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ABSTRACT - Careful implementation of a fi ltration system is essential for maintaining the operation of an irrigation system. Failure

to maintain a fi ltration system can have a negative eff ect on irrigation pressure and uniformity. To avoid this problem, it is important to

clean the fi lters, which can be done either manually or automatically. Predicting the correct time to clean the fi lters helps maintain the

pressure and effi  ciency of the system. The aim of this study was to model backwash pressure as a function of water quality and the fi lter

inlet pressure load using artifi cial neural networks. The characteristics of the water were determined using sensors to measure the pH

(hydrogen potential), turbidity, total dissolved solids (TDS), and temperature. A pressure transducer was used to quantify the drop in

pressure and the need to clean the fi lters. To predict the need for cleaning the irrigation fi lters, a hydraulic structure was constructed that

included a screen fi ltration system with a mesh size of 120, cleaned by backwashing. The need for cleaning estimated by the multilayer

perceptron feedforward artifi cial neural networks with 2-4-1 architecture performed well in modelling the temporal evolution of the

pressure load in the screen fi ltration system (120 mesh), whereas adjusting the pressure load based on the water quality characteristics

(pH, turbidity, total dissolved solids and temperature) performed poorly.
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INTRODUCTION

The quality of the irrigation water can decide
the type of crop and the irrigation method to be used
(AYERS; WESTCOT, 1991). In irrigation systems,
the main problem is clogging of the fi lters and emitters,
especially when low-quality water is used, since this can
contain high concentrations of dissolved and suspended
solids (ELBANA; CARTAGENA; PUIG-BARGUÉS, 2012).

To remove suspended particles, the screen fi lter
is most commonly used due to its ease of handling and
low cost (WU et al., 2014; ZONG et al., 2015). However,
this type of fi lter can quickly become clogged, and requires
constant cleaning. Filter clogging impairs the fl ow of water
and its distribution throughout the irrigation system,
and can affect its hydraulic performance (MESQUITA;
TESTEZLAF; RAMIREZ, 2012; RIBEIRO et al., 2008).
In this respect, cleaning the filter element is essential
for the system to function.

Filters can be cleaned manually or by backwashing.
Backwashing involves reversing the fl ow of water through
the fi lter, i.e. from the inside to the outside of the fi lter
(ZONG et al., 2019). Backwashing can be automatic: for
this process, the system is equipped with a device that
detects the diff erence in internal pressure of the fi lter.
Upon reaching a preset value, the control device sends
a signal that activates the valves and initiates cleaning
(DURAN-ROS et al., 2009). According to Jianhua et al.
(2019), hydraulically operated self-cleaning screen fi lters
have better water fl ow capacity, a stronger cleaning eff ect,
and a longer working life.

Backwashing can also be set by monitoring
the time, i.e. when filtration reaches a pre-set period,
the system automatically begins the cleaning process
(ZAKI et al., 2021). The period depends on the quality
of the water, the rate of filtration, and the filter layer
(ADIN; ALON, 1986; TESTEZLAF, 2008).

Therefore, by monitoring water quality, flow
parameters under pressure, and the construction
characteristics of the filter element, it is possible
to model the pressure and help define optimum
maintenance levels. In this respect, inference using
computer algorithms, such as artificial neural
networks, can be satisfactory. The architecture of these
networks varies in terms of the number of layers and
input parameters and how the connections between
them are made, allowing them to be used in a variety of
situations (FATHA; MADANIFARB; ABBASIA, 2020;
HEMMAT ESFE et al., 2015; LEE; LEE; YOON, 2019).

Using neural networks, it is possible to predict the
best time to carry out backwashing based on monitoring the
water quality and the pressure loss in the fi lters. The aim

of this study was therefore to model backwash pressure as
a function of water quality and fi lter inlet pressure using
artifi cial neural networks.

MATERIAL AND METHODS

The experiment was conducted at the Hydraulics
and Irrigation Laboratory of the Federal University of
Ceará (UFC) in Fortaleza, Ceará.

Hydraulic structure and water quality

The hydraulic structure built to evaluate the
fi ltration system can be seen in Figure 1.

The system consisted of pipes with a diameter
of 32 mm, a 120 mesh (1”) screen fi lter, a 120 mesh
(1”) disc fi lter, and two modes of operation: fi ltration
and backwashing. When fi ltering, the fl ow was via the
screen fi lter. During the automatic cleaning process,
the fi ltration fl ow was via the disc fi lter, with the fl ow
direction reversed in the screen fi lter.

