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 ABSTRACT -  Polyunsaturated omega-3 fatty acids (n-3 PUFA) are a family of essential fatty acids with many biological 
activities. These fatty acids are incorporated into cell membranes, changing their structural and functional characteristics. 
N-3 PUFA can act by modulating inflammatory responses at different levels. Omega-3 PUFA can be converted in the body to 
longer-chain n-3 PUFA at a limited rate and are differently converted in body systems. It appears that when specific longer-
chain n-3 PUFA are desired these need to be supplemented directly in the diet. In different species some evidence indicates 
a potential effect on improving insulin sensitivity. Recently, a novel class of n-3 PUFA-derived anti-inflammatory mediators
have been recognized, termed E-series and D-series resolvins, formed from EPA and DHA, respectively. N-3 PUFA derived 
resolvins and protectins are heavily involved in the resolution of inflammation. Supplementation with n-3 fatty acids in horses
may help manage chronic inflammatory conditions such as osteoarthritis, equine metabolic syndrome, laminitis, and thereby
help to improve longevity of sport horse.
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Dietary n-3 and n-6 long-chain polyunsaturated 
fatty acids (PUFA)

Dietary fats are required to support absorption of 
fat-soluble vitamins and provide the essential fatty acids 
(NRC, 2007), linoleic acid (LA) and alpha-linolenic acid 
(ALA). The long-chain fatty acid family of omega-6 
(n-6) and omega-3 polyunsaturated fatty acids (PUFA) are 
essential components of the diet and are necessary in daily 
physiological functions as well as for fetal development and 
neonatal growth. The ‘parent’ fatty acids are linoleic acid 
(LA) for the n-6 family and alpha-linolenic acid (ALA) for 
the n-3 family. These ‘parent’ fatty acids are considered 
essential in mammalian diets; the lack of proper enzymes 
prevents their endogenous synthesis. The derivatives of these 
‘parents’ are likely of even greater importance; LA can be 
elongated and converted to arachidonic acid (ARA), whose 
primary role is to produce 20 carbon-signaling molecules 
known as eicosanoids. Eicosanoids have short half-lives 
and are localized close to their production site, influencing
events within and around the cells that produce them. 
Arachidonic acid and other eicosanoid- producing fatty 

acids must be present in tissue in order for these signaling 
molecules to be effective. Eicosanoids are important in that 
they regulate a variety of cellular functions, during both 
physiological (normal) and inflammatory events. The most
well-known classes of eicosanoids are prostaglandins (PG), 
thromboxanes (TX), leukotrienes (LT) and lipoxins (LX); 
with PG and TX being synthesized via the cyclooxygenase 
(COX) pathway and LT and LX being converted from 
ARA by lipoxgenases (Figure 1). While all classes are vital 
physiological components, prostaglandins are important 
as they are utilized by all major organ systems including 
reproductive, gastrointestinal and neurological. Of these 
active eicosanoids, prostaglandin E2 is the primary PG, 
synthesized exclusively from ARA, playing an important 
role in the inflammatory response. In terms of joint 
health and the development of osteoarthritis, PGE2 has 
been implicated as therapeutic target as it is elevated 
in early stages of the disease and contributes to down-
stream production of degradative cartilage enzymes 
(McIlwraith, 2005). 

Long-chain derivatives of ALA, specifically
eicosapentaenoic acid (EPA), n-3 docosapentanoic acid 
(DPA) and docosahexaenoic acid (DHA) (Figure 2), have 
as equally important roles as ARA in cellular function and 
physiologic homeostasis. While all ALA derivatives can be 
converted to produce eicosanoids, EPA is the most widely 
recognized n-3 PUFA that is a source for anti-inflammatory
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PG, TX, LT and LX (Figure 1). However, research results 
indicate that n-3 DPA and DHA also play vital roles in 
mediating the inflammatory response in conjunction with
EPA (Kaur et al., 2011). Increased intake of EPA and DHA 
in a dose-dependent manner has been shown to decrease 
ARA amounts in cell membrane phospholipids involved in 
inflammation (Calder, 2014). Furthermore, increased EPA
intake has been shown to inhibit ARA metabolism (Calder, 
2014) and decrease the expression of the pro-inflammatory
gene COX-2 (Calder, 2014). One of the premier sources of 
EPA and DHA is marine fish oil, also known as menhaden
oil. Eicosapentaenoic acid, though found in the largest 
quantities in marine fish oil, originates from ALA (Figure 2),
which is encountered in high concentrations in plant fats. 
Plant oils such as linseed, soybean and flaxseed oils are
all sources of ALA, therefore, when consumed, the animal 
may be able to synthesize EPA, DPA and DHA from these 
plant oils (Figure 2). Alpha-linolenic acid is converted 
to EPA, DPA and DHA via a desaturation and elongation 
pathway (Figure 2). The initial step, the addition of a 
double bond to ALA by the ∆6-desaturase enzyme, is the 

