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ABSTRACT - The objectives of our present study included the screening of single
nucleotide polymorphisms (SNP) that show significant differences in allelic frequencies
between two buffalo populations (Egyptian and Chinese buffaloes), categorization
of functional genes associated with these SNP by gene ontology, and pathway
analyses to further understand their potential values as candidate genes closely
associated with milk yield trait in buffaloes. In this study, double digest restriction-
site associated DNA sequencing was performed on Illumina HiSeq 2500 platform for
20 and 25 female buffaloes from Egypt and China, respectively. Approximately 118 Gb
of sequencing data were obtained, and a total of 110,129 and 150,535 putative SNP
were detected in Egyptian and Chinese buffaloes, respectively. Focused only on those
SNP that differed significantly in allelic frequencies between the two populations, we
found that genes associated with these SNP were significantly over-represented in
the ionotropic glutamate receptor pathway, the endothelin signaling pathway, and
the gonadotropin-releasing hormone receptor pathway, which contained a total of
29 genes. Of these, nine genes (ADCY5, CACNA1A, CREB1, INHBA, INHBB, PIK3R1,
PLCB1, PRKCE, and SMADZ2) participating in the hormonal regulation of lactation,
were considered to be promising candidate genes worthy of further investigations for
favorable alleles associated with milk yield. Our results provide useful information
about genetic variations in Egyptian and Chinese buffaloes. The potential influences
of nine candidate genes and their associated SNP on milk yield need to be validated in
more buffalo populations.

Keywords: association, functional gene, pathway analysis, SNP screening

1. Introduction

Water buffalo (Bubalus bubalis) is an important source of milk in Egypt and China. Buffalo milk
is well known for its high milk qualities. Compared with cow milk, it has higher contents of fat,
protein, lactose, and minerals and is more suitable for the manufacture of various dairy products
(Michelizzi et al,, 2010). The Egyptian buffalo (EGB) and the indigenous Chinese buffalo (CHB)
belong to two different buffalo subspecies, the river buffalo and the swamp buffalo, respectively.
They differ significantly in milk yield, approximately 2200-2400 kg/year for the riverine buffalo,
and 500-700 kg/year for the swamp buffalo (Shi et al., 2012). Along with the increasing demand for
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high-quality buffalo milk, increasingly more buffalo-breeding programs are aiming for buffaloes with
improved milk performance, especially those with increased milk yield.

Marker-assisted selection is a useful approach to assist animal breeding. Recently, candidate genes
harboring single nucleotide polymorphisms (SNP) significantly associated with milk fat content (Li et al,
2018c; Gu et al,, 2019), protein percentage (Manzoor et al., 2018, 2020), and fatty acid composition
(Cosenza et al,, 2017, 2018) have been identified on different buffalo chromosomes. As for milk yield,
one of the most important economic traits in buffalo industry, associated polymorphisms have been
identified at the whole genome level (Wu et al., 2013; Venturini et al., 2014; de Camargo et al.,, 2015;
Menon etal., 2016; El-Halawany et al., 2017; lamartino et al., 2017; da Costa Barros etal,, 2018; Du etal,,
2019). These studies have made great contributions to the progress of various breeding programs in
buffalo. The continuous development of molecular technology enables researchers to comprehensively
study the genome of buffalo and, thus, provides more useful information for buffalo breeding.

With the development of next-generation sequencing techniques, information for the whole buffalo
genome sequence is now available at https://www.ncbi.nlm.nih.gov/assembly/GCA_003121395.1.
Restriction site-associated DNA (RAD) sequencing (RAD-Seq) is one of the next-generation sequencing
techniques that have been deployed for detection of large number of SNP quickly and inexpensively
(Peterson et al., 2012). To our best knowledge, the RAD approach has not been applied in buffaloes to
identify sequence polymorphisms.

