2015.04....
). Birds can be infected by consuming food and water contaminated with sporulated oocysts of T. gondii and/or N. caninum and by eating cysts in infected tissues (Barros et al., 2018Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://doi.org/10.1016/j.parint.2018.03.009.
http://doi.org/10.1016/j.parint.2018.03....
).

Toxoplasmosis is a common parasitic zoonotic disease caused by T. gondii. Felids are the definitive hosts of T. gondii; they shed oocysts into the environment, which serve as a source of infection for other animals (Dubey, 2021Dubey JP. Toxoplasmosis of animals and humans. Boca Raton: CRC Press; 2021.. http://doi.org/10.1201/9781003199373.
http://doi.org/10.1201/9781003199373...
). Due to the zoonotic potential, the T. gondii infection is a public health concern, which could result in congenital disease and other clinically severe presentations in immune-compromised humans (Dubey et al., 2021Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Villena I. Congenital toxoplasmosis in humans: an update of worldwide rate of congenital infections. Parasitology 2021; 148(12): 1406-1416. http://doi.org/10.1017/S0031182021001013.
http://doi.org/10.1017/S0031182021001013...
). Birds are important intermediate hosts of this protozoan and are a source of infection for other animals that consume them (Cabezón et al., 2011Cabezón O, García-Bocanegra I, Molina-López R, Marco I, Blanco JM, Höfle U, et al. Seropositivity and risk factors associated with Toxoplasma gondii infection in wild birds from Spain. PLoS One 2011; 6(12): e29549. http://doi.org/10.1371/journal.pone.0029549.
http://doi.org/10.1371/journal.pone.0029...
). Toxoplasmosis has been documented in domestic and wild avian species, with acute and chronic infection cases reported (Dubey, 2021Dubey JP. Toxoplasmosis of animals and humans. Boca Raton: CRC Press; 2021.. http://doi.org/10.1201/9781003199373.
http://doi.org/10.1201/9781003199373...
). However, there is limited data regarding toxoplasmosis in seabird populations (Campbell et al., 2022Campbell K, Paparini A, Gomez AB, Cannell B, Stephens N. Fatal toxoplasmosis in Little Penguins (Eudyptula minor) from Penguin Island, Western Australia. Int J Parasitol Parasites Wildl 2022; 17: 211-217. http://doi.org/10.1016/j.ijppaw.2022.02.006.
http://doi.org/10.1016/j.ijppaw.2022.02....
).

As a waterborne parasite, T. gondii has been recognized as a threat to some species of marine mammals in North America, such as sea otters, dolphins, and whales (Jones & Dubey, 2010Jones JL, Dubey JP. Waterborne toxoplasmosis - Recent developments. Exp Parasitol 2010; 124(1): 10-25. http://doi.org/10.1016/j.exppara.2009.03.013.
http://doi.org/10.1016/j.exppara.2009.03...
; Dubey et al., 2020Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Grigg ME. Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009-2020. Vet Parasitol 2020; 288: 109296. http://doi.org/10.1016/j.vetpar.2020.109296.
http://doi.org/10.1016/j.vetpar.2020.109...
). Studies on marine mammals have shown that environmental oocysts play an important role in the epidemiology of T. gondii (Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
; Dubey et al., 2020Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Grigg ME. Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009-2020. Vet Parasitol 2020; 288: 109296. http://doi.org/10.1016/j.vetpar.2020.109296.
http://doi.org/10.1016/j.vetpar.2020.109...
). Sporulated oocysts can be transported to fresh and marine waters via sewage or stormwater drainage systems and freshwater runoff (Conrad et al., 2005Conrad PA, Miller MA, Kreuder C, James ER, Mazet J, Dabritz H, et al. Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int J Parasitol 2005; 35(11-12): 1155-1168. http://doi.org/10.1016/j.ijpara.2005.07.002. PMid:16157341.
http://doi.org/10.1016/j.ijpara.2005.07....
). Furthermore, molecular epidemiological surveys have revealed that freshwater can transport T. gondii oocysts from terrestrial to coastal marine habitats (VanWormer et al., 2014VanWormer E, Miller MA, Conrad PA, Grigg ME, Rejmanek D, Carpenter TE, et al. Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation. PLoS Negl Trop Dis 2014; 8(5): e2852. http://doi.org/10.1371/journal.pntd.0002852.
http://doi.org/10.1371/journal.pntd.0002...
).

Neosporosis is an infectious disease caused by N. caninum, an obligate intracellular Apicomplexan parasite, and is a major cause of bovine abortion worldwide (Donahoe et al., 2015Donahoe SL, Lindsay SA, Krockenberger M, Phalen D, Šlapeta J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int J Parasitol Parasites Wildl 2015; 4(2): 216-238. http://doi.org/10.1016/j.ijppaw.2015.04.002.
http://doi.org/10.1016/j.ijppaw.2015.04....
; Barros et al., 2018Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://doi.org/10.1016/j.parint.2018.03.009.
http://doi.org/10.1016/j.parint.2018.03....
). Domestic dogs (Canis lupus familiaris) and some species of wild canids, such as the Australian dingo (Canis lupus dingo), coyote (Canis latrans), and gray wolf (Canis lupus), are the definitive hosts of this parasite (Cerqueira-Cézar et al., 2017Cerqueira-Cézar CK, Calero-Bernal R, Dubey JP, Gennari SM. All about neosporosis in Brazil. Rev Bras Parasitol Vet 2017; 26(3): 253-279. http://doi.org/10.1590/s1984-29612017045. PMid:28876360.
http://doi.org/10.1590/s1984-29612017045...
) and several mammals are intermediate hosts (Donahoe et al., 2015Donahoe SL, Lindsay SA, Krockenberger M, Phalen D, Šlapeta J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int J Parasitol Parasites Wildl 2015; 4(2): 216-238. http://doi.org/10.1016/j.ijppaw.2015.04.002.
http://doi.org/10.1016/j.ijppaw.2015.04....
). In recent years, birds have been extensively investigated as potential intermediate hosts of N. caninum (Barros et al., 2018Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://doi.org/10.1016/j.parint.2018.03.009.
http://doi.org/10.1016/j.parint.2018.03....
), with many serological and molecular studies conducted on domestic and wild bird populations (Gondim et al., 2010Gondim LSQ, Abe-Sandes K, Uzêda RS, Silva MSA, Santos SL, Mota RA, et al. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Vet Parasitol 2010; 168(1-2): 121-124. http://doi.org/10.1016/j.vetpar.2009.09.055.
http://doi.org/10.1016/j.vetpar.2009.09....
; Mineo et al., 2011Mineo TWP, Carrasco AOT, Raso TF, Werther K, Pinto AA, Machado RZ. Survey for natural Neospora caninum infection in wild and captive birds. Vet Parasitol 2011; 182(2-4): 352-355. http://doi.org/10.1016/j.vetpar.2011.05.022.
http://doi.org/10.1016/j.vetpar.2011.05....
; Darwich et al., 2012Darwich L, Cabezón O, Echeverria I, Pabón M, Marco I, Molina-López R, et al. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet Parasitol 2012; 183(3-4): 377-381. http://doi.org/10.1016/j.vetpar.2011.07.024.
http://doi.org/10.1016/j.vetpar.2011.07....
; Molina-López et al., 2012Molina-López R, Cabezón O, Pabón M, Darwich L, Obón E, Lopez-Gatius F, et al. High seroprevalence of Toxoplasma gondii and Neospora caninum in the Common raven (Corvus corax) in the Northeast of Spain. Res Vet Sci 2012; 93(1): 300-302. http://doi.org/10.1016/j.rvsc.2011.05.011.
http://doi.org/10.1016/j.rvsc.2011.05.01...
; Barros et al., 2017Barros LD, Taroda A, Martins TA, Miura AC, De Seixas M, Sammi AS, et al. Survey of Neospora caninum in eared doves (Zenaida auriculata) in Southern Brazil. Acta Trop 2017; 174: 132-135. http://doi.org/10.1016/j.actatropica.2017.07.007.
http://doi.org/10.1016/j.actatropica.201...
); however, the role of birds in the life cycle of N. caninum is not fully understood.

