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ABSTRACT

The occurrence of  flood events has become more frequent, and, in Brazil, there are regions that suffer with the repetition of  those 
events. In União da Vitória, located in Paraná State, Brazil, those phenomena are commonly recorded, generating series of  consequences 
for each flood event, such as financial losses, environmental damages, home losses and deaths. So, since it is not possible to avoid 
the occurrence of  floods, it is necessary to reduce its impacts, and in a scenario of  repeated flood events, as observed in União da 
Vitória, it is justified the clustering of  historical floods, aiming to improve the knowledge about the river basin hydrological behavior 
and to assist in the determination of  hydrological models parameters. Clustering analysis aims to establish sets of  events with similar 
characteristics, and, for this, based on fuzzy logic, the present study uses the fuzzy c-means method to cluster Iguaçu river floods, 
observed in União da Vitória, using a set of  different flood severity indicators. The classification defined four clusters, according to 
different flood severity levels, so-called: low; medium; high; and, disaster or catastrophe. Therefore, by the analysis of  similar features 
among different clusters of  events, it is further possible to study the flood formation mechanisms, contributing to the reduction of  
its impacts, through real-time flood alert and forecasting systems, for instance.
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RESUMO

A ocorrência de eventos de cheia tem se tornado mais frequente e, no Brasil, existem regiões que sofrem com a repetição destes 
eventos. Em União da Vitória, no estado do Paraná, estes fenômenos são comumente registrados, gerando, a cada evento, uma série 
de consequências, como, por exemplo, prejuízos financeiros, danos ambientais, perdas de casas e mortes. Assim, uma vez que não é 
possível evitar a ocorrência das inundações, procura-se diminuir os seus impactos, e, em um cenário de repetição de eventos de cheia, 
como observado no município de União da Vitória, justifica-se a aplicação do agrupamento de cheias históricas, com o objetivo de 
melhorar o conhecimento sobre o comportamento hidrológico da bacia hidrográfica e auxiliar na determinação de parâmetros de modelos 
hidrológicos. O objetivo do agrupamento de cheias consiste em estabelecer conjuntos de eventos com características semelhantes, e, 
para isso, baseando-se na lógica difusa, o presente estudo utilizou o algoritmo fuzzy c-means como ferramenta para agrupar as cheias 
do rio Iguaçu, observadas na cidade de União da Vitória, a partir da definição de diferentes indicadores de severidade de uma cheia. 
Esta classificação, por sua vez, foi capaz de definir quatro diferentes grupos de eventos de cheias, com distintos níveis de severidade, 
assim denominados: severidade baixa; severidade média; severidade alta; desastres ou catástrofes. Desta forma, através da análise das 
características semelhantes entre os eventos de cada grupo, acredita-se que, posteriormente, seja possível estudar os mecanismos de 
formação das cheias de cada grupo e contribuir para a diminuição dos seus impactos, através, por exemplo, de sistemas de alerta e 
previsão de cheias em tempo real.

Palavras-chave: Agrupamento de cheias; Indicadores de cheias; Intensidade de cheias; Fuzzy c-means; Previsão de cheias.
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INTRODUCTION
Recently, natural disasters such as floods, droughts, landslides 

and extreme temperatures have hit Brazil and affected thousands 
of  people (EM-DAT, 2015). Among these occurrences, floods 
are most relevant natural disaster since they represent the largest 
number of  occurrences and cause the largest number of  deaths 
due to natural disasters in the country, according to the Emergency 
Disasters Data Base (EM-DAT, 2015).

Droughts and minor magnitude floods represent most of  
the hydrological period, and they limit the discharge to the main 
riverbed. However, when extreme floods occur, the elevation of  
water levels exceeds the river banks and overflow to the flooding 
plains (TUCCI; BERTONI, 2003; PAZ et al., 2009).

That concept represents the definition of  flood applied to 
the present work, which is summarized as ‘flow that exceeds the 
drainage capacity of  a river main channel’ (CASTILHO et al., 2005; 
TUCCI, 2012). In those cases, floods may generate consequences 
for the region beyond the financial losses, such as the occurrence 
of  deaths and environmental damages, which are called intangible 
damages, due to the difficulty of  translating those consequences into 
financial losses (MACHADO et al., 2005; MESSNER et al., 2006).

Thus, to reduce the impacts from those great magnitude 
floods, a series of  control measures can be adopted. Control 
measures of  the structural type modify the fluvial system, while 
control measures of  the non-structural type seek to reduce the 
impacts through the adequate coexistence of  the population 
with the events (TUCCI, 2012). In addition, it is important to 
emphasize that, in order to adopt the most adequate control 
measures, some aspects of  the watershed must be studied to 
prevent possible local impacts from being transferred to the 
nearby regions (TUCCI et al., 1995).

Flood forecasting and warning system is an example of  
non-structural control measure (TUCCI, 2012). In general, the 
development of  such type of  system requires the use of  hydraulic 
and hydrological models, which are better adjusted through a better 
knowledge of  the river basin hydrological behavior. The usual 
approach to apply hydraulic and hydrological models involves 
the steps of  calibration, verification and simulation. Especially in 
the calibration stage, it is sought to establish a group of  events 
that allows defining a unique set of  model parameters, aiming the 
flood formation process dynamics in river basin is relatively well 
represented by the model.

Chebana et al. (2013) state that, for hydrological extreme 
event forecasting, frequency analysis procedures are essential 
and commonly applied, and in this approach, variables such as 
maximum water flow and maximum water level are adopted to 
define the magnitude of  the events. However, those variables are 
not able to represent all the complexity involved in flood events, 
once they can be different in many ways. For this reason, it is 
questionable whether it is possible to capture the complexity of  
such dynamics with a single set of  parameters, or whether it is 
necessary to define more than one set of  parameters, trying to 
represent events or cluster of  events with distinct characteristics.

Therefore, the present work assumes that the definition of  
different sets of  model parameters, each one representing flood 
characteristics inherent to certain events or cluster of  events, 
enables the improvement of  hydrological models. So, it believes 
that it is possible to achieve this goal using clustering analysis to 

identify patterns in flood formation mechanism of  each cluster. 
Certainly, considering a real-time flood forecasting and warning 
system, the results obtained with the present study can reduce the 
amplitude of  flow forecasting by means of  identifying to which 
cluster the flood best fits as the flood hydrograph evolves.