In this study, we performed double digest (dd) RAD-Seq to detect genome-wide SNP in EGB and CHB
populations with extreme difference in milk yield. Unlike the Egyptian buffalo, which has a relatively
high milk yield, the Chinese buffalo, Haizi buffalo, is traditionally used for labor in farmlands with very
low milk yield that is barely enough for the consumption of the calf. It is one of the most famous local
buffalo breeds in China for its strong adaptability to hard environments and tasty meat. However, with
the development of agriculture mechanization, Haizi buffalo is no longer needed in agricultural farming
and was at the edge of extinction with only 1,132 head of live buffaloes in 2006 (Cheng et al., 2008). The
marker-assisted selection programs, aiming at improving the milk yield trait in Haizi buffalo and thus
facilitating its conversion from draft-purpose only to meat-and-milk use, provide a practical way for the
conservation of this unique buffalo breed.

The objectives of our present study included the screening of SNP that show significant differences in
allelic frequencies between these two populations, categorization of functional genes associated with
these SNP by gene ontology (GO), and pathway analyses to further understand their potential values as
candidate genes closely associated with milk yield trait in buffaloes.

2. Material and Methods

Blood samples from 45 two-year-old female buffaloes (25 and 20 individuals from the Chinese Haizi
swamp buffalo and Egyptian river buffalo, respectively) were collected. The geographic sites were
Yancheng, Jiangsu Province, China (33°50'N, 120°22' E) and Cairo, Egypt (30°03'N, 31°58' E), respectively.

Genomic DNA (gDNA) was extracted from the whole blood using the DNeasy Blood & Tissue Kit (Qiagen,
Hilden, Germany) according to manufacturer’s instructions. The quality of gDNA was verified on 1%
agarose gel and then quantified using a spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific,
Waltham, MA, USA).

The ddRAD-Seq library was constructed by staff in Personal Biotechnology Co., Ltd (Shanghai,
China) according to Peterson et al. (2012). Enzymes used in this study were purchased from the New
England Biolabs (NEB), Beverly, MA, USA. Briefly, 500 ng of gDNA was double-digested with HindIII
(5'- A|AGCTT -3") and Bfal (5'- C|TAG -3") at 37 °C for 3 h in a reaction volume of 20 pL. The digested
gDNA was purified using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA). Then, in a
50-pL ligation system, adapter P1 (containing a unique 7-bp barcode sequence and a HindllI restriction
site overhang) and adapter P2 (containing a Bfal overhang) were ligated to the digested gDNA by using
T4 DNA ligase. Ligation was performed at 22 °C for 60 min, followed by an inactivation step of 65 °C
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for 10 min. The resulting samples were purified by following the standard AMPure XP bead protocol to
remove unligated adapters and adapter-adapter ligation products.

After the purification step, the fragments were screened using the Pippin Prep system (Sage Science,
Beverly, MA, USA) to obtain 200-400 bp fragments. Enrichment of PCR of the library was performed
using a Phusion High-Fidelity PCR Kit (NEB, Beverly, MA, USA) in a 20-pL PCR reaction volume containing
about 20 ng of the size-selected DNA as the template and 2 uM each of P1 and P2 adapter primers. The
PCR conditions were: initial denaturation at 98 °C for 30 s, then 14 cycles of 98 °C for 15 s, 65 °C for
30 s, and 72 °C for 30 s, followed by a final extension step at 72 °C for 5 min. The PCR samples were
purified again with AMPure XP beads and checked on an Agilent Bioanalyzer (Agilent Technologies
Inc., Santa Clara, CA, USA) to confirm the size distribution of fragments, and then quantified using a
Qubit 3.0 fluorometer (Life Invitrogen, USA). Samples were then combined in equimolar ratios and
sequenced on the platform of Illumina HiSeq 2500.

According to the 7-bp barcode sequences assigned to each sample in the ddRAD-Seq library, raw
[llumina reads were de-multiplexed, which allowed the matching of each sequence read to a single
sample. High-quality (HQ) cleansed reads were obtained by following these filtering criteria:
trimming out the barcode sequences as well as the adapter sequences; removing reads with more
than 50% bases having Phred quality scores lower than 20; and eliminating the pair-end sequences
shorter than 50 bp. Then, the HQ reads were mapped to the reference genome (https://www.ncbi.
nlm.nih.gov/assembly/GCA_003121395.1).