Information on N. caninum infection in marine animals is limited, and few molecular studies have been conducted. A previous study showed its exposure in otters, walruses, and dolphins (Dubey et al., 2003Dubey JP, Zarnke R, Thomas NJ, Wong SK, Van Bonn W, Briggs M, et al. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet Parasitol 2003; 116(4): 275-296. http://doi.org/10.1016/S0304-4017(03)00263-2.
http://doi.org/10.1016/S0304-4017(03)002...
). However, the source of these infections is still unclear, and further studies are required to understand better the life cycle of N. caninum in marine environments (Fujii et al., 2007Fujii K, Kakumoto C, Kobayashi M, Saito S, Kariya T, Watanabe Y, et al. Seroepidemiology of Toxoplasma gondii and Neospora caninum in Seals around Hokkaido, Japan. J Vet Med Sci 2007; 69(4): 393-398. http://doi.org/10.1292/jvms.69.393.
http://doi.org/10.1292/jvms.69.393...
; Villagra-Blanco et al., 2019Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and cetacean-derived Etosis contributes to combating emerging apicomplexan parasites (Toxoplasma gondii, Neospora caninum) circulating in marine environments. Biology (Basel) 2019; 8(1): 12. http://doi.org/10.3390/biology8010012.
http://doi.org/10.3390/biology8010012...
).

Previous studies evaluating T. gondii and N. caninum in domestic animals (goats, pigs, chickens, cats, and cattle) have been carried out in the Santa Catarina state (Moura et al., 2009Moura AB, Souza AP, Sartor AA, Bellato V, Teixeira EB, Pisetta GM, et al. Ocorrência de anticorpos e fatores de risco para infecção por Toxoplasma gondii em cães, nas cidades de Lages e Balneário Camboriú, Santa Catarina, Brasil. Rev Bras Parasitol Vet 2009; 18(3): 52-56. http://doi.org/10.4322/rbpv.01803009.
http://doi.org/10.4322/rbpv.01803009...
; Rosa et al., 2010Rosa LD, Moura AB, Trevisani N, Medeiros AP, Sartor AA, Souza AP, et al. Toxoplasma gondii antibodies on domiciled cats from Lages municipality, Santa Catarina State, Brazil. Rev Bras Parasitol Vet 2010; 19(4): 268-269. http://doi.org/10.1590/S1984-29612010000400017.
http://doi.org/10.1590/S1984-29612010000...
; Pena et al., 2018Pena HFJ, Alves BF, Soares HS, Oliveira S, Ferreira MN, Bricarello PA, et al. Free-range chickens from Santa Catarina state, southern Brazil, as asymptomatic intermediate hosts for Toxoplasma gondii clonal type I and typical Brazilian genotypes. Vet Parasitol Reg Stud Rep 2018; 13: 55-59. http://doi.org/10.1016/j.vprsr.2018.04.001.
http://doi.org/10.1016/j.vprsr.2018.04.0...
; Silva et al., 2020Silva MO, Snak A, Reiter JC, Serighelli G Jr, Cristani J, Moura AB. Occurrence of antibodies against Neospora caninum in sows and factors associated with infection in commercial herds in two regions of the state of Santa Catarina, Brazil. Semina: Ciênc Agrár 2020; 41(2): 697-702. http://doi.org/10.5433/1679-0359.2020v41n2p697.
http://doi.org/10.5433/1679-0359.2020v41...
; Costa et al., 2022Costa LS, Withoeft JA, Bilicki JV, Melo IC, Snak A, Neves GB, et al. Neospora caninum-associated abortions in cattle from Southern Brazil: anatomopathological and molecular characterization. Vet Parasitol Reg Stud Rep 2022; 36: 100802. http://doi.org/10.1016/j.vprsr.2022.100802.
http://doi.org/10.1016/j.vprsr.2022.1008...
). The prevalence of anti-T.gondii antibodies in cats and dogs from two cities in Santa Catarina were 26% in dogs and 14% in cats (Moura et al., 2009Moura AB, Souza AP, Sartor AA, Bellato V, Teixeira EB, Pisetta GM, et al. Ocorrência de anticorpos e fatores de risco para infecção por Toxoplasma gondii em cães, nas cidades de Lages e Balneário Camboriú, Santa Catarina, Brasil. Rev Bras Parasitol Vet 2009; 18(3): 52-56. http://doi.org/10.4322/rbpv.01803009.
http://doi.org/10.4322/rbpv.01803009...
; Rosa et al., 2010Rosa LD, Moura AB, Trevisani N, Medeiros AP, Sartor AA, Souza AP, et al. Toxoplasma gondii antibodies on domiciled cats from Lages municipality, Santa Catarina State, Brazil. Rev Bras Parasitol Vet 2010; 19(4): 268-269. http://doi.org/10.1590/S1984-29612010000400017.
http://doi.org/10.1590/S1984-29612010000...
). In these studies, access to the street was a risk factor for infection, indicating the circulation of the parasite in the urban center. However, studies to determine the status of these protozoa in wild birds in the state of Santa Catarina are scarce.

Although seabirds are ecological sentinels of environmental health, and Brazil hosts a large proportion of these birds, data on the occurrence of T. gondii and N. caninum is scarce. Therefore, this study aimed to determine the presence of T. gondii and N. caninum DNA in seabirds along the Santa Catarina coast, Brazil.

Material and Methods

Study area and sample collection

Tissue samples of the pectoral muscles, heart, and brain were collected from 47 dead seabirds from August 2019 to March 2020. The seabirds were collected by the Santos Basin Beach Monitoring Project (PMP-BS) along the Santa Catarina coast, Brazil (Figure 1).

Figure 1
Map of Brazil with the Santa Catarina State coast showing the municipalities where seabirds were collected: Barra Velha, Piçarras, Penha, Navegantes, Itajaí, Balneário Camboriú, Itapema, Porto Belo, Bombinhas, Tijucas e Governador Celso Ramos.

During necropsy, a general examination was performed to determine sex, nutritional status, carcass condition, and gross lesions on the skin, liver, heart, skeletal muscles, respiratory, urinary, and digestive systems, eyes, and encephalon. Taxonomic identification was based on morphologic characters (Harrison, 1989Harrison P. Seabirds, an identification guide. London: Christopher Helm; 1989.). The age and sex of the seabirds were determined based on plumage and by observing the gonads during the necropsy, respectively (Giaccardi et al., 1997Giaccardi M, Yorio P, Lizurume ME. Patrones estacionales de abundancia de la gaviota cocinera (Larus dominicanus) en un basural patagónico y sus relaciones con el manejo de residuos urbanos y pesqueros. Ornitol Neotrop 1997; 8(1): 77-84.; Griffiths, 2000Griffiths R. Sex identification in birds. Semin Avian Exot Pet Med 2000; 9(1): 14-26. http://doi.org/10.1016/S1055-937X(00)80012-2.
http://doi.org/10.1016/S1055-937X(00)800...
). Nutritional status was assessed based on the amount of subcutaneous and visceral fat and sternal muscle atrophy. The carcass condition was classified using a four-point system: (1) live animal, (2) fresh/mild decomposition, (3) moderate decomposition, and (4) advanced/severe decomposition (McAloose et al., 2018McAloose D, Colegrove KM, Newton AL. Wildlife necropsy. In: Terio KA, McAlose D, Leger JS. Pathology of wildlife and zoo animals. Cambridge: Ademic Press; 2018. p. 1-20.. http://doi.org/10.1016/B978-0-12-805306-5.00001-8.
http://doi.org/10.1016/B978-0-12-805306-...
). Tissue collection was performed by a veterinary pathologist of the PMP-BS, while routine diagnostic protocol was performed to determine the cause of death.