rate-limiting step in the pathway and contributes to the 
reported low conversion efficiency of ALA to the longer-
chain PUFA (Calder, 2013). Both LA and ALA share a need 
for ∆6-desaturase (Figure 2), and while the enzyme has a 
higher affinity for ALA, in humans dietary fats contain a
higher percentage of LA, therefore competing for the same 
enzyme ALA needs for conversion to its longer derivate 
(Tu et al., 2010). In addition, ALA has been shown to have 
the highest oxidation rate among all unsaturated fatty acids 
in human tracer studies (Nettleton, 1991), contributing to 
the low conversion of ALA to its longer derivate. A review 
of studies investigating the efficiency of dietary ALA
conversion in humans reported the conversion of ALA to 
EPA ranged from 8-10% with conversion efficiency being
as low at 4% for DHA (Williams and Burdge, 2006). Due to 
evidence of a low conversion rate, it is recommended to supply 
EPA and DHA directly in the diet (Arterburn et al., 2006). 

A source of ALA in the equine diet is forage (hay or 
pasture), which is the largest portion of equine diets. Many 
horses are fed forage alone; however, performance horses 
require additional energy-dense feeds such as grains or 
oils due to their higher energy demands. Vegetable oils 
are also a source of ALA, such as flaxseed and linseed
oil, which can be top-dressed onto feed. Linoleic acid is 
very abundant in cereal grains such as corn and barley, and 
makes up the majority of the fat in corn oil as well. Algae 
produce the n-3 PUFA, EPA and DHA; therefore they are 
present in fish because algae is an ordinary diet of fish. For
that reason, marine foods and fish oil are a good source of
EPA and DHA and may be consumed by humans and other 
carnivores or omnivores. Additionally, they have been used 
as supplements in equine diets. Horse studies indicated that 
supplementation with ALA would not lead to increases in 
circulating DHA (Hansen et al., 2002; Vineyard et al., 2010), 
only increases in circulating EPA.

Inflammation and PUFA

Cellular activities involved in inflammatory responses 
are designed to be harmful to pathogens; however, they 
can cause damage to the host tissues (Calder, 2014). 
Inflammation usually is self-limiting, and resolves rapidly
due to the activation of negative feed-back mechanisms like 
secretion of anti-inflammatory cytokines or pro-resolving
lipid mediators, shedding of receptors for inflammation,
and activation of regulatory cells (Calder, 2014). Loss of 
this regulatory process can result in excessive, inappropriate 
or chronic inflammation that can cause damage to the
host organism (Calder, 2014). As part of these anti-
inflammatory and pro-resolving mediators, a novel class

Figure 1 - Eicosanoid formation from arachidonic acid (ARA) and 
eicosapentaenoic acid (EPA).

ALA - α-linolenic acid; ARA - arachidonic acid; DGLA - dihomo-γ-linolenic acid; 
DHA - docosahexaenoic acid; DPA - docosapentaenoic acid; EPA - eicosapentaenoic 
acid; GLA - γ-linolenic acid; LA - linoleic acid.

Figure 2 - Biochemical pathway for the incorporation of n-3 and 
n-6 fatty acids.

Source: Reprinted from Arterburn et al. (2006), with permission.
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of n-3 PUFA-derived anti-inflammatory mediators have
been recognized, termed E-series and D-series resolvins, 
formed from EPA and DHA, respectively (Calder, 2009). 
Protectins are another class of mediators produced from 
DHA (Calder, 2014). While information is limited, it 
appears n-3 PUFA-derived resolvins and protectins are 
heavily involved in the resolution of inflammation (Kohli
and Levy, 2009). Protectins D1 are produced from DHA, and 
known as protectins D1, owing to their protecting activity 
in inflammatory and neural systems. Biological effects of
resolvins and protectins have been studied in cell culture 
and animal models of inflammation and have been shown to
stimulate resolution and reduce magnitude of inflammatory
response in vivo (Serhan et al., 2008). Resolvin E1 reduces 
inflammation in vivo and blocks human transendothelial 
migration (Serhan et al., 2004). Resolvin E2 reduces 
zymosan initiated neutrophil infiltration (Tjonahem et al.,
2006). Resolvin D1 has been shown to be a potent regulator 
of mouse and human neutrophils (Serhan et al., 2004; 
Sun et al., 2007). Resolvin E1 also has been shown to 
initiate resolution of inflammation causing a decrease
in the number of neutrophils in exsudates sooner than 
during spontaneous resolution. Resolvin E1 and resolvin 
D1 prevented the infiltration of neutrophils into sites of
inflammation, and inhibited IL-1β production (Calder,
2014). Protectin D1 also blocked T cell migration in vivo, 
reducing TNF-α (tumor necrosis factor alpha), IL-1β, 
interferon-γ (IF-γ) secretion, and promoting T cell apoptosis 
(Ariel et al., 2006). Protectin D1 shifted the onset of 
resolution to an earlier time point in addition to shortening 
the time to reduce the number of maximum neutrophils by 
half (Serhan et al., 2008).