The Burrows-Wheeler Aligner (BWA) tool (v0.7.12) was used to align cleansed reads against the
reference buffalo genome (GCA_003121395.1 UOA_WB_1) with the demo BWA mem settings. Variant
calling was performed according to Zhu et al. (2018). The SNP were further screened by using vcftools
based on these criteria: minor allele frequency (considering 45 samples together) 20.01; minimum
depth of coverage for each sample >2; SNP missing rate across all samples (computed per population)
<0.7; minimum Phred quality score for each bases 210; and max alleles/min alleles <2.

The SNP, successfully genotyped in all the 45 samples (missing genotype rate = 0) with a minimum allele
frequency of 0.01 in both CHB and EGB, were retained for further bioinformatics analysis. Differences in
allelic frequencies between CHB and EGB were calculated for all the polymorphic loci using the Population
Differentiation option of GenePop version 4.2 (http://genepop.curtin.edu.au/). Significant differences were
established at P<0.05. Gene ontology and pathway analyses were performed by the PANTHER classification
system (v.14.0) (Mi et al,, 2019). We used the “Gene List Analysis” tool. Briefly, the list of genes (official gene
symbols) was uploaded, and the Bos taurus reference was selected as the reference list. For four functional
categories (GO biological process complete, GO molecular function complete, GO cellular component
complete, and PANTHER pathways), Fisher’s Exact test (calculating False Discovery Rate, FDR) was applied
to determine whether there was a statistical over- or under-representation of genes/proteins in the input
list relative to the reference list (Mi and Thomas, 2009). The interactions between proteins encoded by the
promising candidate genes were predicted using the software Strings (http://string-db.org/).

Raw sequence data obtained from the present study were deposited in the NCBI Sequence Read Archive
under the BioProject number of PRINA554744 (SRA accession: SRR9831104- SRR9831148).

3. Results

In the present study, the Illumina HiSeq sequencing of the 45 ddRAD libraries generated a total of
833.68 million raw reads corresponding to about 118 Gb of sequence data. The average number of raw
reads per sample was 18,526,242, ranging from 13,094,116 to 25,602,402 with a median of 19,117,758 and
standard deviation (SD) of 3,029,678. After trimming and filtering, we obtained approximately 797.23
million (95.63%) HQ reads, of which, 99.24 and 97.10% of the bases had a Phred quality score of
20 (Q20) and 30 (Q30), respectively. The average number of HQ reads per sample was 17,716,223, ranging
from 12,532,968 to 23,686,928 with a median of 17,850,416 and SD of 2,984,099. High-quality reads were
then aligned with the reference buffalo genome, and about 99.93% of them were successfully mapped.
The average sequencing depth was 0.86X. Summary of the ddRAD-Seq results were shown in Table 1.
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A total of 110,129 and 150,535 putative SNP were identified in Egyptian and Chinese buffaloes,
respectively. The distribution of these SNP across the chromosomes was similar within the two
populations (Figure 1). Most of them were distributed in the intergenic and intronic regions (Figure 2).
The flow chart for SNP detection and bioinformatics analysis were explained in Figure 3.

Altogether, 608 synonymous and 541 non-synonymous mutations were detected on the exons of
functional genes. Of all these 1149 SNP, we focused only on high-confidence SNP with no missing
data among all the 45 samples, having a minimum reads coverage depth of 2 and showing significant
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Figure 1 - Distribution of single nucleotide polymorphisms (SNP) on different chromosomes.
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Figure 2 - Distribution of single nucleotide polymorphisms in the genome of the Egyptian (2a) and Chinese

(2b) buffaloes.
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differences (P<0.05) in the allelic frequencies between CHB and EGB, which yielded 15 SNP distributing
on 12 chromosomes and resulting in non-synonymous amino acid mutations (Table 2).