Tissue digestion and DNA extraction

Pepsin acid digestion was performed on all tissue samples before DNA extraction to increase the number of parasites. Approximately 3 g of each tissue (pectoral muscle, brain, and heart) was macerated separately and digested in 30 mL of digestion solution containing 1.3 g pepsin, 3.5 mL HCl, and 2.5 g NaCl in 500 mL of distilled water (Lindsay et al., 1993Lindsay DS, Smith PC, Hoerr FJ, Blagburn BL. Prevalence of encysted Toxoplasma gondii in raptors from Alabama. J Parasitol 1993; 79(6): 870-873. http://doi.org/10.2307/3283724.
http://doi.org/10.2307/3283724...
). DNA was extracted from 250 µL of digested tissue using a commercial kit (ReliaPrep gDNA Tissue Miniprep System, Promega Corporation, Madison, WI, USA) following the manufacturer's instructions. Nuclease-free water was included as a negative control in every 15 extraction reactions to ensure no contamination during the DNA extraction process. Extracted and purified DNA was quantified using a spectrophotometer (NanoDropOne, Thermo Fisher Scientific, Waltham, MA, USA).

Nested-PCR (nPCR)

Nested-PCR (nPCR-ITS1) was performed targeting the 18S and 5.8SrRNA coding genes of the Toxoplasmatinae subfamily (T. gondii and N. caninum). The forward primers target to the 3’end of the 18S locus, whereas the reverse primers target to the 5’end of the 5.8S locus. The primers flank the complete internal transcribed spacer 1 (ITS-1). JS4 (5’-CGA AAT GGG AAG TTT TGT GAA C-3’) and CT2c (5’-CTG CAA TTC ACA TTG CGT TTC GC-3’) were used as external primers, and JS4b(5’-AGT CGT AAC AAG GTT TCC GTA GG-3’) and CT2b (5-TTG CGC GAG CCA AGA CAT C-3’) were used as internal primers, as previously described (Šlapeta et al., 2002Šlapeta JR, Koudela B, Votýpka J, Modrý D, Hořejš R, Lukeš J. Coprodiagnosis of Hammondia heydorni in dogs by PCR based amplification of ITS 1 rRNA: differentiation from morphologically indistinguishable oocysts of Neospora caninum. Vet J 2002; 163(2): 147-154. http://doi.org/10.1053/tvjl.2001.0599.
http://doi.org/10.1053/tvjl.2001.0599...
; Soares et al., 2011Soares RM, Lopes EG, Keid LB, Sercundes MK, Martins J, Richtzenhain LJ. Identification of Hammondia heydorni oocysts by a heminested-PCR (hnPCR-AP10) based on the H. heydorni RAPD fragment AP10. Vet Parasitol 2011; 175(1-2): 168-172. http://doi.org/10.1016/j.vetpar.2010.09.022.
http://doi.org/10.1016/j.vetpar.2010.09....
).

Each amplification was performed in 25 µL reaction mixtures containing 80 ng of DNA, 1.5 mM MgCl2, 0.2 mM dNTPs, 1U of Platinum Taq DNA polymerase (Thermo Fisher Scientific), 1 × PCR buffer, and 0.6 µM of each primer and ultrapure water. Reactions were performed using a PCR Thermal Cycler 2720 (Applied Biosystems, Foster City, CA, USA). The same concentration of the abovementioned reagents was used for the second amplification reaction with 1 µL of the product from the first reaction. The cycling conditions for both reactions were as follows: 3 min cycle at 94 °C followed by 35 cycles at 94 °C for 45 s, 56 °C for 30 s, 72 °C for 30 s, and a final extension step at 72 °C for 5 min. The expected amplicon was approximately 500 bp, and positive DNA control samples from T. gondii (RH strain), N. caninum (NC-1 strain), and the negative control (ultrapure water) were included in all reactions.

The amplified products were subjected to electrophoresis on a 1.5% agarose gel at 90 v for 90 min, stained with SYBR Safe DNA Gel Stain (Thermo Fisher Scientific), and it was observed using an ultraviolet transilluminator. A 100 bp DNA ladder (Ludwig Biotec, Alvorada, RS, Brazil) was included in all agarose gels.

Sequencing and Phylogenetic analysis

The obtained PCR products were enzymatically cleaned using a commercial kit following the manufacturer's instructions (ExoSAP-IT Express PCR Product Cleanup Reagent, Thermo Fisher Scientific). The purified PCR products were sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) and the internal forward and reverse primers in a Genetic Analyzer 3500xL (Thermo Fisher Scientific), using 50 cm capillaries with a Pop7 polymer. Sequences were analyzed using Chromas and Geneious Prime 2020.1 software. The consensus sequences were compared using the Basic Local Alignment Search Tool (BLAST) with sequences deposited in GenBank at the National Center for Biotechnology Information (NCBI).

The phylogenetic analysis used the maximum likelihood method and the Tamura 3-parameter nucleotide substitution model (Tamura & Kumar, 2002Tamura K, Kumar S. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 2002; 19(10): 1727-1736. http://doi.org/10.1093/oxfordjournals.molbev.a003995.
http://doi.org/10.1093/oxfordjournals.mo...
). The phylogenetic tree was constructed using the MEGA11 software, and the bootstrap with 1000 replications was used to test the robustness of the obtained phylogeny.

Results

Regarding the body condition, of the 47 seabirds, 25 birds scored well, 10 scored poorly, and 12 were cachectic. The carcass condition of 45 birds was classified as 2 (fresh/mild decomposition), whereas two seabirds were classified as 3 (moderate decomposition). The main cause of death in these birds was trauma, followed by asphyxia and cachexia. Nine species included in the study are listed on the IUCN Red List of Threatened Species as “least concern” and one species, the white-chinned petrel (Procellaria aequinoctialis), is listed as vulnerable. The seabird species used in this study are listed in Table 1.

Table 1
Number of species, taxonomic orders, age, and sex of seabirds found along the coast of Santa Catarina, Brazil, examined in this study.

The nPCR results were positive for T. gondii in 14.8% (7/47) of seabirds and N. caninum in 19.1% (9/47). T. gondii DNA was detected in tissues from 23.8% (5/21) kelp gull (Larus dominicanus) and 25% (2/8) Manx shearwater (Puffinus puffinus). N. caninum DNA was detected in tissues from 23.8% (821) kelp gulls (L. dominicanus), 25% (2/8) Manx shearwater (P. puffinus), 25% (1/4) neotropic cormorant (Phalacrocorax brasilianus) , 20% (1/4) brown booby (Sula leucogaster), and 100% (1/1) white-chinned petrel (Procellaria aequinoctialis). No co-infection was observed in all positive animals.

T. gondii DNA was detected in the pectoral muscles, heart, and brain samples at 6.38% (3/47), 8.51% (4/47), and 6.38% (3/47), respectively, from seven seabirds (two species). N. caninum DNA was detected in the heart, brain, and pectoral muscle samples at 10.6% (5/47), 6.38% (3/47), and 2.12% (1/47), respectively, from eight seabirds (five species). The results of the nPCR are shown in Table 2.

Table 2
Results of nested-PCR (nPCR) for T. gondii and N. caninum in tissues from seabirds found along the coast of Santa Catarina, Brazil.

The ITS1 nucleotide sequence data generated in the present study were deposited in GenBank (accession No.: MW021174 - MW021176, MW021420 - MW021422, MW021507 - MW021508, MW023594 - MW 023595, MW022526 - MW022528, MW023245 - MW023247, MW044666 - MW044668) and shared 98-100% identity with T. gondii and N. caninum sequences. The phylogenetic tree showed that our sequences were clustered with T. gondii and N. caninum isolates (Figure 2).