Flood indicators are initially stablished for definition of  
clusters of  events with similar features. According to Wang et al. 
(2014), the flood indicators must be able to evaluate the intensity 
of  flood events, once the adequate characterization of  those 
phenomena is not possible without the adoption of  a set of  
different parameters (characteristics), in addition to maximum 
flow and maximum water level.

However, only the adoption of  those indicators does not 
allow the full characterization of  an extreme flood event. For this, 
Wang et al. (2014) suggest that a clustering method can be used 
to determine sets of  flood events with similar characteristics, 
based on the adopted set of  flood indicators. In this case, those 
clusters are distinct from each other, because of  the severity of  
the floods that belong to each cluster.

Data clustering is based on the principle of  object classification, 
“so that each object is similar to the others in the clustering, based 
on a set of  chosen characteristics” (HAIR JUNIOR et al., 2009). 
Therefore, as one of  the multivariate statistics techniques and 
that it has been applying to several areas of  Science, including 
Hydrology, the data clustering was used in this work to obtain sets 
of  flood events with similar intrinsic characteristics.

In the literature, there are three main techniques of  data 
clustering applied to Hydrology: Self  Organizing Feature Map 
(SOFM), and K-means and Fuzzy c-means (fcm) algorithms. 
Jingyi and Hall (2004) present, initially, the Self  Organizing 
Feature Map (SOFM) method, whose goal is to capture the 
topology and probability distribution of  the input data, reducing 
the space of  entrance in representative characteristics through a 
“self-organization” process. According to Srinivas et al. (2007), 
the SOFM method is widely applied in flow regionalization 
studies. However, according to those authors, it is not exactly a 
data clustering technique, due to the complexity in interpreting 
the results. For this reason, Lampinen and Oja (1992) proposed 
its use as a support for other data clustering methods.

Jingyi and Hall (2004) also present the second mentioned 
data clustering method, the K-means algorithm. According to 
the authors, despite of  its simplifications, the method produces 
satisfactory results, including in Hydrology. Due to the acceptable 
results produced by the method, several applications are found 
in the literature. Chang  et  al. (2010), for example, applied the 
K-means method to subdivide a study area according to the 
flood characteristics, and to identify control points of  each 
cluster identified. Burn and Goel (2000) and Lin and Chen (2004), 
respectively, applied the algorithm K-means in order to analyze 
the frequency of  floods and to create a rainfall-runoff  model. 
Zahmatkesh et al. (2015) used the K-means method to improve 
the results obtained from rainfall-runoff  models for the Bronx 
River basin in the United States.

In the present study, among the three techniques for 
hydrological data clustering listed by Jingyi and Hall (2004), it 
was used the third method, fuzzy c-means (fcm). The fcm is an 
algorithm based on fuzzy logic, which aims to establish the similarities 
that a sample data shares with each cluster (BEZDEK  et  al., 
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1984), and to represent the uncertainties inherent to the real data 
(SATO‑ILIC; JAIN, 2006).

The concept of  clustering based on fuzzy logic can be 
better understood when it is compared to the classical definition 
of  clustering. According to Sato-Ilic and Jain (2006), in the 
traditional approach, when a sample data is clustered, it belongs 
only to one cluster, without sharing similar characteristics to the 
others. In clustering based on fuzzy logic, however, Sato-Ilic and 
Jain (2006) affirm that each sample data present distinct degrees 
of  similarity with each cluster. In other words, the clustering is 
defined by the membership (similarity) degree of  the sample data 
in relation to each one of  the clusters. The sample data is assigned 
to the group to which it presents the highest membership degree, 
but it still shows a similarity to the other groups. It means by that 
the objects can only return values 0 (zero) or 1 to the membership 
function to a certain cluster in the traditional approach, while the 
membership function admits values in the range from 0 (zero) to 
1 in clustering based on fuzzy logic. So, it allows the objects have 
a relation to all clusters, in a higher or lower degree, depending on 
the pertinence level presented in relation to each cluster.

In Hydrology, the application of  clustering based on 
fuzzy logic is widespread. He et al. (2011), for example, applied 
the clustering based on fuzzy logic to evaluate flood damages. 
Lohani et al. (2014), in turn, applied the same concept to improve 
a real-time flood forecasting system.

The choice of  the fuzzy c-means (fcm) algorithm as the 
clustering method in the present study is justified by its higher 
sophistication compared to other methods applicable to hydrology, 
and by its wide use in hydrological studies, as, for example, in 
Kaviski et al. (2004), Jingyi and Hall (2004), and Sadri and Burn 
(2011), who applied the fcm algorithm to obtain the regionalization 
of  hydrological parameters in their study areas. Furthermore, 
Wang et al. (2014) developed a clustering analysis of  floods to 
define the intensity and magnitude of  the events, as well as the 
similar characteristics among them. Therefore, it is verified the 
applicability of  the fuzzy c-means algorithm as a clustering method 
of  hydrological data and, consequently, Iguaçu River flood events, 
observed in municipality of  União da Vitória, based on a set of  
flood severity indicators.

Due to the frequency of  flood events on Iguaçu river, in 
União da Vitória, and to the fact there is a cascade of  reservoirs 
for electricity generation on Iguaçu River, located downstream the 
same city, previous studies have presented hydrological models 
to forecast Iguaçu river flow in União da Vitória. As an example, 
there are the studies of  Mine and Tucci (1999), Mine and Tucci 
(2002), and Breda (2015).

Based on Foz de Areia hydroelectric reservoir, located 
approximately 100 km downstream from União da Vitória, Mine 
and Tucci (1999) presented a method for real-time forecasting 
of  tributary flows to hydroelectric reservoirs. Due to operational 
limitations, both upstream and downstream from the reservoir, the 
authors used the combination of  a linear stochastic model (ARIMA 
model) and a deterministic rainfall-runoff  model (IPH II model), 
using a traditional approach to define the model parameters

Mine and Tucci (2002) studied the management of  energy 
production in hydroelectric power plants, choosing Foz de Areia 
power plant as the study area. The main goal was to maximize 
its energy production, keeping both favorable conditions for 
the reservoir and the safety of  upstream population, as well as 

helping flood control in União da Vitória through the power plant 
operation. The authors applied the same hydrological models 
used in a previous study (MINE; TUCCI, 1999), ARIMA and 
IPH II models, and again followed a traditional approach for 
hydrological studies.

