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Spatial dependence in experiments of progeny selection for bean
(Phaseolus vulgaris L.) yield1

In field experiments, it is often assumed that errors are statistically independent, but not always this condition is met,
compromising the results. An inappropriate choice of the analytical model can compromise the efficiency of breeding
programs in preventing unpromising genotypes from being selected and maintained in the next selection cycles resulting
in waste of time and resources. The objective of this study was to evaluate the spatial dependence of errors in experiments
evaluating grain yield of bean progenies using analyses in lattice and randomized blocks. And also evaluate the
efficiency of geostatistical models to describe the structure of spatial variability of errors. The data used in this study
derived from experiments arranged in the lattice design and analyzed as lattice or as randomized blocks. The Durbin-
Watson test was used to verify the existence of spatial autocorrelation. The theoretical semivariogram was fitted using
geostatistical models (exponential, spherical and Gaussian) to describe the spatial variability of errors. The likelihood
ratio test was applied to assess the significance of the geostatistical model parameters. Of the eight experiments
evaluated, five had moderate spatial dependence for the randomized blocks analysis and one for both analyses, in lattice
and randomized blocks. The area of the experiments was not a determinant factor of the spatial dependence. The
spherical, exponential and Gaussian geostatistical models with nugget effect were suitable to represent the spatial
structure in the randomized block analysis. The analysis in lattice was efficient to ensure the independence of errors.

Key words: spatial analysis; spatial autocorrelation; semivariogram; Durbin-Watson test; likelihood ratio test;
progenies of Phaseolus vulgaris L.
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Avaliação da dependência espacial em experimentos para seleção de progênies de feijoeiro
(Phaseolus vulgaris L.) para produtividade de grãos

Normalmente, em experimentos de campo, pressupõe-se a independência entre erros, mas nem sempre esta condição
é atendida, comprometendo os resultados obtidos. Uma escolha não apropriada do modelo de análise pode comprome-
ter a eficiência do programa de melhoramento no sentido de os genótipos pouco promissores poderem ser selecionados
e mantidos em próximos ciclos seletivos acarretando desperdício de tempo e recursos. O objetivo deste trabalho foi
avaliar a dependência espacial entre erros, em experimentos de avaliação de produtividade de grãos de progênies de
feijoeiro, considerando análises em látice e em blocos casualizados. E também avaliar a eficiência de modelos geoestatísticos
para caracterização da estrutura de variabilidade espacial entre erros. Os dados utilizados nesse estudo foram obtidos de
experimentos instalados no delineamento látice e analisados como látice ou blocos casualizados. O teste de Durbin-
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INTRODUCTION

Common bean (Phaseolus vulgaris L.) is a traditional
staple food for Brazilians, and is cultivated by small and
large farmers. Common bean is one of the most cultivated
crops in the country, also playing a significant role in labor
demand. This legume is grown in all regions of Minas Ge-
rais with the most varied levels of technology and
production systems (Barbosa and Gonzaga, 2012; Richetti
& Melo, 2014).

Bean cultivars are usually evaluated in different
environments to provide guidance to help in making
decisions about cultivar recommendation. Currently, the
development, evaluation and recommendation of bean
cultivars for the different regions of the state of Minas
Gerais are under the charge of three research institutions:
Empresa Agropecuária de Minas Gerais (EPAMIG), Uni-
versidade Federal de Lavras (UFLA) and Universidade
Federal de Viçosa (UFV) (Silva, 2005).

In bean breeding programs, the initial phase of selection
involves the evaluation of a large number of progeny. The
evaluation of these progenies in experiments with
repetitions is difficult as they require large experimental
areas. Experiments with few repetitions and requiring large
areas depend on more sophisticated forms of planning
and analysis to ensure good experimental precision
(Conagin et al., 1997).

Most of the time, randomized blocks becomes
unfeasible due to the large heterogeneity within the blocks
in trials with large number of progenies. Thus, the
randomized blocks design may not be effective to control
the spatial variability present in trials of genetic evaluation.

Negash et al. (2014) pointed out that several factors
contribute to the spatial variability in experimental areas
used for genetic evaluation of plants, including fertility
changes, pH, soil structure and incidence of diseases and
pests. The authors carried out a very detailed study
addressing the advantages of using mixed models,
considering the data’s spatial structure, in trials of plant

genetic evaluation in different environments. Zanão Junior
et al. (2010) used the spatial analysis to evaluate the
variability of soil chemical properties such as pH, base
saturation, organic matter and micronutrients in no-till
plantings. The authors concluded that spatial dependency
varies according to the chemical attributes evaluated and
the depth of sample collection, as well as identified hori-
zontal variability between depths, since the range for a
same nutrient was different between the sampled layers.

Spatial dependence is the tendency that the observed
value of a variable in a certain position has of resembling
more the neighboring values   than the rest of the
observations of the sample set.