Figure 2
The maximum likelihood phylogenetic tree based on ITS1 sequences. Bootstrap values (1000 replicates) are displayed next to the branches. The black circle indicates the sequence derived from this study. The host, the sample, the strain or isolate name, the country of origin, and the GenBank accession number are shown. Eimeria sp. served as an outgroup. The scale bar represented 0.10 changes per nucleotide.

Discussion

In this study, 16 of 47 (34%) seabirds had positive nPCR results, 7 for T. gondii and 9 for N. caninum, which suggests that seabirds are susceptible to infection with these protozoans. There are few reports of tissue cyst-forming coccidia in seabird species in South America. Thus, to the best of our knowledge, this is the first report of the presence of T. gondii and N. caninum in the kelp gull (L. dominicanus) and Manx shearwater (P. puffinus), and N. caninum in the neotropic cormorant (P. brasilianus), brown booby (S. leucogaster), and white-chinned petrel (P. aequinoctialis).

There are few studies on DNA detection of these protozoans in seabirds; however, seroepidemiological studies in Spain (Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
), Italy (Nardoni et al., 2019aNardoni S, Rocchigiani G, Varvaro I, Altomonte I, Ceccherelli R, Mancianti F. Serological and molecular investigation on Toxoplasma gondii infection in wild birds. Pathogens 2019a; 8(2): 58. http://doi.org/10.3390/pathogens8020058.
http://doi.org/10.3390/pathogens8020058...
), the Western Indian Ocean (Poulle et al., 2021Poulle ML, Le Corre M, Bastien M, Gedda E, Feare C, Jaeger A, et al. Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS One 2021; 16(8): e0255664. http://doi.org/10.1371/journal.pone.0255664.
http://doi.org/10.1371/journal.pone.0255...
), and Brazil (Gennari et al., 2016Gennari SM, Niemeyer C, Soares HS, Musso CM, Siqueira GCC, Catão-Dias JL, et al. Seroprevalence of Toxoplasma gondii in seabirds from Abrolhos Archipelago, Brazil. Vet Parasitol 2016; 226: 50-52. http://doi.org/10.1016/j.vetpar.2016.06.016.
http://doi.org/10.1016/j.vetpar.2016.06....
) have shown that these birds are exposed to T. gondii. Previous studies have reported the presence of T. gondii antibodies in some gull species in Europe, the Western Indian Ocean, and China, with a prevalence ranging from 0-21% (Miao et al., 2014Miao Q, Han JQ, Xiang X, Yuan FZ, Liu YZ, Duan G, et al. Prevalence of Antibody to Toxoplasma gondii in Black-headed Gulls ( Chroicocephalus ridibundus ), Dianchi Lake, China. J Wildl Dis 2014; 50(3): 717-719. http://doi.org/10.7589/2014-01-016.
http://doi.org/10.7589/2014-01-016...
; Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
; Poulle et al., 2021Poulle ML, Le Corre M, Bastien M, Gedda E, Feare C, Jaeger A, et al. Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS One 2021; 16(8): e0255664. http://doi.org/10.1371/journal.pone.0255664.
http://doi.org/10.1371/journal.pone.0255...
). In Brazil, antibodies against T. gondii were detected in 24 (34.8%) of 69 seabirds, with titers ranging from 5 to 640 (Gennari et al., 2016Gennari SM, Niemeyer C, Soares HS, Musso CM, Siqueira GCC, Catão-Dias JL, et al. Seroprevalence of Toxoplasma gondii in seabirds from Abrolhos Archipelago, Brazil. Vet Parasitol 2016; 226: 50-52. http://doi.org/10.1016/j.vetpar.2016.06.016.
http://doi.org/10.1016/j.vetpar.2016.06....
).

In the present study, T. gondii DNA was detected in seven (14.8%) seabirds, and N. caninum DNA was detected in nine (19.1%). Previous studies reported different DNA detection values for these protozoans in wild birds. Darwich et al. (2012)Darwich L, Cabezón O, Echeverria I, Pabón M, Marco I, Molina-López R, et al. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet Parasitol 2012; 183(3-4): 377-381. http://doi.org/10.1016/j.vetpar.2011.07.024.
http://doi.org/10.1016/j.vetpar.2011.07....
investigated brain tissue samples from 201 wild birds of 14 species, and detected T. gondii and N. caninum DNA in 6% and 1.5% of the birds, respectively. Lukášová et al. (2018)Lukášová R, Kobédová K, Halajian A, Bártová E, Murat JB, Rampedi KM, et al. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa. Acta Trop 2018; 178: 93-96. http://doi.org/10.1016/j.actatropica.2017.10.029.
http://doi.org/10.1016/j.actatropica.201...
investigated the presence of T. gondii and N. caninum DNA in the brain tissue of 110 wild and domestic birds in Africa. They found three birds (2.7%) positive for T. gondii and none positive for N. caninum. Toxoplasma gondii was isolated from tissues of 16.4% (10/61) of naturally infected black-headed gulls (Larus ridibundus) in the Czech Republic (Dubey, 2002Dubey JP. A review of toxoplasmosis in wild birds. Vet Parasitol 2002; 106(2): 121-153. http://doi.org/10.1016/S0304-4017(02)00034-1.
http://doi.org/10.1016/S0304-4017(02)000...
). These variations in the detection of T. gondii and N. caninum DNA in different studies may be attributed to different environmental and/or geographic conditions, bird species tested, molecular methods used, the sample size, and the tissue analyzed (Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
; Lukášová et al., 2018Lukášová R, Kobédová K, Halajian A, Bártová E, Murat JB, Rampedi KM, et al. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa. Acta Trop 2018; 178: 93-96. http://doi.org/10.1016/j.actatropica.2017.10.029.
http://doi.org/10.1016/j.actatropica.201...
).

In the present study, the number of seabirds infected with N. caninum was higher than that of birds infected with T. gondii. Previous data on the occurrence of N. caninum antibodies in wild birds showed variations from 0-34% between species; waterfowl had the highest seroprevalence (Nardoni et al., 2019bNardoni S, Poli A, Varvaro I, Rocchigiani G, Ceccherelli R, Mancianti F. Detection of Neospora caninum DNA in wild birds from Italy. Pathogens 2019b; 8(4): 202. http://doi.org/10.3390/pathogens8040202.
http://doi.org/10.3390/pathogens8040202...
), and raptors and geese had the lowest (Rocchigiani et al., 2017Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in Wild Waterfowl: Occurrence of Parasite DNA and Low Antibody Titers. J Parasitol 2017; 103(1): 142-145. http://doi.org/10.1645/16-34.
http://doi.org/10.1645/16-34...
; Konell et al., 2019Konell AL, Sato AP, Stival M, Malaguini NP, Anjos A, Ferreira RF, et al. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora caninum in geese (Anser sp.) from urban parks and captivity. Rev Bras Parasitol Vet 2019; 28(2): 221-228. http://doi.org/10.1590/s1984-29612019042.
http://doi.org/10.1590/s1984-29612019042...
; Sato et al., 2021Sato AP, Goulart MA, Konell AL, De Oliveira Koch M, Da Fonseca FM, Morel AP, et al. Serosurvey of Toxoplasma gondii, Neospora caninum and Sarcocystis neurona in raptors and risk factor analysis. Parasitol Int 2021; 82: 102312. http://doi.org/10.1016/j.parint.2021.102312.
http://doi.org/10.1016/j.parint.2021.102...
). Studies have suggested that susceptibility to N. caninum infection in birds may be species-specific, with birds of prey appearing to be more resistant. In contrast, passerines, pigeons, and waterfowl appear to be more susceptible to infection (Rocchigiani et al., 2017Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in Wild Waterfowl: Occurrence of Parasite DNA and Low Antibody Titers. J Parasitol 2017; 103(1): 142-145. http://doi.org/10.1645/16-34.
http://doi.org/10.1645/16-34...
; De Barros et al., 2018Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://doi.org/10.1016/j.parint.2018.03.009.
http://doi.org/10.1016/j.parint.2018.03....
). However, the role of the seabirds in the distribution of N. caninum to definitive hosts is unknown and needs further studies to elucidate.