The operating modes of the system were regulated
by fi ve electric valves (1” HV 24.0 Vac RainBird). For this,
a control module was assembled (Figure 2) comprising
a 5A 12+12 Vac transformer, a 3-channel 5v 10a relay
module, and a rocker switch.

The structure was mounted on a hydraulic system
with cyclic water reuse. It consisted of a 3 hp motor pump, a
rectangular channel together with a Parshall flume, and
a 512 L reservoir. The water collected from the reservoir was
fed back into the hydraulic structure via the fi lter and returned to
the reservoir through the channel via the Parshall meter.

In order to obtain low-quality water, it was decided to
increase the organic matter content with earthworm humus in
the proportion of 500 g per 264 L of water (1.89 g L-1).

Figure  1 - Diagram of the hydraulic structure for fi ltration
and backwashing, (a) fl ow inlet, (b) solenoid valve, (c) screen
fi lter, (d) disc fi lter, (e) pressure outlet, (f) fl ow outlet, and (g)
backwash fl ow outlet
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Figure 2 - Schematic representation of the solenoid-valve control
module for releasing the fl ow for fi ltration and/or backwashing,
(a) AC source, (b) transformer 12V+12V, (c) relay module, (d)
rocker key, (e) DC source, and (f) solenoid valves

During the fi ltration tests, the water quality was
measured every fi ve seconds using a multiparameter
probe based on the Arduino® free hardware and software
platform (Figure 3).

The recorded variables were pH, turbidity, total
dissolved solids, and temperature. The pH (hydrogen potential)
was measured using the Ph4502c sensor module and a probe
electrode with a BNC plug. According to the manufacturer,
the pH sensor module has the following characteristics:
heating voltage of 5 ± 0.2 volts (AC/DC), operating current of
5 to 10 mA, temperature range of 0 ºC to 60 ºC, and analogue
output for measurements in the 0.0 to 14.0 pH range.

To quantify the turbidity, the TSW30 turbidity sensor
was used. According to the manufacturer, the sensor has the
following specifi cations: voltage of 5 Vdc, maximum current
of 30 mA, analogue output of 0 to 4.5 Vdc or digital output

Figure 3 - Schematic of the multiparameter probe components,
(a) Ardunino Nano, (b) HC-06 module, (c) ESP01, (d) voltage
regulator, (e) LCD display, (f) 5V bus, (g) GND bus, and (h)
three-way terminals

(high - 5 V and low - 0 V), and operating temperature
of -20 °C to 90 °C. The measurement range is 0.0 to
1000 ± 30 NTU. The total dissolved solids (TDS) sensor
operates up to a maximum temperature of 55.0 °C, with
an input voltage of from 3.3 to 5.5 V, and analogue signal
output of 0 to 2.3 V. The suggested measurement range
is between 0.0 and 1000.0 ppm (parts per million), or 0.0
to 1000.0 mg L-1. The temperature was recorded using a
DS18B20 sensor; this has an operating voltage of 3 to 5.5V,
a measurement range of -55 ºC to 125 ºC, accuracy of
+/- 0.5 ºC between -10 ºC and 85 ºC, and a 108 cm-long cable.

The data was sent to WebService to be viewed in
real time on a smartphone.

Assessing the need for backwashing

To assess the need for cleaning and then model the
drop in pressure, backwashing was applied only to the 120
mesh stainless steel screen fi lter with a 1” thread.

To defi ne the correct time for backwashing,
pressure transducer sensors were installed at the inlet
and outlet of the fi lter coupling. According to the
manufacturer, the sensor has the following specifi cations:
operating voltage of 5 Vdc, maximum current of 30 mA,
analogue output of 0.5 to 4.5 Vdc, operating temperature
of -40 °C to 100 °C, and a burst pressure three times the
upper limit. The measuring range is 0.0~0.40 to 6.0 bar.

The drop in pressure is given by the diff erence
between the readings of the two sensors. However, it was
found that the manometric pressure at the fi lter outlet was
very close to zero for the fl ow rates under evaluation,
so it was not possible to attribute the variation in values
observed in the sensor (based on the lower limit of the
measurement range) to the pressure at the edge of the
fi lter. It should be noted that this phenomenon may be
associated with the position of the fi lter fl ow outlet, which
was very close to the fi lter and open to the atmosphere.