For these 15 loci, the average reads coverage depth was 15X for EGB (ranging from 9 to 22X) and 20X
for CHB (ranging from 13 to 28X). Except for the two SNP on MTMR10 and TACCZ, most polymorphisms
were displayed only in one population. Furthermore, three mutations harbored by RASGRP1 (K7E),

Criteria for the initial SNP calling process

(1) SNP missing rate across all samples (computed per population) < 0.7
(2) minimum depth of coverage for each sample = 2

(3) minor allele frequency (considering 45 samples together) = 0.01

1149 SNP on exons 15 non-synonymous SNP

SNP identified (110,129 in EGB and 150,535 in CHB) « 608 synonymous * no missing data among 45 samples
« significantly different in allelic

* 541 non-synonymous frequencies between CHB and EGB

SNP meet these criteria were for bioinformaties analysis
(high-confidence SNP)

(1) successfully genotyped in all the 45 samples (missing genotype rate = 0)
(2) with a minimum allele frequency of 0.01 in both CHB and EGB

CHB - Chinese buffalo; EGB - Egyptian buffalo.

Figure 3 - Flow chart for single nucleotide polymorphism (SNP) detection and their further bioinformatics analysis.

Table 2 - Single nucleotide polymorphisms causing non-synonymous mutations and showing significant different
allelic frequencies between two buffalo populations

. Allele frequency
Reference sequence Gene Position in Exon Reference — Alteration (Reference/alteration) P-value
(Chromosome) reference
Codon Amino acid CHB (n=25) EGB (n=20)

XM_006050687.2 (1) FAM90A26 380 3 CTG—-CCG  Leu— Pro 1.00/0.00 0.90/0.10 0.033
XM_006057766.2 (2) NEDD9 421 2 ACT - GCT  Thr-Ala 1.00/0.00 0.83/0.17 0.002
XM_025279334.1 (3) CEP112 2579 22 TCT - TTT  Ser — Phe 1.00/0.00 0.78/0.22 0.000
XM_025281542.1 (3) TPD52L3 2440 1 GAC—-GGC  Asp—Gly 1.00/0.00 0.83/0.17 0.003
XM_006052150.2 (6) CLCC1 1752 11 ACG - ATG  Thr - Met 1.00/0.00 0.10/0.90 0.035
XM_006063939.2 (7) FAM184B 2331 9 GAC —» AAC Asp - Asn 0.64/0.36 1.00/0.00 0.000
XM_006046572.2 (11) PNMA1 1031 1 CCG - CTG Pro - Leu 1.00/0.00 0.90/0.10 0.035
XM_025295940.1 (11) RASGRP1 1482 1 AAA - GAA Lys = Glu 1.00/0.00 0.60/0.40 0.000
XM_006051359.2 (14) SPATA25 1633 2 CGG—-CCG  Arg—Pro 1.00/0.00 0.78/0.23 0.000
XM_025266585.1 (16) PPFIBP2 1863 16 GCA - ACA Ala - Thr 1.00/0.00 0.83/0.17 0.002
XM_025271460.1 (20) MTMR10 400 3 TGG—-TCG  Trp — Ser 0.14/0.86 0.65/0.35 0.000
XM_025271849.1 (20) OTUD7A 447 4 CAC - CAG His - Gln 1.00/0.00 0.78/0.22 0.000
XM_025272296.1 (21) SLC22A14 3016 10 GCC—->ACC  Ala—Thr 0.50/0.50 1.00/0.00 0.000
XM_025274028.1 (23) TACC2 4719 5 GAG —» AAG  Glu—- Lys 0.22/0.78 0.93/0.07 0.000

XM_025275895.1 (X)  CACNAIF 5237 43 ACG - ATG  Thr — Met 0.00/1.00 0.75/0.25 0.000

CHB - Chinese buffalo; EGB - Egyptian buffalo; FAM90A26 - family with sequence similarity 90 member A26; NEDD9 - neural precursor cell
expressed, developmentally downregulated 9; CEP112 - centrosomal protein 112; TPD52L3 - tumor protein D52 like 3; CLCCI - chloride channel
CLIC like 1; FAM184B - family with sequence similarity 184 member B; PNMA1 - PNMA family member 1; RASGRP1 - RAS guanyl releasing
protein 1; SPATA25 - spermatogenesis associated 25; PPFIBP2 - PPFIA binding protein 2; MTMR10 - myotubularin related protein 10; OTUD7A -
OTU deubiquitinase 7A; SLC22A14 - solute carrier family 22 member 14; TACC2 - transforming acidic coiled-coil containing protein 2; CACNAIF -
calcium voltage-gated channel subunit alphal F.
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OTUD7A (H20Q), and TACCZ (E1523K) caused alterations between acidic and alkaline amino acids.
These SNP are especially worthy of further validation in more populations.