On the other hand, Breda (2015), based on the flood occurred 
in União da Vitória in 2014 year, the third largest monitored flood 
in the city, applied a hydrological model with flood hydrograph 
splitting to perform the flow forecast. For this, Breda (2015) also 
used IPH II model, among others.

Thus, it observed that none of  cited studies used clustering 
analysis of  flood events neither to understand the river basin 
hydrological behavior in events of  different magnitudes, nor to 
determine sets of  distinct parameters, each one related to a specific 
cluster, considering all possible identified clusters.

Therefore, based on the presented considerations, this study 
aims performing a clustering analysis of  historical floods, observed 
on Iguaçu River, in União da Vitória, Paraná state, Brazil, by means 
of  defining flood indicators and using fuzzy c- means algorithm. 
Thus, it expects that such kind of  analysis can contribute to the 
development of  more efficient flood forecasting and warning 
systems, due to both a better knowledge of  the river basin and a 
specific calibration of  the hydrological and/or hydraulic model 
for each cluster, identified by the clustering analysis.

STUDY AREA
The study area includes the drainage area of  Iguaçu river 

basin, defined by a cross section of  interest, located approximately 
at 26° 13’ 44” S and 51° 04’ 58” W in União da Vitória, Paraná 
state, Brazil. The city rised on Iguaçu River banks and there are 
flood records since 1891, reinforcing the importance of  flood 
studies in the region.

Iguaçu River is about 1.320 km long, crossing over most 
of  Paraná state (PEREIRA; SCROCCARO, 2010), and it belongs 
to the Paraná River basin. The Iguaçu River is divided into three 
stretches: upper, middle and lower Iguaçu, respectively represented 
by numbers 2, 11 and 12 in Figure 1, that also shows the location 
of  União da Vitória in the middle stretch of  Iguaçu River.

The flow data, used in the present study, were recorded at 
União da Vitória gauging station (code ANA 65310000).

METHODS

The development of  the present study required the 
execution of  the following steps:

1.	 Collecting flow and water level data;

2.	 Filling gaps in flow and water level data;

3.	 Definition of  the overflow threshold;

4.	 Selection of  annual flood events;

5.	 Definition and calculation of  flood indicators;

6.	 Data pretreatment;

7.	 Data clustering;

8.	 Result analysis.
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Collecting flow and level data

Flow and water level data were collected from the União 
da Vitória gauging station (code ANA 65310000). However, it 
was necessary to correct flow data from 1980 to 2015, using 
water level observed from the R5 Porto Vitória gauging station 
(code ANA 65365800), as explained in the following.

The operation of  the Foz de Areia Hydroelectric Power 
Plant began in 1980, under the responsibility of  the Companhia 
Paranaense de Energia (COPEL). The plant reservoir created a 
backwater effect over the water levels observed in the União da 
Vitória gauging station (code ANA 65310000). Therefore, a family 
of  discharge curves, as shown in Figure 2, represents its relation 
between water level and discharge. As one can see, each discharge 
curve refers to a specific water level observed in R5 Porto Vitória 
gauging station (code ANA 65365800), located at upstream from the 
reservoir and downstream from the União da Vitória gauging station.

In order to correct flow data, it was used a computer 
program available by COPEL, that calculates flow in União da 
Vitória from the water levels observed in União da Vitória and R5 
Porto Vitória gauging stations, considering the family of  discharge 
curves, presented in Figure 2.

Table 1 presents the source of  hydrological data used for 
developing the present work, after flow data correction.

It is necessary to mention that the cited gauging station 
codes correspond to those established by the HidroWEB platform, 
under the responsibility of  the National Water Agency (ANA). 

However, the data were collected from the Instituto das Águas 
do Paraná database, as mentioned in Table 1. For further details 
about the collection of  data carried out for the study, it suggests 
to consult Steffen (2017).

Filling gaps in flow and water level data

Data gaps were observed only in water level data from R5 
Porto Vitória gauging station (code ANA 65365800) in 1980 to 
2015 period, which were used to correct flow data from União 

Figure 1. Location of  União da Vitória in Paraná state and in Iguaçu River basin (adapted from ÁGUAS PARANÁ, 2016) (no scale 
indication here).

Figure 2. Discharge curves for União da Vitória gauging station 
(code ANA 65310000) (adapted from CASTANHARO; BUBA, 
2008).
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da Vitória gauging station (code ANA 65310000), as mentioned 
previously. Water level duration curves for 1980 to 2015 common 
period were used to fill those gaps.

Basically, it was adopted the hypothesis that water level 
duration curves shows a strong relationship because the gauging 
stations are close to each other. In other words, it was assumed 
that water levels observed in both stations at the same time present 
the same duration. So, concerning to any day that shows a gap 
in water level in R5 Porto Vitória, the procedure to fill the gaps 
is presented as follows.

First, it was defined the duration (pi,UV) for the observed 
water level (hi,UV) in União da Vitória from its duration curve. 
Based on the adopted hypothesis, the duration (pi,PV) for the water 
level (hi,PV) in R5 Porto Vitória was made equal to the duration 
(pi,UV) for the observed water level in União da Vitória. Finally, 
the water level (hi,PV) in R5 Porto Vitória was defined from its 
own duration curve.

Equation (1) resumes the procedure applied to fill the gaps 
in R5 Porto Vitória water levels.

, , , ,i UV i UV i PV i PVh p p h→ = → 	 (1)

In addition, it is necessary to say that the gaps observed 
in water level data from R5 Porto Vitória gauging station (code 
ANA 65365800) corresponds to 23 consecutive days only, from 
1982 July to August 1982. Probably, such short time period did not 
produce any meaningful effect on the results obtained in this work.

Definition of  the overflow threshold

The overflow elevation coincides with the expropriation 
elevation defined for the Iguaçu riverside area, in União da Vitória, 
as performed by COPEL. That elevation correspond to 744.50 m 
above sea level.