Therefore, pressure monitoring was restricted to
the fi lter inlet. In any case, backwashing was triggered
after an increase of 6 mH2O in the pressure as measured at
the start of fi ltration. The fi ltration fl ow rate and cleaning
fl ow rate were 1.5, 2.0, 2.5 and 3.0 m3 h-1, with the
backwashing operation time set to 1.0 minute.

The pressure increase at the fi lter inlet was
recorded for each fl ow together with the water quality
characteristics (pH, turbidity, TDS and temperature) of
the reservoir, and sent to WebService on diff erent channels
every fi ve seconds. Since the platform records the date
the data was added, it was possible to count each period
needed to reach the backwash pressure load.
Calibration of the press ure transducer sensor

Calibration was carried out on a scale of metres of
water column (mH2O) in the range of 0.0 to 30.0 mH2O.
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To do this, a structure was built to hold the sensor and
a calibrated pressure gauge. The standard pressure gauge
had a scale of 0 to 4 kgf cm-2 at intervals of 0.02 kgf cm-2

and had been previously calibrated at the Mechanical
Metrology Laboratory (LAMETRO) of UFC.

Pressures from 0.0 to 3 kgf cm-2 (30.0 mH2O) were
measured in variations of 0.01 kgf cm-2 (1.0 mH2O). Ten
repeated values were measured in digital numbers with
a resolution of 10 bits (0 to 1023) for any one pressure.
WebService was again used to store the data, which was
transferred every fi ve seconds. A printed circuit board
based on the Arduino Nano platform was built to calibrate
the sensor and monitor pressure during the study.

During calibration, the water temperature was
recorded by the DS18B20 sensor and the atmospheric
pressure, temperature and relative humidity by the
BME280 sensor. Ambient air conditions were recorded
by a data logger comprising the Arduino Nano, the
BME280 sensor, a micro-SD card module, and the
RTC DS1307 real time clock.

The simple linear regression model was chosen
for the sensor calibration equation. The coefficients
were estimated using the ordinary least squares
method (OLS). The significance of the regression
model was determined using Student’s t-test for the
angular (b) and linear (a) coefficients at a level of
5%. The following indicators were used to evaluate
the statistical performance: root mean square error
(RMSE), correlation coefficient (r), coefficient of
determination (R²), concordance index (Willmott
et al., 1985) (d), and the confidence or performance
index (c). The confidence index (c) was classified as
per Camargo and Sentelhas (1997).

Cleaning prediction and b ackwashing
After carrying out the tests for each fl ow rate, and

obtaining the data set containing the variation in pressure
load at the fi lter inlet over time as well as the water quality
characteristics, the multilayer perceptron artifi cial neural
network (MLP) with one hidden layer was trained and
validated to predict the need for cleaning (backwashing).

The predictive models were fi tted to establish the
cleaning time for each fi ltration fl ow rate based on the
inlet pressure load (dependent variable) and fi ltration
time (independent variable). The adjustment was also
made using the water quality characteristics. As such,
the independent variable (predicted) was taken to be the
pressure at the fi lter inlet and the accumulated time until
this pressure was reached (seconds) plus 4 input variables
(independent): pH, turbidity, TDS and temperature. With
the exception of temperature, it was decided to use the
readings taken by the water quality sensors in units of
electrical potential (volt).

The sigmoid logistic activation function was
chosen for all the hidden neurons and the linear output.
The synaptic weights and activation thresholds (bias)
were adjusted using the backpropagation algorithm with
a momentum term.

Ten rounds of training/validation were carried
out. For the pressure load x time adjustment, the training
samples were randomly selected from the set in the
proportion of 70% for training and 30% for validation
(hold out). In the model for the quality variables, the
proportion was 75% for training and 25% for validation.
For each group in the 10 rounds, the mean square error
(MSE) and coeffi  cient of determination (R²) were used and
stored as metrics of statistical performance and inferences
of underfi tting and overfi tting during the training and
testing stages. The parameters (weightings) for the best
and worst performances were also saved.

RESULTS AND DISCUSSION

Descriptive summary of the water quality

A descriptive summary of the readings in volts
taken by the pH, turbidity, total dissolved solids (TDS)
and temperature (ºC) sensors can be seen in Table 1.

With the exception of the fl ow rate of 3.0 m3 h-1, the
pH and TDS sensors showed the greatest values.

Calibration of the pressure transducer sensor

The linear model fi tted to the pressure transducer
sensor is shown in Equation 1.

ŷ = 14.909T – 7.0155    (1)

where T is the voltage read by the sensor in volts.