Over the last decade, accumulated studies have identified candidate genes on buffalo chromosome 1,
2,3,8,12, 14, 15, 22, and 23 closely related to milk yield by either genome wide association study or
candidate gene approach. In the present study, we identified some novel SNP located on these candidate
genes (Table 3), which might provide potential evidence for their roles in milk production.

For further analysis, we retained only high-confidence SNP with no missing data among all the
45 samples, having at least a minimum coverage depth of 2, and a minimum allele frequency of 0.01 in
both EGB and CHB populations. The final data set contained 1490 SNP with average reads coverage
of 17.66X (Table 4). The majority of them were located in intronic (47.92%) and intergenic (47.25%)
regions, followed by 1.74% of them in the 3’'UTR and 1.21% in exons. The rest were located in the
upstream (0.74%), downstream (0.67%), and 5’UTR (0.47%), respectively. Of all the 1490 SNP, 886 SNP
loci associated with 658 functional genes were of particular interest to us due to their significant
differences in allelic frequencies between EGB and CHB (P<0.05).

Gene ontology analysis of these 658 genes with the PANTHER classification system (v.14.0) revealed
the top five biological processes (BP), molecular functions (MF), and cellular components (CC) in which
these functional genes were involved (Figure 4). The fold enrichment for BP, MF, and CC ranged from
3.611t09.81,5.21 to 7.09, and 2.69 to 3.99, respectively.

Table 3 - Novel single nucleotide polymorphisms (SNP) identified on known candidate genes associated with milk

yield in buffaloes

BBU Gene Associated trait Novel SNP identified

1 BDH1 Expression patterns in mammary epithelial cells during lactation positively ~An upstream BDH1 SNP
correlated with milk yield in Murrah buffaloes (Yadav et al., 2015) (G/A at position 116814955)

2 INSIG2 305-d milk yield in Murrah and crossbred breeds (Deng et al., 2016b)

2 STAT1 305-d milk yield and protein percentage in crossbred buffaloes (Deng et al., Intronic SNP (C/T at position
2016a) 132437140)

2 PRL Milk yield, peak milk yield, and the contents of protein and fat in milk in
Italian Mediterranean river buffalo (Li et al,, 2017)

3 STAT5A  Milkyield trait in the Binlangjiang buffalo (Ji et al., 2013)

3 SREBF1  305-d milk yield in crossbred Chinese buffaloes (Deng et al., 2017)

3 ACACA Expression patterns in mammary epithelial cells during lactation negatively Intronic SNP (G/A at position
correlated with milk yield in Murrah buffaloes (Yadav et al., 2015) 49760383 and 49760609,

respectively)
8 LEP High milk yield in Egyptian buffaloes (Nasr et al., 2016)
12 LIPIN1 Expression patterns in mammary epithelial cells during lactation positively

correlated with milk yield in Murrah buffaloes (Yadav et al.,, 2015)
14 ACSS2 Expression patterns in mammary epithelial cells during lactation positively A 3’'UTR ACSS2 SNP

correlated with milk yield in Murrah buffaloes (Yadav et al., 2015) (G/A at position 19375891)
14 OXT Milk yield in Italian buffaloes (Pauciullo et al., 2012)
15 VPS13B  Total milk yield, fat yield, and protein yield (Liu et al., 2018a) Intronic SNP (C/T at position
17737368)
15 RGS22 Total milk yield, fat yield, and protein yield (Liu et al., 2018a) Intronic SNP (C/T at position
17857096)