Duarte & Vencovsky (2005) claimed that the traditional
analysis of variance gives the randomization the task of
neutralizing the harmful effects of such correlation, but
often does not do it properly. Neglecting spatial
dependence between plots can prevent the statistical
analysis of being an effective tool for the breeder to select
really superior genotypes. Several studies in plant breeding
have evaluated the efficiency of analyses that consider
spatial dependence of errors in both annual and perennial
plants. In most of these studies, the spatial analysis was
more efficient or similar to traditional analyses that assu-
me independence of errors and neglect the location of the
observations used in the analyses (Zimmerman & Harville,
1991; Yang et al., 2004; Costa et al., 2005; Duarte &
Vencovsky, 2005; Resende et al., 2006; Candido et al., 2009;
Yang & Juskiw, 2011; Maia et al., 2013; Negash et al.,
2014).

The lattice design is commonly used in bean breeding
programs aiming to increase the experimental precision.
There are several types of lattice, but one of the most used
is the square lattice, which was introduced by Yates (1936).
It is a design that subdivides the repetition into smaller
blocks, allowing a number of  V = K2 cultivars in blocks of
k plots, following from this that the number of treatments
must be a perfect square number. In square lattices, the

Watson foi usado para verificar a presença de autocorrelação espacial. O semivariograma teórico foi ajustado por meio
dos modelos geoestatísticos (exponencial, esférico e gaussiano) para descrever a variabilidade espacial dos erros.
Aplicou-se o teste da razão de verossimilhança para verificar a significância dos parâmetros dos modelos geoestatísticos.
Dos oito experimentos avaliados, cinco apresentaram dependência espacial moderada para análise em blocos e um para
análise em látice e em blocos. O tamanho dos experimentos não foi fator determinante da dependência espacial. Os
modelos geoestatísticos esférico, exponencial e gaussiano com efeito pepita foram adequados para representar a estru-
tura espacial na análise em blocos. A análise em látice foi eficiente para garantir a independência entre erros.

Palavras-chave: análise espacial; autocorrelação espacial; semivariograma; teste de Durbin-Watson; teste da razão
de verossimilhança; progênies de Phaseolus vulgaris L.
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treatments of a block in a repetition spread over all the
blocks of any other repetitions (Pimentel Gomes, 1990). To
meet the requirement of being square, the researcher may
be led to reduce the number of progeny to be tested, which
may lead to discard a promising progeny or add controls
with no connection with the experiment, resulting in the
need of a larger experimental area and increased costs.

The objective of this study was to evaluate the spatial
dependence of errors in yield evaluation experiments of
common bean progenies, using analyses in lattice and
randomized blocks. It is also aimed at evaluating the
efficiency of geostatistical models to describe the structure
of spatial variability of errors.

MATERIAL  AND METHODS

Data for this study were obtained from the evaluation
of bean progenies of the breeding program of the Univer-
sidade Federal de Viçosa, in the winter crop seasons of
2006/2007 and 2007/2008 at the experimental station of the
Department of Plant Science, municipality of Coimbra, MG
(690 m altitude, 20º45’ S and 42º51’ W).

Data on yield (g/plot) of eight experiments in the square
lattice design were analyzed (Table 1).

Data on spacing between rows and plot size were used
to obtain the coordinates relative to the center of each plot
within the experimental area. Plot locations are important
information required for the spatial statistical analysis.

The position of each plot in the experimental grid was
determined by the coordinates L and C, relative to the
center of the plots: L coordinate in the width direction and
C coordinate in the length direction. Thus, the distance
between the plots i and j was obtained by:

h = [(L
j 
- L

i
)2 + (C

j
 – C

i
)2]0,5

L
j
 is the ordinate related to the width in the plot j;

L
i
 is the ordinate related to the width in the plot i;

C
j
 is the abscissa related to the length in the plot j; and

C
i
 is the abscissa related to the length in the plot i.

Data on bean yield were statistically analyzed assuming
independent errors (usual analysis), and considering the
spatial dependence of errors (spatial analysis).

The analysis of data with independent errors (usual
analysis) used the following models:

Model 1 (lattice analysis):
  
y

ijk
 = µ + r

k
 + b

j(k)
 + p

i
 + e

ijk
,

where:

y
ijk

 is the value observed for yield of progeny i, in block j
within repetition k;

µ is the constant associated with all observations;

r
k is the fixed effect of repetition k;

b
j(k) 

is the fixed effect of block j within repetition k;

p
i
 is the fixed effect of progeny i;

e
ijk

 are the random errors associated with the observations,
assuming independence of errors.