The expropriation level, or overflow level, corresponds 
to 4.89 m water level in União da Vitória gauging station 
(code ANA 65310000), once the “zero” of  the limnimetric ruler 
is equal to 739.61 m above sea level.

However, in order to estimate the flow rate corresponding 
to the overflow level, it is important to restate that União da Vitória 
water levels are influenced by the R5 Porto Vitória water levels, as 
mentioned previously. That fact leads to exist a family of  rating 
curves for União da Vitória gauging station (code ANA 65310000), 
as shown in Figure 2, causing the overflow elevation (744.50 m) to 
have a corresponding flow rate in four discharge curves. In other 
words, 744.50 m elevation corresponds to four different flow 
values in Figure 2. Once the overflow threshold seeks to establish 
a unique value that represents an overflow situation, it was adopted 

1387 m3/s as the threshold flow value, which corresponds to the 
lowest flow rate among the four possible values, considering the 
744.50 m elevation and the family of  rating curves.

Therefore, the expropriation elevation provided two reference 
values for the present study, 4.89 m and 1387 m3/s, representing, 
respectively, threshold values for water level and flow rate.

Selection of  annual flood events

It was selected the largest annual flood event observed in each 
year, considering a period of  85 years, ranging from 1931 to 2015. 
This procedure was adopted in respect to the classical frequency 
analysis methods, that uses annual data series; however, it does not 
represent a limitation of  the clustering analysis. The definition of  
the largest annual flood event happened regardless of  whether, 
or not, there was overflow of  the main channel.

Each selected event always contains the maximum annual 
flow, except for 1970 and 1980 years. In those years, the annual 
maximum flows occurred on the December, 31th, and did not 
correspond to the hydrograph peaks. In both cases, the flood 
hydrographs were considered as belonging to the following years 
(1971 and 1981), and may, or may not, represent the largest annual 
observed flood event. For 1970 and 1980 years, the flood events 
correspond to the second largest annual observed flow rate.

In order to determine the duration of  each annual flood 
event, that is, to define the beginning and the ending points of  
each event, the minimum flows located to the left and to the right 
in relation to hydrograph peak were identified. Those points were 
adopted as, respectively, the beginning and the ending points of  
each event, allowing the calculation of  the flood duration.

Definition and calculation of  flood indicators

Seven flood indicators were defined as variables for the 
clustering analysis, basically representing characteristics of  the 
flood hydrograph, but also implicitly related to social and economic 
impacts. Such number of  variables requires the use of  multivariate 
statistics for the clustering analysis, which can be defined as “a set 
of  procedures to analyze the association between two or more sets 
of  measurements that were made on each object in one or more 
samples of  objects” (LATTIN et al., 2011). The chosen flood 
indicators, as well as their definitions and defining equations, are 
presented in Table 2.

In Equations from (2) to (6), n is the total number of  time 
periods over the overflow threshold; Vi is the overflow volume in 
i-th time period; Δti is the time period over the overflow threshold 
in the i-th period (days); te0, the starting time of  the first overflow; 
t0, the starting time of  the flood hydrograph; Q0 is the flow rate 
at the starting time of  the flood hydrograph (m3/s); Qref, is the 
reference flow (1387 m3/s); tmax is the hydrograph peak time; tef peak 
is the ending time of  the overflow period where the peak discharge 
is included; Qmax is the peak discharge (m3/s).

In Steffen (2017), one can see some figures that explain with 
more details each one of  the flood indicators presented in Table 2.

In addition, it is important to emphasize a peculiarity in 
water level data set. Instead of  the common hydrological operation 

Table 1. Source of  the hydrological data for União da Vitória 
gauging station (code ANA 65310000).

Variable Period 
(years) Source

Water 
level

1931 to 2015 Instituto de Águas do Paraná (raw data)

Flow 1931 to 1979 Instituto de Águas do Paraná (raw data)
1980 to 2015 COPEL Computer Program (corrected data)
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with two daily observations, União da Vitória gauging station (code 
ANA 65310000) presents two measurements only after 1989. 
Before 1989, daily water level data were available at 7 am, only.

Therefore, in the present study, after 1989, the maximum 
daily water level was adopted to generate the flow data, since the 
objective of  this work is to identify the clustering based through 
the flood severity.

Data pretreatment

Due to their physical and, consequently, measurement 
differences, it was applied a pretreatment to the flood indicators, 
using a normalization method. Equation (7) (WANG et al., 2014) 
presents the normalization method applied to the flood indicators, 
where xij and x0

ij are, respectively, the treated and non-treated 
values of  the i-th observation of  the j-th indicator, and x0

j min and 
x0

j max are, respectively, the minimum and maximum values of  
the j-th indicator.

min

max min

0 0
ij j

ij 0 0
j j

x x
x

x x

−
=

− 	 (7)

The xij elements assemble the matrix X, whose elements are 
defined from Equation (7) and belong to the [0, 1] range. Then, 
those elements represent dimensionless values and present the 
same order of  magnitude.

Data clustering

The clustering method adopted in this study, the fuzzy 
c-means (fcm) algorithm, establishes the similarities that a sample 
data shares with each cluster.

Aiming to minimize its objective function (Fob), the fcm 
is characterized by being an iterative method that follows the 
sequence presented as follows, where the iterations are denoted 
by (p) = 0, 1, 2, ..., n:

1.	 The number of  clusters (c) and the accuracy degree of  
the method (r) are assumed. In the following section, the 
method applied to define those parameters (r and c) is 
presented, regardless of  the fcm method;

2.	 Randomly, the initial fuzzy partition matrix (U0) is 
determined, which is composed by c lines and I columns, 
where c is the number of  clusters and I is the total number 
of  observations;

3.	 The matrix contained the centroids of  the c clusters (V) is 
calculated from Equation (8), where vki is the coordinate 
of  the j-th flood indicator of  the k-th centroid; xij is the 
treated value of  the i-th observation of  the j-th flood 
indicator; uki is the fuzzy partition matrix (U) element of  
the i-th observation of  the k-th cluster; c is the total number 
of  clusters; and, r is the accuracy degree of  the method:

( )

( )

c r
ki ij

k 1
kj c r

ki
k 1

u x
v

u

=

=

=
∑

∑
	 (8 )

4.	 The Euclidian distance matrix from the sample data to 
the centroids of  the c clusters (D) is calculated from 
Equation (9), where dik is the Euclidian distance of  the 
i-th observation to the k-th cluster; xij is the treated value 
of  the i-th observation of  the j-th flood indicator; vki is the 
coordinate of  the j-th flood indicator of  the k-th centroid; 
and, J is the total number of  flood indicators:

( )
2J

ik ij kj
j 1

d x v
=

= −∑
	 (9)

5.	 The objective function value (Fob) is calculated from Equation 
(10), where r is the accuracy degree of  the method; dik is 
the Euclidian distance from the i-th observation to the 
centroid of  the k-th cluster; uki is the adherence level of  the 
i-th observation of  the k-th cluster of  the fuzzy partition 

Table 2. Definition of  the flood indicators.