22 MC4R Milk yield trait in the Binlangjiang buffalo (Deng et al.,, 2016c¢)

23 SCD Expression patterns in mammary epithelial cells during lactation positively
correlated with milk yield in Murrah buffaloes (Yadav et al., 2015)

BBU - buffalo chromosomes; BDH1 - 3-hydroxybutyrate dehydrogenase; INSIG2 - insulin-induced gene 2; STAT1 - signal transducer and activator
of transcription 1; PRL - prolactin; STAT5A - signal transducer and activator of transcription 5A; SREBF1 - sterol regulatory element binding
transcription factor 1; ACACA - acetyl-coA carboxylase alpha; LEP - leptin; LIPIN1 - lipin1; OXT - oxytocin; ACSS2 - acyl-CoA synthetase short-
chain family member 2; VPS13B - vacuolar protein sorting 13 homolog B; RGS22 - regulator of G protein signaling 22; MC4R - melanocortin
4 receptor; SCD - steroyl-CoA desaturase.
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Panther pathways analysis showed that the most significantly over-represented pathways were
the ionotropic glutamate receptor pathway (P = 1.18E-09, FDR = 1.94E-07), including eight genes
(CACNA1A, GRIA2, GRIA4, GRIK3, GRIK4, GRIK5, GRM3, and SHANKZ2); the endothelin signaling
pathway (P = 1.56E-04, FDR = 6.40E-03), including 10 genes (ADCY2, ADCY5, EDNRA, PIK3R1,
PIK3R6, PLCB1, PLCB4, PRKCE, PRKG1, PRKX); and the gonadotropin-releasing hormone receptor
pathway (P = 2.91E-05, FDR = 2.38E-03), including 14 genes (ANXA5, CACNA1C, CREB1, FST, INHBA,
INHBB, MAP3K1, NFATC2, PBX1, PIK3R1, PLCB1, PRKCE, SCG2, SMAD2). The fold enrichment of three
pathways was 7.00, 3.83, and 2.49, respectively. A total of 29 genes (Figure 5) were involved in these
three pathways.

Further analysis revealed that nine (ADCY5, CACNA1A, CREB1, INHBA, INHBB, PIK3R1, PLCB1, PRKCE,
and SMADZ2) out of these 29 genes were significantly enriched in such biological processes as the
regulation of hormone secretion, reproductive process, as well as ovulation (Figure 6). These genes,
associated with high-confidence SNP showing significant differences in allelic frequencies between
CHB and EGB, involved in the most significantly over-represented pathways, significantly enriched in
the biological processes closely related to the activities of lactation, were considered to be the most
interesting candidate genes for milk yield trait in buffaloes.

Table 4 - General information of high-confidence single nucleotide polymorphisms (SNP)

Average coverage depth

Chromosome Number of SNP

CHB EGB
1 132 20.01 15.86
2 127 20.09 15.38
3 96 18.67 15.30
4 81 19.18 15.67
5 101 19.14 16.11
6 58 20.16 15.15
7 70 20.70 15.68
8 66 19.69 14.52
9 52 17.73 15.57
10 51 19.66 14.53
11 44 20.54 14.81
12 74 19.95 17.44
13 34 17.33 14.54
14 51 19.35 15.89
15 41 20.05 14.90
16 49 20.63 16.44
17 45 19.85 15.68
18 41 19.50 15.92
19 48 20.34 14.84
20 44 19.72 16.02
21 37 19.82 15.22
22 45 19.43 16.87
23 46 19.24 14.93
24 40 21.30 16.84
X 17 19.96 16.95
Average 59.6 19.68 15.64

CHB - Chinese buffalo; EGB - Egyptian buffalo.
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Functional genes referred to the 658 genes which were associated with high-confidence single nucleotide polymorphisms and differed

significantly in allelic frequencies between Egyptian and Chinese buffaloes.

Figure 4 - Top five biological processes (BP), molecular functions (MF), and cell components (CC) in which

functional genes were involved.
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Figure 5 - Biological network of 29 genes involved in three significantly over-represented pathways (predicted by

Strings, background: Bos taurus; number of clusters: 6).