Feeding habits play an important role in determining the levels of exposure of bird species to protozoans (Wilson et al., 2020Wilson AG, Lapen DR, Mitchell GW, Provencher JF, Wilson S. Interaction of diet and habitat predicts Toxoplasma gondii infection rates in wild birds at a global scale. Glob Ecol Biogeogr 2020; 29(7): 1189-1198. http://doi.org/10.1111/geb.13096.
http://doi.org/10.1111/geb.13096...
). Seabirds are predators at risk of horizontal acquisition of infection through the consumption of infected prey harboring tissue cysts or through ingesting water or food contaminated with sporulated oocysts (Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
). The contamination of coastal areas with sewage and runoff from freshwater, which may carry T. gondii oocysts, is considered an important factor in the epidemiology of toxoplasmosis in the marine environment (Shapiro et al., 2019Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, De Wit LA, VanWormer E, et al. Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food, 2019. Food Waterborne Parasitol 2019; 15: e00049. http://doi.org/10.1016/j.fawpar.2019.e00049.
http://doi.org/10.1016/j.fawpar.2019.e00...
). Molecular epidemiological studies have provided evidence that T. gondii oocysts are transported to marine ecosystems through sewage and freshwater runoff and remain infectious for up to 24 months (Marino et al., 2019Marino AMF, Giunta RP, Salvaggio A, Castello A, Alfonzetti T, Barbagallo A, et al. Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses Public Health 2019; 66(7): 826-834. http://doi.org/10.1111/zph.12630.
http://doi.org/10.1111/zph.12630...
; Shapiro et al., 2019Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, De Wit LA, VanWormer E, et al. Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food, 2019. Food Waterborne Parasitol 2019; 15: e00049. http://doi.org/10.1016/j.fawpar.2019.e00049.
http://doi.org/10.1016/j.fawpar.2019.e00...
). In aquatic ecosystems, oocysts accumulate in bivalve mollusks and fish by filtration and consumption (Lindsay et al., 2004Lindsay DS, Collins MV, Mitchell SM, Wetch CM, Rosypal AC, Flick GJ, et al. Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica). J Parasitol 2004; 90(5): 1054-1057. http://doi.org/10.1645/GE-296R.
http://doi.org/10.1645/GE-296R...
; Massie et al., 2010Massie GN, Ware MW, Villegas EN, Black MW. Uptake and transmission of Toxoplasma gondii oocysts by migratory, filter-feeding fish. Vet Parasitol 2010; 169(3-4): 296-303. http://doi.org/10.1016/j.vetpar.2010.01.002.
http://doi.org/10.1016/j.vetpar.2010.01....
), respectively, which has been suggested as a route of transmission because these fish and mollusks are a source of food for seabirds and marine mammals.

Our data showed that the kelp gulls (L. dominicanus) were the most affected seabird species. This result indicates exposure to T. gondii and N. caninum in this seabird species. The kelp gull (L. dominicanus) belongs to the order Charadriiformes and is the most abundant seabird on the southern coast of Brazil (Soares & Schiefler, 1995Soares M, Schiefler AF. Reprodução de Larus dominicanus (Aves, Laridae), na Ilhota da Galeta, Laguna, SC, Brasil. Braz Arch Biol Technol 1995; 38(1): 313-316.; Branco, 2003Branco JO. Reprodução das aves marinhas nas ilhas costeiras de Santa Catarina, Brasil. Rev Bras Zool 2003; 20(4): 619-623. http://doi.org/10.1590/S0101-81752003000400010.
http://doi.org/10.1590/S0101-81752003000...
). The increase in the population of kelp gulls is attributed to the availability of food found in garbage of human origin discarded from fishing (Barbieri, 2008Barbieri E. Diversidade da dieta e do comportamento do Gaivotão Antártico (Larus dominicanus) na Península Keller, Ilha Rei George, Shetland do Sul. Mundo Saude 2008; 32(3): 302-307. http://doi.org/10.15343/0104-7809.200832.3.5.
http://doi.org/10.15343/0104-7809.200832...
). This species is considered one of the most opportunistic and generalist species among seabirds. Investigating the transmission patterns of T. gondii and N. caninum in wild birds, especially in those exhibiting opportunistic and generalist feeding behaviors, is important for understanding the epidemiological role of these birds in the maintenance and dissemination of protozoan parasites (Cabezón et al., 2016Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249.
http://doi.org/10.1371/journal.pone.0150...
).

Notably, beach sand is also a source of infection besides seawater contamination with oocysts. Although beach sand can act as a reservoir for various microorganisms, few epidemiological studies have verified the prevalence of T. gondii and N. caninum (Brandão et al., 2020Brandão J, Albergaria I, Albuquerque J, José S, Grossinho J, Ferreira FC, et al. Untreated sewage contamination of beach sand from a leaking underground sewage system. Sci Total Environ 2020; 740: 140237. http://doi.org/10.1016/j.scitotenv.2020.140237.
http://doi.org/10.1016/j.scitotenv.2020....
; Valério et al., 2022Valério E, Santos ML, Teixeira P, Matias R, Mendonça J, Ahmed W, et al. Microbial source tracking as a method of determination of beach sand contamination. Int J Environ Res Public Health 2022; 19(13): 7934. http://doi.org/10.3390/ijerph19137934.
http://doi.org/10.3390/ijerph19137934...
). Toxoplasma gondii and N. caninum oocysts can contaminate beach sand after infected felids and canids shed the parasite in their feces (Donahoe et al., 2015Donahoe SL, Lindsay SA, Krockenberger M, Phalen D, Šlapeta J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int J Parasitol Parasites Wildl 2015; 4(2): 216-238. http://doi.org/10.1016/j.ijppaw.2015.04.002.
http://doi.org/10.1016/j.ijppaw.2015.04....
; Shapiro et al., 2019Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, De Wit LA, VanWormer E, et al. Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food, 2019. Food Waterborne Parasitol 2019; 15: e00049. http://doi.org/10.1016/j.fawpar.2019.e00049.
http://doi.org/10.1016/j.fawpar.2019.e00...
). Oocysts tend to concentrate at or near the defecation sites of cats and dogs but can be dispersed by wind, arthropods, and rainfall (Afonso et al., 2007Afonso E, Thulliez P, Pontier D, Gilot-Fromont E. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology 2007; 134(14): 1963-1971. http://doi.org/10.1017/S0031182007003320.
http://doi.org/10.1017/S0031182007003320...
).

In the present study, the DNA of T. gondii and N. caninum was detectable in the three tissues analyzed; however, the heart was the tissue with the highest detection rate. Previous studies have reported T. gondii tropism in the brain tissue, liver, and heart (Sharma et al., 2019Sharma R, Parker S, Al-Adhami B, Bachand N, Jenkins E. Comparison of tissues (heart vs. brain) and serological tests (MAT, ELISA and IFAT) for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo) from the Yukon, Canada. Food Waterborne Parasitol 2019; 15: e00046. http://doi.org/10.1016/j.fawpar.2019.e00046.
http://doi.org/10.1016/j.fawpar.2019.e00...
; Campbell et al., 2022Campbell K, Paparini A, Gomez AB, Cannell B, Stephens N. Fatal toxoplasmosis in Little Penguins (Eudyptula minor) from Penguin Island, Western Australia. Int J Parasitol Parasites Wildl 2022; 17: 211-217. http://doi.org/10.1016/j.ijppaw.2022.02.006.
http://doi.org/10.1016/j.ijppaw.2022.02....
). Based on these findings, the heart could be considered a good target for Apicomplexa DNA detection in seabirds.