Table 2 shows the t-test results of signifi cance for
the angular coeffi  cients (b) and intercepts (a), as well as
the performance measurements: root mean square error
(RMSE), coeffi  cient of determination (R2), correlation
coeffi  cient (r), concordance index (d), and confi dence or
performance index (c).

Cleaning prediction and backwashing

The variation in pressure load at the screen fi lter
inlet is shown in Figure 4.

Fourteen backwashes were carried out at fl ow rates
of 2.0 and 3.0 m3 h-1, and 13 at the fl ow rate of 2.5 m3 h-1;
the pressure load was returned to the same levels as those
seen at the start of fi ltration for the above fl ow rates, and
the cleaning time was kept practically constant following
the backwashes. It can therefore be concluded that the
developed fl ow reversal system was effi  cient in clearing
the screen fi lter.
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Table 1 - Mean values (AVE), minimum values (MIN), maximum values (MAX), coeffi  cient of variation (CV), number of observations
(n) for pH, turbidity, total dissolved solids (TDS), and water temperature (Temp) for fl ow rates of 1.5, 2.0, 2.5 and 3.0 m3 h-1

Flow rate 1.5 m3 h-1

pH (volt) Turbidity (volt) TDS (volt) Temperature (°C)
AVE 3.409 ± 0.0029 3.046 ± 0.0009 0.216 ± 0.0008 31.28 ± 0.015
MIN 3.203 2.917 0.172 30.63
MAX 3.549 3.132 0.244 31.81
CV(%) 2.02 0.69 9.72 1.13
n 546 546 546 546

Flow rate 2.0 m3 h-1

AVE 2.960 ± 0.0023 2.837 ± 0.0006 0.773 ± 0.0085 31.67 ± 0.027
MIN 2.803 2.757 0.000 30.56
MAX 3.403 2.887 0.940 32.75
CV(%) 1.94 0.55 27.48 2.10
n 623 623 623 623

Flow rate 2.5 m3 h-1

AVE 3.104 ± 0.0041 2.786 ± 0.0044 0.569 ± 0.0103 33.39 ± 0.022
MIN 2.908 2.031 0.050 32.44
MAX 3.521 3.032 0.895 34.69
CV(%) 3.84 4.61 52.68 19.02
n 839 839 839 839

Flow rate 3.0 m3 h-1

AVE 2.590 ± 0.0053 2.652 ± 0.0036 0.982 ± 0.0002 28.90 ± 0.029
MIN 2.277 2.204 0.972 27.56
MAX 2.876 2.779 1.012 33.19
CV(%) 5.26 3.50 0.61 2.65
n 656 656 656 660

Table 2 - Statistics of the t-test, root mean square error (RMSE), coeffi  cient of determination (R2), correlation coeffi  cient (r), concordance
index (d), and confi dence or performance index (c)

*Signifi cant at 5%

Sensor Student’s t statistic

Pressure transducer

a b n
-156.71* 530.77* 310

Performance statistic
RMSE R2 r d c Performance
0.2956 0.9989 0.9994 0.9998 0.9992 Excellent

At  a  fl ow  rate  of  1.5  m3 h-1, only three effi  cient
backwashes were generated, and automatic cleaning was no
longer possible (Figure 4A). Duran-Ros et al. (2009), working
with the automatic cleaning of a screen fi lter with a diameter
of 50.8 mm, and a fi ltration surface of 1100 cm2 and 120
microns, attributed ineffi  cient backwashing to insuffi  cient
pressure, and also reported that increasing the pressure of the

fi ltration system from 300 to 500 kPa increased the percentage
of effi  cient backwashes from 9.31% to 64.16%. Similarly,
Salcedo, Testezlaf and Mesquita (2011) associated failures in
the backwashing process with the use of incorrect fl ow rates
and cleaning times. Solé-Torres et al. (2019) also pointed out
that backwashing requires higher pressures than do the other
system components.
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Figure 4 - Screen fi lter pressure load: (A) fl ow rate 1.5 m3 h-1, (B) fl ow rate 2.0 m3 h-1, (C) fl ow rate 2.5 m3 h-1, and (D) fl ow rate 3.0 m3 h-1

(   ) (   )

(   ) (   )

The results of the performance parameters (R2, mean,
minimum and maximum) for the filtering time to reach
the  cleaning pressure  load  of  the  screen  filter  at  each
flow rate, as determined by the feedforward MLP
networks, are shown in Table 3.