Flood indicator Unit of  
measure Description Defining equation Equation 

number
Peak discharge (I1) (m3/s) Maximum flow of  the selected annual event selected Data set ---
Peak water level (I2) (m) Maximum water level of  the selected annual event 

selected
Data set ---

Total overflow volume (I3) (km3) Total volume of  water over the overflow threshold 
during all the selected annual event

n
3 i

i 1
I V

=
= ∑ (2)

Total time over the overflow 
threshold (I4)

(day) Elapsed time of  the selected flood event over the 
overflow threshold

n
4 i

i 1
I t

=
= ∆∑ (3)

Elapsed time between the starting 
time of  the event and the overflow 
threshold exceeding (I5)

(day) For the selected annual event, this is the elapsed 
time from the starting time of  the event to the 
starting time of  overflow

05 e 0I t t= − (4)

Average ascension rate of  flood 
hydrograph (I6)

(m3/s/day) Ratio of  the difference between the reference flow 
and the initial hydrograph flow, and the I5 indicator

0

ref 0
6

e 0

Q Q
I  

t t
−

=
− (5)

Average recession rate of  flood 
hydrograph (I7)

(m3/s/day) Ratio of  the difference between the peak and the 
reference flows, and the elapsed time between them, 
taken along the hydrograph recession reach max

max ref
7

ef  peak

Q Q
I  

t t
−

=
− (6)
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matrix (U); c is the total number of  clusters; and, I is the 
total number of  observations of  the sample:

( ) ( )
c I r 2

ob ki ik
k 1i 1

F u d
= =

= ∑ ∑
	 (10)

6.	 The fuzzy partition matrix (U(p)) is updated from Equation 
(11), where uki

(p+1) is the adherence level of  the i-th observation 
of  the k-th cluster of  the fuzzy partition matrix (U(p+1)); c is 
the total number of  clusters; dik

(p) and djk
(p) are the Euclidian 

distances from the i-th and j-th observations, respectively, 
to the centroid of  the k-th cluster, obtained from the U(p) 
matrix; and, r is the accuracy degree of  the method:

( )
( )

( )

12
p r 1cp 1 ik

ki pj 1 jk

d
u

d

−

−
+

=

 
  
  =
  
  

 

∑

	 (11)

7.	 If  U(p+1) does not differ from U(p) more than an established 
limit (the maximum error tolerated), as presented in 
Equation (12), the iterative process is finished; otherwise, 
steps from 3 to 7 are repeated:

( )
max

p 1ε ε+ ≤ 	 (12)

In the present study, the maximum error tolerated (εmax) 
was adopted equal to 10-5, and the error obtained at each new 
iteration (p+1) (ε(p+1)) was calculated from the Equation (13), 
where uki is the element of  the i-th observation of  the k-th cluster 
of  the fuzzy partition matrixes (U(p) and U(p+1)):

( ) ( ) ( ){ }max p 1 pp 1
ki ki kiu uε ++ = − 	 (13)

Definition of  r and c parameters

The parameters r and c are, respectively, the accuracy 
degree of  the fuzzy c-means algorithm and the defined number 
of  clusters. According to Ross (1995), the appropriate interval 
for r is 1.25 ≤ r ≤ 2.00. The number of  clusters (c), in turn, is 
defined by the researcher, according to the data used, and it can 
range from 2 to the total number of  indicators.

To define those parameters, it was adopted the method 
presented by Bezdek et al. (1984). That method is based on the 
estimation of  three new parameters, Fc and Hc, obtained from 
Equations (14) and (15), and (1 - Fc), which is the complement 
of  Fc. In Equations (14) and (15), uki is the element of  the i-th 
observation of  the k-th cluster of  the final fuzzy partition matrix 
(U); a is the logarithm base, equal to 10; c, the number of  clusters; 
and, I is the number of  sample observations. Bezdek et al. (1984) 
stated those parameters define the ideal number of  clusters (c) 
and the accuracy degree (r), when Fc approaches 1, and (1 - Fc) 
and Hc approach zero.

( ) /
I c 2

c ki
i 1 k 1

F u I
= =

= ∑ ∑ 	 (14)

( )( ).log /
I c 2

c ki a ki
i 1 k 1

H u u I
= =

= −∑ ∑ 	 (15)

It is necessary to highlight that Equations (14) and (15), 
used to calculate Fc, Hc and (1 - Fc), do not belong to the fuzzy 
c-means method, but rather they are a recommended initial step 
for the data clustering algorithm, allowing the definition of  both 
the number of  clusters (c) and the fcm method accuracy degree (r).

Results analysis

The results interpretation has begun with the calculation of  
the seven flood indicators for each event of  the data set, followed 
by the identification of  the most severe events, according to each 
one of  the indicators.

This classification aimed to obtain the ten most severe 
events, according to each one of  the used indicators. So, it is 
important to emphasize that, for I1, I2, I3, I4 and I6 indicators, the 
classification followed the descending order, while for I5 and I7 
indicators, it followed the ascending order, once the lower those 
values (I5 and I7), the greater is the severity of  the event.

Using the seven flood indicators (I1 to I7), calculated for 
each observation (each annual flood event), it was made the data 
pretreatment, by the normalization method, to further application 
of  the fuzzy c-means algorithm.

The ideal number of  clusters (c) and the accuracy degree 
(r) were defined by trial and error, with c ranging from 3 to 7 and 
r ranging from 1.25 to 2.00, in both cases using a 0.25 variation. 
For each combination of  c and r, the Fc, Hc and (1 - Fc) parameters 
were calculated. So, the ideal values of  the number of  clusters (c) 
and of  the accuracy degree of  the method (r) were reached from 
the maximum value of  Fc, and the minimum values of  Hc and 
(1 - Fc) obtained among the attempts.