T. gondii and N. caninum nucleotide sequences from this study were similar to T. gondii and N. caninum sequences isolated from various hosts in different geographic regions. A limitation of the present study is that we only evaluated the ITS1 region using primers that amplify other coccidian members of the Sarcocystidae family (T. gondii, N. caninum, Hammondia heydoni, and Sarcocystis spp.). Although some studies have shown that the ITS1 region is a good marker for establishing differences between closely related coccidia (Šlapeta et al., 2002Šlapeta JR, Koudela B, Votýpka J, Modrý D, Hořejš R, Lukeš J. Coprodiagnosis of Hammondia heydorni in dogs by PCR based amplification of ITS 1 rRNA: differentiation from morphologically indistinguishable oocysts of Neospora caninum. Vet J 2002; 163(2): 147-154. http://doi.org/10.1053/tvjl.2001.0599.
http://doi.org/10.1053/tvjl.2001.0599...
), sequencing does not allow the detection of any possible co-infections between the two pathogens.

The results of this study indicate the circulation of these protozoans in the Brazilian seacoast and indicate that seabirds could play an epidemiological role in the cycle life of T. gondii and N.caninum. Seabirds are considered sentinels of environmental contamination due to their ecological position in the trophic chain (Parsons et al., 2008Parsons M, Mitchell I, Butler A, Ratcliffe N, Frederiksen M, Foster S, et al. Seabirds as indicators of the marine environment. ICES J Mar Sci 2008; 65(8): 1520-1526. http://doi.org/10.1093/icesjms/fsn155.
http://doi.org/10.1093/icesjms/fsn155...
). In addition, seabirds can also serve as a source of infection for felids and dogs that consume them (Doherty et al., 2017Doherty PD, Baxter JM, Godley BJ, Graham RT, Hall G, Hall J, et al. Testing the boundaries: seasonal residency and inter-annual site fidelity of basking sharks in a proposed Marine Protected Area. Biol Conserv 2017; 209: 68-75. http://doi.org/10.1016/j.biocon.2017.01.018.
http://doi.org/10.1016/j.biocon.2017.01....
; Mendoza Roldan & Otranto, 2023Mendoza Roldan JA, Otranto D. Zoonotic parasites associated with predation by dogs and cats. Parasit Vectors 2023; 16(1): 55. http://doi.org/10.1186/s13071-023-05670-y.
http://doi.org/10.1186/s13071-023-05670-...
).

Conclusions

Seabirds are susceptible to infection with T. gondii and N. caninum. This study detected T. gondii and N. caninum DNA in kelp gull (L. dominicanus) and in Manx shearwater (P. puffinus), and only DNA from N. caninumin the neotropic cormorant (P. brasilianus), brown booby (S. leucogaster) and white-chinned petrel (P. aequinoctialis). Further investigations are required to clarify the role of seabirds in the life cycle and the epidemiology of these protozoans.

Acknowledgements

We would like to thank the beach monitoring project team - Santos Basin (PMP-BS) in the Santa Catarina / Paraná (SC/PR) for the support and assistance during the sampling procedures. We also would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - for the financial support (Finance Code 001).

  • How to cite: Sato AP, Silva TCE, Pontes TP, Konell AL, Barros LD, Varaschin MS, et al. Molecular detection of Toxoplasma gondii and Neospora caninum in seabirds collected along the coast of Santa Catarina, Brazil. Braz J Vet Parasitol 2024; 33(2): e003624. https://doi.org/10.1590/S1984-29612024019
  • Ethics declaration

    This study was approved by the Ethics Committee in Animal Experimentation and Welfare at the Universidade Federal do Paraná (protocol number 061/2018) and by the Chico Mendes Institute for Biodiversity Conservation (ICMBio) through the System of Authorization and Information on Biodiversity (SISBIO number 64096-2).