The architectures under evaluation had a 2-4-1
configuration, i.e. two neurons in the input layer
(time and bias), four in the intermediate layer, and one
in the output layer (pressure load). The mean coeffi  cients
of determination (R²) during the training stage were
greater than 80.00% for each of the fl ow rates. During the
generalisation (validation) stage, they were over 77.00%.

Once the high performance of the models had
been verifi ed, the fi ltration time needed for cleaning was
estimated for both high (high MLP) and low (low MLP)
accuracy, i.e. using the model weightings generated in one
of the ten rounds during the validation stage, corresponding
to the highest and lowest observed R². For comparison
purposes, the average of the actual observations was also
used as an estimate of the cleaning time, i.e. the cleaning
times were recorded, and the average backwashing time
was calculated at the end of the test for each fl ow rate.
Table 4 shows the values found, depending on the fl ow
rates and c leaning pressure load.

The cleaning cycle was 380 and 195 seconds at
a fl ow rate of 1.5 and 3.0 m3 h-1, respectively. meaning the
higher fl ow rates led to screen clogging. Chi et al. (2021)
and Mesquita, Testezlaf and Ramirez (2012) pointed out that
the drop in pressure is signifi cantly aff ected by the speed of
fi ltration. Kannan et al. (2020) reported that as the fl ow rate
increases, the retained particles and the effi  ciency of the fi lter
increase, intensifying the drop in pressure and resulting in a
greater need for cleaning. If the need for cleaning is high, it is
essential to install an automatic backwashing system in order
to improve the practicality of the fi ltration system (KHAN;
REHMAN; JAMAL, 2017; RIBEIRO et al., 2005).

The time taken to carry out the cleaning cycle using
artifi cial neural networks was only above the average time
at the fl ow rate of 1.5 m3 h-1 when considering the set of
validations that produced the best-performing network
(high MLP). While for the worst set (low MLP), with the
exception of the fl ow rate of 3.0 m3 h-1, there was a tendency
to overestimate the time relative to the observed average
time and that of the high-MLP network. Zong et al. (2019)
pointed out that setting a long cleaning cycle can lead to
a large pressure diff erence between the inside and outside
surface of the screen, with the fi lter undergoing irreversible
deformation, damage to the screen, or incomplete cleaning.
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Table 3 - Performance statistics for the training and validation stages

* Sample size for training and validation

Stage Parameter
Result

Flow rate (m3 h-1)
Mean Min. Max. n*

Training
R² (%) 81.27 ± 0.70 77.29 84.04 280

1.5
MSE 0.93 ± 0.016 0.88 1.02 280

Validation
R² (%) 78.28 ± 1.4 74.12 83.27 120
MSE 0.97 ± 0.042 0.84 1.27 120

Training
R² (%) 84.59 ± 0.20 83.19 86.01 422

2.0
MSE 0.96 ± 0.031 0.81 1.12 422

Validation
R² (%) 81.21 ± 0.76 77.57 84.21 182
MSE 1.11 ± 0.045 0.93 1.36 182

Training
R² (%) 86.95 ± 0.10 86.70 87.61 556

2.5
MSE 0.58 ± 0.011 0.52 0.62 556

Validation
R² (%) 85.15 ± 0.21 84.31 86.60 239
MSE 0.59 ± 0.013 0.52 0.66 239

Training
R² (%) 81.39 ± 0.62 78.10 83.01 448

3.0
MSE 1.07 ± 0.012 1.02 1.16 448

Validation
R² (%) 77.33 ± 0.91 73.70 81.40 193
MSE 1.36 ± 0.045 1.15 1.63 193

Flow rate (m3 h-1)

Table 4 - Time needed to begin backwashing

Flow rate (m3 h-1)
Cleaning time (s)

Pressure load (mH2O)
MLP (high) MLP (low) Mean

1.5 380 540 256.20 9.0
2.0 200 250 226.75 10.0
2.5 290 310 293.77 11.0
3.0 195 188 211.28 12.0

The results for performance when adjusting the
artifi cial neural network for each fl ow rate can be seen in
Table 5.