Other anti-inflammatory effects of n-3 PUFA from plant
and animal sources include a reduced cytokine production 
in vitro (De Caterina et al., 1994) and in vivo (Meydani 
et al., 1993; Grimm et al., 1994; McCann et al., 2000). 

Sources of fatty acids in the diet

In humans, supplementation with long-chain n-3 PUFA 
has been shown to improve inflammatory status, prevent
cardiovascular diseases (Calder, 2001), and reduce pain 
and inflammation in patients with rheumatoid arthritis
(MacLean et al., 2004). In arthritic horses, supplementation 
with EPA and DHA increased stride length (Woodward et al., 
2005) and reduced inflammatory markers (Manhart et al.,
2009). In horses, feeding Menhaden fish oil modulated
leucotriene synthesis influencing inflammatory conditions
(Hall et al., 2004). 

Proposed mechanisms of EPA and DHA on 
inflammation

Several mechanisms have been proposed regarding the 
processes by which EPA and DHA act on the inflammatory
response in tissues. It is well established that these lipids act 
on both a direct (by alteration of eicosanoid production via 
cyclooxygenase and lipoxygenase pathways) and indirect 
(modification of gene transcription) mechanism (Calder,
2006). Direct modification of prostaglandin and leukotriene
synthesis was outlined previously. Supplementation of n-3 
PUFA in feeds will also exert an effect on the expression of 
inflammatory genes (Renier et al., 1993; Curtis et al., 2000; 
Wallace et al., 2001). 

It is hypothesized that particular fatty acids, such as 
EPA and/or DHA, may modify transcription factors in 
the nucleus and thus influence cytokine and eicosanoid
production at the level of gene expression (Figure 3). 
Another theory is that n-6 (i.e., ARA) and n-3 (i.e., EPA and 
DHA) fatty acids modify protein synthesis of inflammatory
mediators via modification of cell surface receptors on lipid
rafts or within the cell by suppression of nuclear receptor 
activation (Chapkin et al., 2009). Additional regulation 
comes in the form of peroxisome proliferator-activated 
receptors, which are key nuclear receptors that regulate 
transcription of genes through ligand binding with a variety 

Figure 3 - Summary of the anti-inflammatory actions of n-3
polyunsaturated fatty acids; modified from Calder (2013).

EPA - eicosapentaenoic acid; DHA - docosahexaenoic acid; ARA - arachidonic 
acid; COX - cyclooxigenase; NFkB - nuclear factor kappa B; PPAR - peroxisome 
proliferator activated receptor.
Solid red lines indicate inhibition.
Solid blue lines indicate sources of n-3 PUFA.  
Solid green lines indicate inflammatory activation.
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of lipophilic metabolites, having a high affinity for PUFA,
in particular DHA (Stulnig, 2003). Peroxisome proliferator-
activated receptors usually have three isoforms; α, β, γ and 
are believed to be potent regulators of adipocyte function 
as well as immune molecules such as lymphocytes and 
macrophages (Marx et al., 2002) influencing downstream
transcription of inflammatory cytokines (Figure 3).

Insulin sensitivity and n-3 PUFA

Insulin resistance (decreased insulin sensitivity) in 
horses has been linked to the development of laminitis, 
osteochondrosis, and metabolic syndrome (Coffman and 
Coles, 1983; Ralston, 1996; Treiber et al., 2006; Frank et al., 
2010) and is therefore considered a problem in the equine 
industry. These diseases can result in a loss of function and 
performance of the horse. Several factors may predispose 
a horse to developing insulin resistance, such as diet, age, 
breed/genetics and obesity (Jeffcot et al., 1986; Treiber et al., 
2006; Vick et al., 2007). Supplementation with certain 
dietary components could increase insulin sensitivity in 
animals that have insulin resistance, reducing the risk for 
the development of diseases such as metabolic syndrome 
and laminitis. 