References

  • Afonso E, Thulliez P, Pontier D, Gilot-Fromont E. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal. Parasitology 2007; 134(14): 1963-1971. http://doi.org/10.1017/S0031182007003320
    » http://doi.org/10.1017/S0031182007003320
  • Barbieri E. Diversidade da dieta e do comportamento do Gaivotão Antártico (Larus dominicanus) na Península Keller, Ilha Rei George, Shetland do Sul. Mundo Saude 2008; 32(3): 302-307. http://doi.org/10.15343/0104-7809.200832.3.5
    » http://doi.org/10.15343/0104-7809.200832.3.5
  • Barros LD, Miura AC, Minutti AF, Vidotto O, Garcia JL. Neospora caninum in birds: a review. Parasitol Int 2018; 67(4): 397-402. http://doi.org/10.1016/j.parint.2018.03.009
    » http://doi.org/10.1016/j.parint.2018.03.009
  • Barros LD, Taroda A, Martins TA, Miura AC, De Seixas M, Sammi AS, et al. Survey of Neospora caninum in eared doves (Zenaida auriculata) in Southern Brazil. Acta Trop 2017; 174: 132-135. http://doi.org/10.1016/j.actatropica.2017.07.007
    » http://doi.org/10.1016/j.actatropica.2017.07.007
  • Branco JO. Reprodução das aves marinhas nas ilhas costeiras de Santa Catarina, Brasil. Rev Bras Zool 2003; 20(4): 619-623. http://doi.org/10.1590/S0101-81752003000400010
    » http://doi.org/10.1590/S0101-81752003000400010
  • Brandão J, Albergaria I, Albuquerque J, José S, Grossinho J, Ferreira FC, et al. Untreated sewage contamination of beach sand from a leaking underground sewage system. Sci Total Environ 2020; 740: 140237. http://doi.org/10.1016/j.scitotenv.2020.140237
    » http://doi.org/10.1016/j.scitotenv.2020.140237
  • Cabezón O, Cerdà-Cuéllar M, Morera V, García-Bocanegra I, González-Solís J, Napp S, et al. Toxoplasma gondii infection in seagull chicks is related to the consumption of freshwater food resources. PLoS One 2016; 11(3): e0150249. http://doi.org/10.1371/journal.pone.0150249
    » http://doi.org/10.1371/journal.pone.0150249
  • Cabezón O, García-Bocanegra I, Molina-López R, Marco I, Blanco JM, Höfle U, et al. Seropositivity and risk factors associated with Toxoplasma gondii infection in wild birds from Spain. PLoS One 2011; 6(12): e29549. http://doi.org/10.1371/journal.pone.0029549
    » http://doi.org/10.1371/journal.pone.0029549
  • Campbell K, Paparini A, Gomez AB, Cannell B, Stephens N. Fatal toxoplasmosis in Little Penguins (Eudyptula minor) from Penguin Island, Western Australia. Int J Parasitol Parasites Wildl 2022; 17: 211-217. http://doi.org/10.1016/j.ijppaw.2022.02.006
    » http://doi.org/10.1016/j.ijppaw.2022.02.006
  • Cerqueira-Cézar CK, Calero-Bernal R, Dubey JP, Gennari SM. All about neosporosis in Brazil. Rev Bras Parasitol Vet 2017; 26(3): 253-279. http://doi.org/10.1590/s1984-29612017045 PMid:28876360.
    » http://doi.org/10.1590/s1984-29612017045
  • Conrad PA, Miller MA, Kreuder C, James ER, Mazet J, Dabritz H, et al. Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int J Parasitol 2005; 35(11-12): 1155-1168. http://doi.org/10.1016/j.ijpara.2005.07.002 PMid:16157341.
    » http://doi.org/10.1016/j.ijpara.2005.07.002
  • Costa LS, Withoeft JA, Bilicki JV, Melo IC, Snak A, Neves GB, et al. Neospora caninum-associated abortions in cattle from Southern Brazil: anatomopathological and molecular characterization. Vet Parasitol Reg Stud Rep 2022; 36: 100802. http://doi.org/10.1016/j.vprsr.2022.100802
    » http://doi.org/10.1016/j.vprsr.2022.100802
  • Darwich L, Cabezón O, Echeverria I, Pabón M, Marco I, Molina-López R, et al. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Vet Parasitol 2012; 183(3-4): 377-381. http://doi.org/10.1016/j.vetpar.2011.07.024
    » http://doi.org/10.1016/j.vetpar.2011.07.024
  • Doherty PD, Baxter JM, Godley BJ, Graham RT, Hall G, Hall J, et al. Testing the boundaries: seasonal residency and inter-annual site fidelity of basking sharks in a proposed Marine Protected Area. Biol Conserv 2017; 209: 68-75. http://doi.org/10.1016/j.biocon.2017.01.018
    » http://doi.org/10.1016/j.biocon.2017.01.018
  • Donahoe SL, Lindsay SA, Krockenberger M, Phalen D, Šlapeta J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int J Parasitol Parasites Wildl 2015; 4(2): 216-238. http://doi.org/10.1016/j.ijppaw.2015.04.002
    » http://doi.org/10.1016/j.ijppaw.2015.04.002
  • Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Grigg ME. Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009-2020. Vet Parasitol 2020; 288: 109296. http://doi.org/10.1016/j.vetpar.2020.109296
    » http://doi.org/10.1016/j.vetpar.2020.109296
  • Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Villena I. Congenital toxoplasmosis in humans: an update of worldwide rate of congenital infections. Parasitology 2021; 148(12): 1406-1416. http://doi.org/10.1017/S0031182021001013
    » http://doi.org/10.1017/S0031182021001013
  • Dubey JP, Zarnke R, Thomas NJ, Wong SK, Van Bonn W, Briggs M, et al. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet Parasitol 2003; 116(4): 275-296. http://doi.org/10.1016/S0304-4017(03)00263-2
    » http://doi.org/10.1016/S0304-4017(03)00263-2
  • Dubey JP. A review of toxoplasmosis in wild birds. Vet Parasitol 2002; 106(2): 121-153. http://doi.org/10.1016/S0304-4017(02)00034-1
    » http://doi.org/10.1016/S0304-4017(02)00034-1
  • Dubey JP. Toxoplasmosis of animals and humans Boca Raton: CRC Press; 2021.. http://doi.org/10.1201/9781003199373
    » http://doi.org/10.1201/9781003199373
  • Fujii K, Kakumoto C, Kobayashi M, Saito S, Kariya T, Watanabe Y, et al. Seroepidemiology of Toxoplasma gondii and Neospora caninum in Seals around Hokkaido, Japan. J Vet Med Sci 2007; 69(4): 393-398. http://doi.org/10.1292/jvms.69.393
    » http://doi.org/10.1292/jvms.69.393
  • Gennari SM, Niemeyer C, Soares HS, Musso CM, Siqueira GCC, Catão-Dias JL, et al. Seroprevalence of Toxoplasma gondii in seabirds from Abrolhos Archipelago, Brazil. Vet Parasitol 2016; 226: 50-52. http://doi.org/10.1016/j.vetpar.2016.06.016
    » http://doi.org/10.1016/j.vetpar.2016.06.016
  • Giaccardi M, Yorio P, Lizurume ME. Patrones estacionales de abundancia de la gaviota cocinera (Larus dominicanus) en un basural patagónico y sus relaciones con el manejo de residuos urbanos y pesqueros. Ornitol Neotrop 1997; 8(1): 77-84.
  • Gondim LSQ, Abe-Sandes K, Uzêda RS, Silva MSA, Santos SL, Mota RA, et al. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Vet Parasitol 2010; 168(1-2): 121-124. http://doi.org/10.1016/j.vetpar.2009.09.055
    » http://doi.org/10.1016/j.vetpar.2009.09.055
  • Griffiths R. Sex identification in birds. Semin Avian Exot Pet Med 2000; 9(1): 14-26. http://doi.org/10.1016/S1055-937X(00)80012-2
    » http://doi.org/10.1016/S1055-937X(00)80012-2
  • Harrison P. Seabirds, an identification guide London: Christopher Helm; 1989.
  • Jones JL, Dubey JP. Waterborne toxoplasmosis - Recent developments. Exp Parasitol 2010; 124(1): 10-25. http://doi.org/10.1016/j.exppara.2009.03.013
    » http://doi.org/10.1016/j.exppara.2009.03.013
  • Konell AL, Sato AP, Stival M, Malaguini NP, Anjos A, Ferreira RF, et al. Serosurvey of Toxoplasma gondii, Sarcocystis sp. and Neospora caninum in geese (Anser sp.) from urban parks and captivity. Rev Bras Parasitol Vet 2019; 28(2): 221-228. http://doi.org/10.1590/s1984-29612019042
    » http://doi.org/10.1590/s1984-29612019042
  • Lindsay DS, Collins MV, Mitchell SM, Wetch CM, Rosypal AC, Flick GJ, et al. Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica). J Parasitol 2004; 90(5): 1054-1057. http://doi.org/10.1645/GE-296R
    » http://doi.org/10.1645/GE-296R
  • Lindsay DS, Smith PC, Hoerr FJ, Blagburn BL. Prevalence of encysted Toxoplasma gondii in raptors from Alabama. J Parasitol 1993; 79(6): 870-873. http://doi.org/10.2307/3283724
    » http://doi.org/10.2307/3283724
  • Lukášová R, Kobédová K, Halajian A, Bártová E, Murat JB, Rampedi KM, et al. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa. Acta Trop 2018; 178: 93-96. http://doi.org/10.1016/j.actatropica.2017.10.029
    » http://doi.org/10.1016/j.actatropica.2017.10.029
  • Marino AMF, Giunta RP, Salvaggio A, Castello A, Alfonzetti T, Barbagallo A, et al. Toxoplasma gondii in edible fishes captured in the Mediterranean basin. Zoonoses Public Health 2019; 66(7): 826-834. http://doi.org/10.1111/zph.12630