Finally, after the identification of  the ideal values of  
number of  clusters (c) and accuracy degree, it was analyzed the 
results from the application of  the fuzzy c-means algorithm. 
The analysis of  results followed this sequence: identification of  
the defined clusters; verification of  the maximum adherence level 
of  the events to their clusters; analysis of  the cluster centroids; 
identification of  each cluster severity level; and, event frequency 
analysis, according to their severity level.

RESULTS AND DISCUSSION

After the estimation of  the flood indicators, they were 
ranked according to the severity level. Table 3 presents the ranking 
of  the top ten highest flood events exhibited by their year of  
occurrence, according to each flood indicator. Some of  the main 
events are highlighted in Table 3.

According to the Table 3, it is possible to realize that the 
ranking changes according to the flood indicator. For example, the 
1983 event is known as the most severe event in the study area, but 
it is shown as first in the ranking only for I1, I2 and I3 indicators. 
For the I4 indicator, the 1983 event is not highlighted as first in 
the ranking, but rather as the second one. Furthermore, for the 
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other flood indicators, the 1983 event is not even ranked among 
the top ten higher events. On the other hand, the 2010 event, 
which is ranked as the eighth position for I1 and I2 indicators and 
it was not even classified among the top ten events for the other 
indicators, occupies the first position for I5 and I6 indicators.

In addition, according to the Table  3, it is possible to 
note a change in the ranking of  the highest events for 1957 and 
1976 events. The 1957 event appears in the first position only for 
I4 indicator, and its ranking position varies for the other indicators. 
In a similar way, 1976 event occupies to the first position only 
for I7 indicator, and, according to the other indicators, it is not 
ranked among the top ten flood events. It is possible to verify, 
once more referring to the Table 3, other changes in the ranking 
of  the events, for example, 1935, 1992 and 2014 events.

If, instead of  only presenting the ranking of  the top ten 
highest flood events, it was presented the complete ranking, with 
all the 85 events analyzed, it would be possible to affirm that such 
variation in the ranking is also observed for the complete data set 
of  the flood events.

After the estimation of  the seven flood indicators 
(I1 to I7) for each observation (each annual flood event), the data 
pretreatment (normalization method) was applied prior the use 
of  the fuzzy c-means method. The ideal values of  the number 
of  clusters (c) and the accuracy parameter (r) were defined by 
trial and error, as mentioned previously. Table 4 shows Fc, (1 - Fc) 
and Hc values, which are the recommended parameters for the 
definition of  c and r. According to the results, the suggested c and 
r values were, respectively, equal to 1.25 and 4, which combination 
corresponds to the maximum value of  Fc and to the minimum 
values of  (1 - Fc) and Hc.

Once the goal of  the fuzzy c-means algorithm is to minimize 
its objective function (Fob), Table 5 presents the Fob values, calculated 
for each iteration, using from Equation (10) and adopting c equal 
to 4 and r equal to 1,25.

In Table  5, it is possible to notice that the objective 
function achieved a stop criterion equal to 10-2 at the iteration 
18 (Fob equal to 6.11). However, the process was only interrupted 
at the iteration  36, because the maximum error tolerated was 
adopted equal to 10-5.

Table 6 presents the clusters identified by the application of  the 
fuzzy c-means algorithm, considering r equal to 1.25 and c equal to 4, 
to the data set of  normalized flood indicators.

Considering the clusters presented in Table  6 and the 
observed flood events, it can be stated that Cluster 1 is composed, 
mostly, by events without overflow, except for the 1931 year. 
The other clusters (2, 3 and 4) are composed by the events with 
overflow, which severity levels differ among themselves.

The composition of  the clusters, presented in Table 6, 
was determined from the fuzzy partition matrix (U), generated 
at the end of  the process. The fuzzy partition matrix (U) defines 
the adherence level of  each selected event to each generated 
cluster. The maximum adherence level of  an event to a given 
cluster determines the group to which the event belongs. For 
example, it was identified that the highest degree of  membership 
of  the 1931 event was to Cluster 1, so the event belongs to this 
cluster, while the highest degree of  membership of  1932 event 

was to Cluster 2, placing this event in cluster 2. Figure 3 shows 
the maximum adherence degree of  each event.

The adherence degrees, presented in Figure 3, can explain, 
for instance, the insertion of  an event with extravasation, as the 
case of  the 1931 event, in Cluster 1, a cluster of  events without 

Table 3. Classification of  the top ten highest flood events, 
according to the flood indicators.

I
1

I
2

I
3

I
4

I
5

I
6

I
7

1º 1983 1983 1983 1957 2010 2010 1976
2º 1992 1992 1957 1983 1972 1972 1966
3º 2014 1935 1992 1998 1957 1957 2008
4º 1935 2014 1998 1997 2000 2000 1973
5º 1993 1957 1935 2011 2013 2013 1965
6º 1998 1993 2014 2009 1989 1984 1997
7º 1957 1998 1997 1935 1984 2005 1970
8º 2010 2010 1993 2005 1931 1989 1955
9º 1995 1971 2011 1946 1938 1938 1937
10º 1971 1954 1971 1955 2005 1950 2009

Table 4. Determination of  the ideal number of  clusters (c) and 
accuracy degree (r).

r c F
c

(1 - F
c
) H

c

1.25 3 0.9273 0.0727 0.1266
4 0.9317 0.0683 0.1274
5 0.9289 0.0711 0.1375
6 0.9233 0.0767 0.1464
7 0.9310 0.0690 0.1367

1.50 3 0.8350 0.1650 0.2897
4 0.8335 0.1665 0.3176
5 0.8291 0.1709 0.3383
6 0.8059 0.1941 0.3925
7 0.8128 0.1872 0.3941

1.75 3 0.7568 0.2432 0.4299
4 0.7362 0.2638 0.5075
5 0.7128 0.2872 0.5885
6 0.6578 0.3422 0.7082
7 0.6986 0.3014 0.6726