Dietary supplementation with n-3 PUFA has been shown 
to increase insulin sensitivity in pigs and rats (Behme, 
1996; Luo et al., 1996). Dietary EPA and DHA incorporate 
into cell membranes increasing membrane fluidity due to
greater unsaturation of the membrane improving glucose 
transport function (Lardinois et al., 1987; Zhao et al., 2008). 
Incorporation of EPA and DHA in muscle cell membrane 
has been shown to increase binding of insulin (Storlein et al., 
1991) and m-RNA expression of GLUT-4 transporters in 
rats (Figueiras et al., 2010). Supplementation with EPA 
and DHA has shown to improve insulin sensitivity in rats 
(Storlein et al., 1991), pigs (Behme, 1996), and in humans 
(Rasic-Milutinovic et al., 2007).

n-3 PUFA supplementation and exercise

Supplementation with EPA and DHA in horses has 
also been shown to lower heart rate, plasma glycerol, free 
fatty acids and cholesterol during an exercise test compared 
to horses supplemented with corn oil (O’Connor et al., 
2004). In human trained athletes supplemented with fish
oil, heart rate and oxygen consumption was lower than 
in subjects supplemented with olive oil (Peoples et al., 
2008). Incorporation of n-3 PUFA to muscle membranes 
increased insulin sensitivity (Pan et al., 1995) and resulted 
in increased ability of skeletal muscle to take up glucose. 

Furthermore, studies have shown that lower proportions of 
long-chain PUFA and higher proportions of saturated fatty 
acids in skeletal muscle phospholipids are associated with 
insulin resistance. Skeletal muscle characteristics (i.e., fatty 
acid profile) have some genetic influence (Baur et al., 1999)
but diet and physical activity also influence skeletal muscle
fatty acid profile in rats, humans, and horses (Ayre et al.,
1996; Andersson et al., 2000; Hess et al., 2012). 

Specific horse studies

Effects of two different dietary sources of n-3 PUFA on 
incorporation into the plasma, red blood cell, and  skeletal  
muscle in horses (Hess et al., 2012)

In humans, the PUFA DHA and EPA need to be 
supplemented in order for them to be incorporated into 
tissues. There is limited conversion of ALA to DHA in 
humans (Burdge et al., 2001; Arterburn et al., 2006). As 
stated before, in horses, supplementation with ALA did not 
lead to increases in circulating DHA (Hansen et al., 2002; 
Vineyard et al., 2010), only EPA. Feeding of n-3 PUFA 
to horses may increase circulating levels and increase 
incorporation into muscle tissue. This could potentially 
improve chronic inflammatory conditions in horses; however,
the optimal type of fatty acid to be supplemented needed to 
be investigated. 

In a related study in our laboratory (Hess et al., 2012) 
in order to compare different sources of dietary omega-3 
fatty acid supplementations on plasma, red blood cell and 
skeletal muscle fatty acid compositions in horses, three 
(alfalfa/bromegrass) hay and barley diets were fed: one 
was supplemented with an algae and fish oil containing
DHA and EPA (MARINE; Magnitude; JBS United, 
Sheridan, IN); another group was supplemented with the 
same amount of ALA in flaxseed (FLAX) as FLAX, and a
third group (control; CON) was fed hay and barley to make 
all diets have the same calorie amount. Treatments were 
supplemented for 90 d. Blood samples and muscle middle 
gluteal biopsies were collected on d 0, 30, 60, and 90 of 
supplementation. 

Direct supplementation of EPA and DHA through a 
marine source increased PUFA concentrations in the plasma, 
red blood cell and muscle tissue of equines (Hess et al., 
2012). Although present in muscle tissue at baseline, EPA 
and DHA increased in horses supplemented with a marine 
source containing these specific fatty acids. In plasma and
red blood cells, EPA and DHA were below detection levels 
in all groups and increased only in MARINE-supplemented 
horses. Supplementation with dietary sources containing 
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EPA and DHA may be indicated when increased 
incorporation of these n-3 fatty acids to muscle and red 
blood cells is desired. Conversion of ALA from flaxseed 
and forages to EPA and DHA occurs in the skeletal 
muscle, as seen in this study (Hess et al., 2012) by 
the detection of these fatty acids in equine muscles at 
baseline. Supplementation with ALA through flaxseed 
lead to higher incorporation of muscle n-3 DPA, a derivate 
of EPA, compared to MARINE supplementation. Some 
positive effects of n-3 DPA on inflammation have been 
reported; however, the effects of such increases should 
be evaluated in further studies addressing inflammatory 
responses and compared to EPA and DHA in horses 
(Hess et al., 2012). In this study, conversion of ALA to 
EPA and DHA did not occur after supplementation with 
extra ALA (above the control dietary n-3 PUFA level) from 
FLAX.