After some experimentation, different
architectures were implemented depending on the test
fl ow rate. For 1.5 m3 h-1, the topology chosen was the 5-14-2
confi guration, i.e. an input layer of dimension p = 5 (4 plus the
bias term), a hidden layer with 14 neurons, and an output layer
with 2 neurons (pressure load on the fi lter and fi ltering time at
that load). Architectures of 5-25-2, 5-40-2 and 5-40-2 were
modelled for the flow rates of 2.0, 2.5 and 3.0 m3 h-1.
Factors with diff erent characteristics are diffi  cult to generalise
using a single MLP (MOON et al., 2019), therefore using

MLPs with diff erent structures increases the computational
complexity but aff ords greater accuracy (MOON et al., 2018).

When it came to estimating the pressure load, the
models performed poorly during both the training and
validation stages. The average coeffi  cient of determination
ranged from 28.76% (fl ow rate 2.5 m3 h-1) to 50.28% at a fl ow
rate of 1.5 m3 h-1 for the training stage. During generalisation,
R² varied between 6.35% (3.0 m3 h-1) and 30.85% (1.5 m3 h-1).

On the other hand, the ‘time associated with the
pressure load’ output neuron had the lowest R² during the
training stage at the fl ow rate of 2.0 m3 h-1 (26.39%) and
the highest (66.64%) at 1.5 m3 h-1. During validation, the R²
ranged from 6.67% (2.0 m3 h-1) to 41.43% (1.5 m3 h-1).
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It is important to note that the low accuracy
in modelling the pressure load and time via MLP
may be associated with the experimental conditions
under which the tests were conducted. The volume of
solution used (a mixture of humus and water) with a
high humus concentration, may have influenced the
results, since the 120 mesh (1”) filter had a filtration
surface of 100 cm2, which may not have been enough
to significantly alter the water quality characteristics.

CONCLUSIONS

1. Modelling to obtain optimum backwashing
thresholds as a function of pressure load performed

Table 5 - Performance statistics during the training and validation stages for pressure-load and time adjustment as a function of water
quality characteristicss

* Sample size for training and validation

Flow rate (1.5 m3h-1) Pressure load Time
Training Mean Min. Max. Mean Min. Max. n*
R2 (%) 50.28 ± 0.749 46.01 52.855 66.64 ± 1.64 60.01 73.07 300
MSE 2.47 ± 0.093 2.07 3.04 4640.71 ± 301.03 3859.01 6542.77 300

Validation
R² (%) 30.85 ± 1.82 20.41 43.24 41.43 ± 1.77 29.72 48.26 100
MSE 3.21 ± 0.123 2.57 4.04 7045.29 ± 274.58 6269.15 8910.19 100
Flow rate (2.0 m3 h-1) Pressure load Time
Training Mean Min. Max. Mean Min. Max. n*
R2 (%) 31.45 ± 0.919 30.01 37.79 26.39 ± 1.42 19.74 31.59 345
MSE 5.15 ± 0.187 4.05 5.95 3288.63 ± 136.38 2505.29 3727.12 345

Validation
R² (%) 8.16 ± 1.46 2.49 19.07 6.67 ± 1.28 1.48 15.28 115
MSE 5.08 ± 0.195 4.53 6.25 3343.38 ± 85.45 3002.21 3792.54 115
Flow rate (2.5 m3 h-1) Pressure load Time
Training Mean Min. Max. Mean Min. Max. n*
R2 (%) 28.76 ± 0.966 20.28 30.18 37.69 ± 3.57 16.32 55.27 480
MSE 2.94 ± 0.128 2.50 3.63 4692.94 ± 289.53 3373.34 6064.89 480

Validation
R² (%) 8.32 ± 1.24 2.44 15.34 7.16 ± 1.46 1.07 13.31 160
MSE 3.68 ± 0.147 2.79 4.40 6935.47 ± 123.14 6290.95 7542.722 160
Flow rate (3.0 m3 h-1) Pressure load Time
Training Mean Min. Max. Mean Min. Max. n*
R2 (%) 29.46 ± 0.517 24.90 30.29 50.04 ± 3.22 33.42 64.43 480
MSE 4.48 ± 0.217 3.45 5.76 2397.52 ± 192.88 1565.67 3595.51 480

Validation
R2 (%) 6.35 ± 0.583 3.46 8.94 19.40 ± 2.21 5.74 29.29 160
MSE 5.47 ± 0.191 4.61 6.45 3649.32 ± 120.21 3045.51 4541.72 160

well using multilayer perceptron feedforward
artificial neural networks with a 2-4-1 architecture in
a screen filtration system (120 mesh);

2. The models used to adjust the difference in backwash
pressure based on water quality characteristics (pH,
turbidity, total dissolved solids, and temperature)
performed poorly.
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