R. Bras. Zootec., 49:€20190267, 2020



11

Identification of candidate genes associated with milk yield trait in buffaloes (Bubalus bubalis)...
Ye et al.
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Figure 6 - Significantly enriched biological processes represented by nine candidate genes.

4. Discussion

Restriction site-associated DNA sequencing is a fast and useful technique to generate large numbers of
SNP. Analyses based on SNP developed by RAD sequencing usually focused on high-confidence SNP only
and removed those SNP showing low depth of coverage and low SNP calling rate among samples. The
criteria set for screening of high-confidence SNP varied among documents. For example, a minimum
coverage depth of 5 and more than 90% of the samples being successfully genotyped were adopted
in a recent study (Gao et al,, 2019). However, in another study, the minimum coverage depth was set
to be 3, and 70% of the samples were required to have data to process a SNP (Hayashi et al,, 2017).
In the current study, a total of 886 high-confidence SNP were obtained. For each of them, the minimum
coverage depth was 2, and the average reads coverage was 17.66X. All SNP were successfully genotyped
in all the 45 samples with a minimum allele frequency of 0.01 and showed significant differences in
allelic frequencies between CHB and EGB.

Functional genes associated with these high-confidence SNP were significantly over-represented in three
pathways, which contained 29 genes with 41 related SNP. Of these, nine genes (ADCY5, CACNA1A, CREB1,
INHBA, INHBB, PIK3R1, PLCB1, PRKCE, and SMADZ2) were considered the most promising candidate genes
for milk yield trait due to their modulating roles in hormonal regulation of the lactation cycle.

It is known that milk production is under the control of various hormones secreted by the
neuroendocrine systems, which include the reproductive (such as estrogen, progesterone, prolactin,
and oxytocin), metabolic (such as growth hormone, corticosteroids, thyroid hormones, and insulin),
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as well as mammary (such as leptin) hormones (Neville et al., 2002; Svennersten-Sjaunja and Olsson,
2005; Crowley, 2015). Of all these nine genes, INHBA, INHBB, and SMADZ2 were significantly enriched
in the TGF-B (transforming growth factor ) signaling pathway (P = 3.2E-3). The inhibin beta A subunit
(INHBA) and inhibin beta B subunit (INHBB) are components of activins and inhibins, which belong to the
TGF-B superfamily and are regulators for the synthesis and secretion of the pituitary follicle-stimulating
hormone (FSH). Activins act as the stimulator. Inhibins, on the other hand, neutralize activins’ activities
by binding to them (Bilezikjian et al., 2006). They act with receptor-activated Smads (including Smad2)
and co-mediator Smad (Smad4) to transfer the signal from cell surface to the nucleus and regulate
the transcription of a variety of genes involved in follicular development, growth of oocytes (Knight
and Glister, 2006; Xing et al., 2014), and embryo differentiation (Zhang et al., 2015). ADCY5, CREBI,
and PLCB1 were significantly enriched in the pathways of insulin secretion (P = 3.1E-3) and thyroid
hormone synthesis (P = 2.2E-3). These three genes, together with PIK3R1, PRKCE, and CACNA1A, were
also enriched in the pathways of estrogen signaling (P = 1.1E-4), aldosterone sythesis and secretion
(P = 5.9E-5), and cholinergic synapse (P = 2.9E-6), respectively.

Due to their critical roles in hormone-related biological processes, association studies regarding
intragenic SNP harbored by these functional genes and reproductive traits in farm animals have
been conducted. For example, polymorphic loci in INHBA and INHBB were found to have significant
effects on sperm quality and fertility in boars (Lin et al., 2006); intronic INHBA SNP was reported to
be associated with fertility of stallions (Giesecke et al., 2010) and sperm quality in Chinese Holstein
bulls (Sang et al., 2011); INHBB SNP (at 3’'UTR) were related to litter size in sheep (Chu et al,, 2011);
SMADZ2 was considered an important candidate for total number born in swine (Wang et al,, 2018).
However, association studies regarding their sequencing variations and milk performance in buffaloes
have not been documented yet. Based on the facts that these nine genes played various roles in the
regulation of lactation-associated hormones, together with our findings that they were associated
with high-confidence SNP showing significantly different allelic frequencies between CHB and EGB, we
suggested that they were worthy of further investigations as candidate genes having influences on milk
yield trait in buffaloes.