Effects of n-3 PUFA supplementation on insulin sensitivity 
in horses (Hess et al., 2013)

Dietary supplementation with n-3 PUFA has been 
shown to increase insulin sensitivity as described above. 
In order to test the hypothesis that supplementation with 
n-3 PUFA would improve insulin sensitivity, the same 
diets described for the previous study were fed to a group 
of 21 adult mares to test glucose and insulin dynamics. 
Specific tests to determine insulin sensitivity (frequent 
sampling intravenous glucose tolerance tests) were 
performed on days 0, 30, 60, and 90 of supplementation 
(Hess at al., 2013). 

No overall treatment effect was observed when 
all mares within each treatment were compared among 
themselves. However, when treatments were compared 
among mares with the lowest quintile in insulin sensitivity 
(Treiber et al., 2005) (11 mares) there was a trend (P = 0.08) 
for a treatment effect, where MARINE (n = 5 and 
FLAX (n = 3) horses had higher insulin sensitivity (SI = 
1.18±0.16 in FLAX, and 1.05± 0.16 in MARINE compared 
to 0.59±0.16 in CON, n = 3). Although a small number 
of insulin resistant mares were compared, further studies 
should be performed in a larger group of insulin resistant 
horses. If proven effective, supplementation with omega-3 
fatty acids could help to reduce problems associated with 
insulin resistance in horses (Hess et al., 2013). 

Evaluation of synovial fluid in horses fed two different sources 
n-3 PUFA: a pilot study (Ross-Jones et al., 2014)

Elevating n-3 PUFA in mammalian diets may 
downregulate inflammatory processes in the joint

(Proudman et al., 2008) and has been shown to have 
symptom-modifying effects in inflammatory diseases
(Lau et al., 1993). One hypothesized mechanism is the 
potential of long-chain n-3 PUFA to reduce the production 
of potent inflammatory eicosanoids (Chapkin et al., 2009),
primarily PGE2. In order to test the effects of different 
sources of n-3 PUFA on synovial fluid composition, the
diets described on the first study (Hess et al., 2012) were
supplemented for 90 days (Ross-Jones et al., 2014).

On day 90 of supplementation, approximately 3 mL 
of synovial fluid were extracted from the right carpus of
each horse. Fluid was analyzed for fatty acid concentration 
and PGE2 concentration. Synovial fluid samples from
the MARINE group exhibited EPA and DHA, whereas 
the FLAX and CON groups did not express detectable 
concentrations. Synovial prostaglandin E2 concentration in 
the MARINE group tended to be lower compared to CON 
horses (P<0.10).

Synovial fluid fatty acid levels for EPA and DHA
were significantly higher in the MARINE group
compared to either CON or FLAX groups, indicating 
that direct supplementation of EPA and DHA is required 
if higher fluid concentrations of those fatty acids are 
desired (Ross-Jones et al., 2014). A small difference between 
treatment and control in synovial fluid PGE2 concentration 
in the current study may be due to all horses being healthy 
and free of existing joint inflammation or disease. Inducing
experimental inflammation in healthy animals receiving
a dietary n-3 PUFA supplement may cause measurable 
differences in eicosanoid levels.

Results indicated a possible inhibition of inflammatory
eicosanoid prostaglandin E2 production in equine synovial 
fluid by oral supplementation of the polyunsaturated
fatty acids EPA and DHA. Further research is needed 
to determine if oral n-3 PUFA supplementation can be 
therapeutically advantageous in horses experiencing joint 
inflammation.  

Implications

Based on results from several studies, supplementation 
with n-3 polyunsaturated fatty acids has the potential to 
benefit humans and horses in diverse ways. Future studies
should address the effects of n-3 polyunsaturated fatty 
acid supplementation on inflammation and specifically
in horses with chronic inflammatory diseases such as
laminitis, metabolic syndrome, pituitary pars intermedia 
disease and osteoarthritis improving the horses’ health 
and wellbeing.
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