2.00 3 0.6905 0.3095 0.5459
4 0.6515 0.3485 0.6711
5 0.6183 0.3817 0.7835
6 0.6035 0.3965 0.8569
7 0.5929 0.4071 0.9223

Table 5. Objective function (Fob) values (for c = 4 and r = 1.25).
Iteration F

ob
Iteration F

ob
Iteration F

ob
Iteration F

ob

1 15.26 10 6.45 19 6.11 28 6.11
2 13.61 11 6.34 20 6.11 29 6.11
3 8.69 12 6.27 21 6.11 30 6.11
4 7.29 13 6.23 22 6.11 31 6.11
5 6.95 14 6.19 23 6.11 32 6.11
6 6.83 15 6.16 24 6.11 33 6.11
7 6.77 16 6.13 25 6.11 34 6.11
8 6.70 17 6.12 26 6.11 35 6.11
9 6.59 18 6.11 27 6.11 36 6.11
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extravasation. Observing Figure 3, one can noticed that the 1931 
event has a relatively low adherence degree (close to 0.50), while 
most of  the events presented membership degrees of  near 1 
(maximum value for adherence degree).

Furthermore, from Figure 3, among the 85 events, there 
were only 12 cases in which the highest membership degree had 
values lower than 0.90, and there were only 3 situations in which 
the highest membership degree was lower than 0.50, including 
the 1931 event, mentioned previously.

It is important to highlight that maximum membership 
degree (adherence degree) lower than 0.50 may indicate that the 
classification of  the event in the cluster is not well defined. Besides, 
it is possible that such uncertainty has some relation with the 
definition of  the initial fuzzy partition matrix, that it was randomly 
estimated, which could make difficult to the method converges. 
In the present study, since the maximum adherence degree to a 
given cluster was close to 1 for most of  the events, the clustering 
presented in Table 6 was accepted.

Table 7 presents the non-normalized coordinates of  the 
Clusters 1 to 4 centroids, resulted from the application of  fcm 
method.

In Table 7, Cluster 1 represents the set of  events without 
extravasation, identified by the lowest values of  the indicators 
centroids. Also, from Table 7, it is also possible to notice that there 
is a gradual increase in the centroid values for the indicators: peak 
discharge (I1); peak water level (I2); total overflow volume (I3); time 
over the extravasation threshold (I4); and, average rate of  flood 
hydrograph recession (I7). In other words, Cluster 4 presented 
higher values than Cluster 3, which, in turn, presented higher 
values than Cluster 2, and so on. However, that was not observed 
for indicators I5 and I6, which did not present a well-defined trend.

The variation of  the centroid coordinates in each cluster 
can be better observed in Table 8, through its normalized values, 
allowing a graphical representation of  easy visualization, shown 
in Figure 4.

In addition, it is important to note that the variables I5 
and I7 represent quantities inversely proportional to the severity 
level. In other words, the lower their values, the more critical 

the events, unlike the other flood indicators. Moreover, in the 
performed analysis, when the events did not show extravasation, 
a value equal to zero was assigned to those variables, making the 
result of  the coordinates I5 and I7 of  the Cluster 1 centroid also 
approached zero, which would represent a catastrophic event for 
those indicators. That could be solved by using the complement 
in relation to the unit from the value obtained for those indicators 
in the normalization process, or simply assigning a value equal to 
1 when the event did not show extravasation. However, it would 
not affect the results of  the clustering analysis and, for this; this 
procedure was not adopted in the present work.

Thus, considering the centroid coordinates, severity levels 
were associated to the 4 clusters, defined by the cluster analysis. 
For this, the general coordinate behavior of  the centroids was 
used as criterion. In this way, the clusters were named as:

−	 Cluster 1: low severity;

−	 Cluster 2: medium severity;

Figure 3. Maximum adherence degrees between each event and 
its cluster.

Table 6. Flood clustering (for c = 4 and r = 1.25).
Cluster 1 Cluster 2 Cluster 3 Cluster 4

1931 1962 1937 1979 1932 1989 1935
1933 1963 1939 1980 1938 1990 1957
1934 1964 1948 1981 1946 1993 1983
1936 1967 1953 1988 1947 1995 1992
1940 1968 1961 1996 1950 1997 1998
1941 1969 1965 1999 1954 2000 2014
1942 1974 1966 2004 1955 2001
1943 1977 1970 2007 1971 2005
1944 1978 1973 2008 1972 2009
1945 1985 1975 2011 1982 2010
1949 1986 1976 2012 1984 2013
1951 1991 1987 2015
1952 1994
1956 2002
1958 2003
1959 2006
1960

Table 7. Centroids coordinates of  Clusters 1 to 4 (non-normalized 
values for c = 4 and r = 1.25).

Cluster I
1
 

(m3/s)
I
2
 

(m)
I
3
 

(km3)
I
4
 

(day)
I
5
 

(day)
I
6
  

(m3/s/day)
I
7
  

(m3/s/day)

1 1035.0 4.2 0.0 0.1 0.2 2.3 0.5
2 1657.9 5.4 0.3 12.9 23.6 59.5 32.9
3 2165.3 6.3 1.0 25.8 12.0 135.2 74.7
4 3463.4 8.2 4.5 54.3 19.1 88.4 106.9

Table 8. Centroids coordinates of  Clusters 1 to 4 (normalized 
values for c = 4 and r = 1.25).
Cluster I

1
I
2

I
3

I
4

I
5

I
6

I
7

1 0.10 0.16 0.00 0.00 0.00 0.00 0.00
2 0.24 0.33 0.03 0.15 0.40 0.12 0.17
3 0.35 0.45 0.10 0.29 0.21 0.27 0.40
4 0.63 0.71 0.46 0.61 0.33 0.17 0.57
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−	 Cluster 3: high severity;
−	 Cluster 4: disasters or catastrophes.

Figure 5 shows the time distribution of  events according 
to their group (or severity level). In Figure 5, the vertical line 
represents the 1970 year that divides the period from 1931 to 2015, 
analyzed in the present study, in two sub periods: from 1931 to 1970 
(40 years) and from 1971 to 2015 (45 years).

Table  9 provides a better understanding of  the results 
presented in Figure 5, through the absolute and relative frequencies 
of  events observed in each cluster, for the 1931 to 1970 and from 
1971 to 2015 sub periods.