We also identified eight high-confidence SNP associated with five functional genes (DIAPH3, FSTL4,
GMDS, KCNMA1, and SLC44A5), which have been previously documented as candidate genes for
reproductive traits in buffaloes (Wu et al., 2013; de Camargo et al,, 2015; Li et al.,, 2018a). They were all
significantly different in the distribution of allele frequencies between EGB and CHB (Table 5). Five SNP

Table 5 - Single nucleotide polymorphisms (SNP) associated with known candidate genes closely related to
reproductive traits in buffaloes

Reference Alteration  Frequency of Refallele

Region Associated gene BBU Position

(Ref) (Alt) CHB EGB
Intergenic  gene-DIAPH3 (dist =110981), 13 88461660 A G 0.040 0.825
gene-TDRD3 (dist = 249397)
Intergenic ~ gene-DIAPH3 (dist =110637), 13 88461316 C G 0.040 0.975
gene-TDRD3 (dist = 249741)
Intronic gene-FSTL4 9 66157381 C G 0.080 0.600
Intergenic ~ gene-GMDS (dist = 95662), 2 1453971 A G 0.940 0.550
gene-MYLK4 (dist = 121469)
Intergenic  gene-KCNMA1 (dist = 29841), 4 152780961 T C 0.920 0.600
gene-DLG5 (dist = 108913)
Intergenic  gene-KCNMA1 (dist = 30087), 4 152781207 T C 0.080 0.400
gene-DLG5 (dist = 108667)
Intronic gene-SLC44A5 6 68703492 A G 0.980 0.350
Intronic gene-SLC44A5 6 68703703 G A 0.980 0.400

CHB - Chinese buffalo; EGB - Egyptian buffalo; BBU - buffalo chromosomes; DIAPH3 - diaphanous-related formin 3; TDRD3 - tudor-domain
containing 3; FSTL4 - follistatin-like 4; GMDS - GDP-mannose 4,6-dehydratase; MYLK4 - myosin light chain kinase family member 4; KCNMA1 -
potassium calcium-activated channel subfamily M alpha 1; DLG5 - discs large MAGUK scaffold protein 5; SLC44A5 - solute carrier family
44 member 5.
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were intergenic, such as SNP associated with DIAPH3, GMDS, and KCNMA1, which have been reported
to be closely associated with calving interval and age at third calving in buffaloes. The remaining three
SNP were intronic, with one and two SNP located within FSTL4 and SLC44A5, respectively. In a previous
study that combined GWAS (genome-wide association study) and RNA-seq of follicular granulosa cells,
FSTL4 was the nearest functional gene associated with a SNP closely related to age at second calving
and age at third calving in Italian Mediterranean buffaloes (Li et al., 2018b). In the current study, a novel
intronic SNP located on FSTL4 was identified with significantly different allelic frequency distribution
between CHB and EGB. Our results further confirmed that these functional genes, closely associated
with genetic variants in two divergent populations with extreme phenotype in terms of milk yield,
may explain the variances underlying the reproductive behavior in EGB and CHB.

In the present study, we used EGB and CHB, two phenotypically-divergent populations, to exploit genetic
variants with potential effects on milk yield in buffaloes. Based on the strategy of selecting animals with
extreme target trait for genotyping, previous association studies between DNA markers and interested
traits have proved this to be an effective experimental design to identify candidate genes associated with
target traits in other animals (Fontanesi et al., 2012a,b; Liu et al,, 2018b). Together with the application
of ddRAD-Seq, an efficient and cost-effective approach for SNP detection, genomic variants identified
in this study provided additional insights into candidate genes affecting milk yield in buffaloes.

5. Conclusions

Our results provide potential genetic variances for the selection of milk yield trait in buffalo. We suggest
nine genes which are involved in the hormonal regulation of lactation process as promising candidate
genes worthy of further investigations for favorable alleles closely related to milk yield trait.
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