    » http://doi.org/10.1111/zph.12630
  • Massie GN, Ware MW, Villegas EN, Black MW. Uptake and transmission of Toxoplasma gondii oocysts by migratory, filter-feeding fish. Vet Parasitol 2010; 169(3-4): 296-303. http://doi.org/10.1016/j.vetpar.2010.01.002
    » http://doi.org/10.1016/j.vetpar.2010.01.002
  • McAloose D, Colegrove KM, Newton AL. Wildlife necropsy. In: Terio KA, McAlose D, Leger JS. Pathology of wildlife and zoo animals Cambridge: Ademic Press; 2018. p. 1-20.. http://doi.org/10.1016/B978-0-12-805306-5.00001-8
    » http://doi.org/10.1016/B978-0-12-805306-5.00001-8
  • Mendoza Roldan JA, Otranto D. Zoonotic parasites associated with predation by dogs and cats. Parasit Vectors 2023; 16(1): 55. http://doi.org/10.1186/s13071-023-05670-y
    » http://doi.org/10.1186/s13071-023-05670-y
  • Miao Q, Han JQ, Xiang X, Yuan FZ, Liu YZ, Duan G, et al. Prevalence of Antibody to Toxoplasma gondii in Black-headed Gulls ( Chroicocephalus ridibundus ), Dianchi Lake, China. J Wildl Dis 2014; 50(3): 717-719. http://doi.org/10.7589/2014-01-016
    » http://doi.org/10.7589/2014-01-016
  • Mineo TWP, Carrasco AOT, Raso TF, Werther K, Pinto AA, Machado RZ. Survey for natural Neospora caninum infection in wild and captive birds. Vet Parasitol 2011; 182(2-4): 352-355. http://doi.org/10.1016/j.vetpar.2011.05.022
    » http://doi.org/10.1016/j.vetpar.2011.05.022
  • Molina-López R, Cabezón O, Pabón M, Darwich L, Obón E, Lopez-Gatius F, et al. High seroprevalence of Toxoplasma gondii and Neospora caninum in the Common raven (Corvus corax) in the Northeast of Spain. Res Vet Sci 2012; 93(1): 300-302. http://doi.org/10.1016/j.rvsc.2011.05.011
    » http://doi.org/10.1016/j.rvsc.2011.05.011
  • Moura AB, Souza AP, Sartor AA, Bellato V, Teixeira EB, Pisetta GM, et al. Ocorrência de anticorpos e fatores de risco para infecção por Toxoplasma gondii em cães, nas cidades de Lages e Balneário Camboriú, Santa Catarina, Brasil. Rev Bras Parasitol Vet 2009; 18(3): 52-56. http://doi.org/10.4322/rbpv.01803009
    » http://doi.org/10.4322/rbpv.01803009
  • Nardoni S, Poli A, Varvaro I, Rocchigiani G, Ceccherelli R, Mancianti F. Detection of Neospora caninum DNA in wild birds from Italy. Pathogens 2019b; 8(4): 202. http://doi.org/10.3390/pathogens8040202
    » http://doi.org/10.3390/pathogens8040202
  • Nardoni S, Rocchigiani G, Varvaro I, Altomonte I, Ceccherelli R, Mancianti F. Serological and molecular investigation on Toxoplasma gondii infection in wild birds. Pathogens 2019a; 8(2): 58. http://doi.org/10.3390/pathogens8020058
    » http://doi.org/10.3390/pathogens8020058
  • Parsons M, Mitchell I, Butler A, Ratcliffe N, Frederiksen M, Foster S, et al. Seabirds as indicators of the marine environment. ICES J Mar Sci 2008; 65(8): 1520-1526. http://doi.org/10.1093/icesjms/fsn155
    » http://doi.org/10.1093/icesjms/fsn155
  • Pena HFJ, Alves BF, Soares HS, Oliveira S, Ferreira MN, Bricarello PA, et al. Free-range chickens from Santa Catarina state, southern Brazil, as asymptomatic intermediate hosts for Toxoplasma gondii clonal type I and typical Brazilian genotypes. Vet Parasitol Reg Stud Rep 2018; 13: 55-59. http://doi.org/10.1016/j.vprsr.2018.04.001
    » http://doi.org/10.1016/j.vprsr.2018.04.001
  • Poulle ML, Le Corre M, Bastien M, Gedda E, Feare C, Jaeger A, et al. Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS One 2021; 16(8): e0255664. http://doi.org/10.1371/journal.pone.0255664
    » http://doi.org/10.1371/journal.pone.0255664
  • Rocchigiani G, Poli A, Nardoni S, Papini R, Mancianti F. Neospora caninum in Wild Waterfowl: Occurrence of Parasite DNA and Low Antibody Titers. J Parasitol 2017; 103(1): 142-145. http://doi.org/10.1645/16-34
    » http://doi.org/10.1645/16-34
  • Rosa LD, Moura AB, Trevisani N, Medeiros AP, Sartor AA, Souza AP, et al. Toxoplasma gondii antibodies on domiciled cats from Lages municipality, Santa Catarina State, Brazil. Rev Bras Parasitol Vet 2010; 19(4): 268-269. http://doi.org/10.1590/S1984-29612010000400017
    » http://doi.org/10.1590/S1984-29612010000400017
  • Sato AP, Goulart MA, Konell AL, De Oliveira Koch M, Da Fonseca FM, Morel AP, et al. Serosurvey of Toxoplasma gondii, Neospora caninum and Sarcocystis neurona in raptors and risk factor analysis. Parasitol Int 2021; 82: 102312. http://doi.org/10.1016/j.parint.2021.102312
    » http://doi.org/10.1016/j.parint.2021.102312
  • Schreiber EA, Burger J. Biology of marine birds Boca Raton: CRC Press; 2001.
  • Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, De Wit LA, VanWormer E, et al. Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food, 2019. Food Waterborne Parasitol 2019; 15: e00049. http://doi.org/10.1016/j.fawpar.2019.e00049
    » http://doi.org/10.1016/j.fawpar.2019.e00049
  • Sharma R, Parker S, Al-Adhami B, Bachand N, Jenkins E. Comparison of tissues (heart vs. brain) and serological tests (MAT, ELISA and IFAT) for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo) from the Yukon, Canada. Food Waterborne Parasitol 2019; 15: e00046. http://doi.org/10.1016/j.fawpar.2019.e00046
    » http://doi.org/10.1016/j.fawpar.2019.e00046
  • Silva MO, Snak A, Reiter JC, Serighelli G Jr, Cristani J, Moura AB. Occurrence of antibodies against Neospora caninum in sows and factors associated with infection in commercial herds in two regions of the state of Santa Catarina, Brazil. Semina: Ciênc Agrár 2020; 41(2): 697-702. http://doi.org/10.5433/1679-0359.2020v41n2p697
    » http://doi.org/10.5433/1679-0359.2020v41n2p697
  • Šlapeta JR, Koudela B, Votýpka J, Modrý D, Hořejš R, Lukeš J. Coprodiagnosis of Hammondia heydorni in dogs by PCR based amplification of ITS 1 rRNA: differentiation from morphologically indistinguishable oocysts of Neospora caninum. Vet J 2002; 163(2): 147-154. http://doi.org/10.1053/tvjl.2001.0599
    » http://doi.org/10.1053/tvjl.2001.0599
  • Soares M, Schiefler AF. Reprodução de Larus dominicanus (Aves, Laridae), na Ilhota da Galeta, Laguna, SC, Brasil. Braz Arch Biol Technol 1995; 38(1): 313-316.
  • Soares RM, Lopes EG, Keid LB, Sercundes MK, Martins J, Richtzenhain LJ. Identification of Hammondia heydorni oocysts by a heminested-PCR (hnPCR-AP10) based on the H. heydorni RAPD fragment AP10. Vet Parasitol 2011; 175(1-2): 168-172. http://doi.org/10.1016/j.vetpar.2010.09.022
    » http://doi.org/10.1016/j.vetpar.2010.09.022
  • Tamura K, Kumar S. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 2002; 19(10): 1727-1736. http://doi.org/10.1093/oxfordjournals.molbev.a003995
    » http://doi.org/10.1093/oxfordjournals.molbev.a003995
  • Valério E, Santos ML, Teixeira P, Matias R, Mendonça J, Ahmed W, et al. Microbial source tracking as a method of determination of beach sand contamination. Int J Environ Res Public Health 2022; 19(13): 7934. http://doi.org/10.3390/ijerph19137934
    » http://doi.org/10.3390/ijerph19137934
  • VanWormer E, Miller MA, Conrad PA, Grigg ME, Rejmanek D, Carpenter TE, et al. Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation. PLoS Negl Trop Dis 2014; 8(5): e2852. http://doi.org/10.1371/journal.pntd.0002852
    » http://doi.org/10.1371/journal.pntd.0002852
  • Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and cetacean-derived Etosis contributes to combating emerging apicomplexan parasites (Toxoplasma gondii, Neospora caninum) circulating in marine environments. Biology (Basel) 2019; 8(1): 12. http://doi.org/10.3390/biology8010012
    » http://doi.org/10.3390/biology8010012
  • Votier SC, Sherley RB. Seabirds. Curr Biol 2017; 27(11): R448-R450. http://doi.org/10.1016/j.cub.2017.01.042
    » http://doi.org/10.1016/j.cub.2017.01.042
  • Wilson AG, Lapen DR, Mitchell GW, Provencher JF, Wilson S. Interaction of diet and habitat predicts Toxoplasma gondii infection rates in wild birds at a global scale. Glob Ecol Biogeogr 2020; 29(7): 1189-1198. http://doi.org/10.1111/geb.13096
    » http://doi.org/10.1111/geb.13096

Publication Dates

  • Publication in this collection
    22 Apr 2024
  • Date of issue
    2024

History

  • Received
    18 Feb 2024
  • Accepted
    23 Feb 2024
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br