From Figure 5 and Table 9, one can see that there was a 
decrease in the absolute frequency of  low severity events (Cluster 1) 
for the 1971 to 2015 period in relation to the previous period (from 
1931 to 1970). There were 23 low severity events between 1931 
and 1970 (40 years) and only 10 events with the same severity level 
between 1971 and 2015 (45 years). On the other hand, there were 9 
events classified as high severity or disaster level (Clusters 3 and 4) 
in the period 1931 to 1970, while 21 events classified at the same 
severity levels were observed in the period from 1971 to 2015. 
Those variations cannot be explained simply by the difference in 
size of  the two periods analyzed.

In addition to the higher absolute frequency of  events 
classified as high severity (Cluster 3) or disaster (Cluster 4) after 
1970, the most catastrophic (highest impact) floods, historically 
observed in the study region (1983, 1992 and 2014 events), also 
occurred in the 1971 to 2015 period.

Observing also the relative frequencies in the two sub 
periods presented, according to Table 9, it is even more noticeable 
the increase in the more severe event frequency (Clusters 2 to 4) 
and the decrease only for Cluster 1, which indicates mostly the 
events without extravasation.

Therefore, those observations suggest, in principle, an 
aggravation of  the flood problem in União da Vitória in recent years.

Moreover, it is important to emphasize that is not a goal of  
the present work to explain the reasons for the decrease or increase 
in the frequency of  flood events classified at a certain severity 
level, once the study is only attached to the clustering analysis.

CONCLUSION

The recurrence of  extreme events has made it critical to 
study natural disasters such as floods. In União da Vitória, this 
type of  phenomenon, historically, has been observed frequently. 
This  work presented a differentiated approach to study those 
events, since the classical studies, based exclusively on the analysis 
of  discharge and water levels, do not clearly demonstrate the 
reality that this type of  phenomenon represents for society, such 
as the duration of  the critical situation and the time available for 
the adoption of  an emergency action.

The flood indicators used in this work showed that there is 
a variation in the ranking of  the most critical events, considering 
each indicator specifically. For example, the flood event observed 
in the 1983 year is not the most critical event for some indicators, 
although it is the most critical event when the indicators are peak 
discharge and water level.

The fact of  the ranking of  the most critical events is a 
function of  the flood indicator used for the analysis, and the 
possibility of  defining more than one flood indicator to represent 
the flood severity, justifies the application of  this new approach, 
characterized by the use of  multivariate statistics and flood 
clustering analysis.

From using the fuzzy c-means (fcm) clustering method and 
defining a set of  seven flood indicators (analyzed variables), it was 
possible to classify the maximum annual flood events observed 

Figure 4. Variation of  the centroids coordinates of  Clusters 1 to 4 
(normalized values for c = 4 and r = 1.25).

Figure 5. Time distribution of  flood events according to the 
severity level.

Table 9. Absolut and relative frequencies of  flood events in each 
cluster, observed in 1931 to 1970, and 1971 to 2015 sub periods.

Cluster

Period: 1931 to 1970 Period: 1971 to 2015

Absolut 
frequency

Relative 
frequency

(%)

Absolut 
frequency

Relative 
frequency

(%)
1 23 57.5 10 25.0
2 8 20.0 14 35.0
3 7 17.5 17 42.5
4 2 5.0 4 10.0

Total 40 100.0 45 100.0



RBRH, Porto Alegre, v. 23, e38, 2018

Steffen and Gomes

11/12

in União da Vitória in the 1931 to 2015 period. Four clusters 
were identified, representing different severity levels: low severity 
(Cluster 1); medium severity (Cluster 2); high severity (Cluster 3); 
and disasters or catastrophes (Cluster 4).

Through the chronological analysis of  the occurrence of  
flood events and knowing to which cluster each one belongs, it 
was verified that there was an increase in the frequency of  more 
severe events (Clusters 3 and 4) and a decrease in the frequency 
of  low severity events (Cluster 1), considering most recent period 
(from 1971 to 2015).

In addition, it is important to highlight that the researcher, 
regardless of  fcm method, must define the number of  clusters. 
In the present study, a specific method was used to determine the 
number of  clusters, which fitted well to the fcm. However, it is 
suggested, for future studies, the adoption of  other methods to 
determine the number of  clusters, so that it is possible to compare 
the results and, possibly, to define the best method to estimate 
the ideal value for this parameter.

Besides determining the number of  groups, the estimation 
of  the initial fuzzy partition matrix (U0) could be better evaluated 
to avoid randomness in its definition and to skip from initial 
values that could lead to non-convergence of  the fcm algorithm.

Moreover, analyzing only the clustering method, other 
methods capable of  clustering and identifying similar characteristics 
of  historical flood events could be studied, allowing, then, the 
identification of  the best clustering method applied to hydrological 
events.

On the other hand, there is still the possibility of  studying 
new flood indicators, besides those described in this work, capable 
of  a better characterization of  the hydrological events and allowing 
the comparison among the clustering results.

Moreover, it is believed that, based on the use of  flood 
clustering techniques, it is possible to advance in the knowledge 
of  the mechanisms that rule the rainfall-runoff  transformation 
process in a given river basin, as well as in the calibration of  
hydrological models; where one should try to calibrate the model 
for each flood cluster. Thus, a set of  parameters would be defined 
for each identified cluster. In this way, the flow prediction model 
should be able to predict to which cluster the future event will 
belong to use the most appropriate parameter setting.

Clearly, at the beginning of  the flood, it would not be 
possible to identify safely to which cluster the future event belongs 
to, so the flood forecasting system would establishing an amplitude 
of  forecasts from the different sets of  parameters. However, in 
a context of  real-time forecasting, as the event develops itself  
and it is observed, the number of  clusters to which it possibly 
belongs would decrease, leading to a reduction in the amplitude 
of  the predictions.

Finally, it is worth mentioning that the present work used the 
União da Vitória as a study case, but the fuzzy c-means algorithm 
does not apply only to this region. Therefore, regardless of  the 
location, since it is not the purpose of  the method to evaluate 
the mechanism of  flood formation, but rather to collaborate with 
its better understanding, it is noticed that the algorithm for the 
historical floods clustering is applicable for any place, if  historical 
water level and flow data are available for the analysis.
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