Model 2 (analysis in randomized complete blocks):

y
ik
 = µ + r

k
 + p

i
 + e

ik 
, where:

y
ik
 is the value observed for yield of progeny i, within

repetition k.
While the analysis with dependent errors (spatial

analysis) used the following model:

Model 3 (dependent errors and analysis in randomized
complete blocks): y

ijk
 = µ + r

k
 + p

i
 + e

ijk
, where:

e
ijk

  are the random errors associated with observations,
assuming dependence of errors. The other terms of the
models 2 and 3 were defined as in model 1.

The experiments were arranged in the lattice design,
but there were two types of analyses: one in lattice and
another in blocks. The errors estimated in both lattice and
randomized blocks analyses were tested for the existence
of spatial dependence and fitting of the geostatistical
models.

Initially the spatial dependence was evaluated with the
Durbin-Watson test (1950), which tests the hypothesis of

zero autocorrelation (H
0
: ρ = 0).

Table 1: Description of experiments to evaluate bean yield: type of lattice, number of repetitions (NR), number of progeny (NP),
total number of plots (NP), spacing (S), number of rows per plot (RP), row length (RL) in meters

                 Plot size

RP RL

7 15 x 15 3 225 675 0,50 2 2
3 20 x 20 2 400 800 0,45 1 2
8 10 x 10 3 100 300 0,45 2 1,5
4 10 x 10 3 100 300 0,45 2 2
5 7 x 7 3 49 147 0,45 2 2
6 6 x 6 3 36 108 0,45 3 2
2 5 x 5 3 25 75 0,45 2 2
1 7 x 7 3 49 147 0,45 2 2

Exp Type  lattice NR NP NP S
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The statistic (d) of the DW test is defined by:

,

Where,
s = 1, 2, 3, …, n, the order of the plot location in the

experiment, associated with the residue ê
s
, and this order

had obeyed successive numbering of the plots, so ê
s
 and

ê
s-1

 indicate errors from adjacent plots.
The relationship between d and ρ ιs approximately

given by d = 2(1 - ρ) .Thus, if there is spatial autocorrelation
(ρ = 0), the expected value for the statistic d is 2: values
for d significantly smaller than 2 indicate positive
autocorrelation; and values   significantly greater than 2
indicate negative autocorrelation (Reis & Miranda Filho,
2003).

The spatial dependence was also graphically analyzed
through empirical semivariograms that show the behavior
of semivariances between errors due to the distance (h),
between plots. The semivariance was estimated by the
following equation:

,

Where,

N(h) is the number of error pairs separated by the distance
h; Z(i) and Z(i + h) are estimates of errors relative to the
plots i and i + h separated by the distance h.

From the estimated semivariances, the theoretical
semivariogram were fitted using the geostatistical models,
with and without nugget effect, to describe the spatial
variability of errors in the analyses in lattice and in blocks,
estimating the parameters contribution (C), range (a), and
nugget effect C

0
. When S(0)  0, a new term appears in the

semivariogram, the nugget effect C
0
 and in this case, the

threshold is given by C+C
0, 

where C is the contribution
which is the difference between the threshold and the
nugget effect. The stabilization of the observations at a
certain distance is called range (a) and all values   above
the range have random distribution, therefore, independent
from each other (Guimaraes, 2004).

The geostatistical models fitted, with nugget effect,
are described below:

Exponential model: S(h) = C
0
 + C[1 – e(-3h/a)], for  where

d is the maximum distance between plots in which the
semivariogram is defined;

Spherical model: S(h) = C
0
 + C[1.5(h/a) - 0,5(h/a)3], for 0

< h < a;
Gaussian model: S(h) = C

0
 + C [1 - e (3h2) / a2], for 0 < h <

d, for.
The degree of spatial dependence (GD) was estimated

as a function of the parameters estimated for the theoretical
semivariogram, nugget effect (C

0
) and threshold (C + C

0
)

according to Guimaraes (2004):

The following spatial dependence classes were
adopted:

i) Strong, if  0,75 < GD < 1;

ii) Moderate, if 0,25 < GD < 0,75 and  e

iii) Weak, if GD > 0,25.
The following spatial dependence classes were adopted:
i) Strong, if 0.75 < GD < 1;
 ii) Moderate, if 0.25 < GD < 0,75 and
iii) Weak, if GD > 0.25.

Two structures were considered for the matrix of
residual variances and covariances (R):

i) R = IC (for models 1 and 2, independent errors)

ii) R = IC
0
 + FC (for model 3, dependent errors), where I is the

identity matrix, C is the residual variance in the model with
independent errors and the contribution parameter in the
model with dependent errors, C

0
 is the nugget effect and F is

the matrix formed by the elements of the distance function
f(h). This function corresponds to the geostatistical models
used to fit the theoretical semivariogram.

The likelihood ratio test (LRT) was used to compare
the models with independent errors (models 1 and 2) with
the model for spatially dependent errors (model 3),
respectively, the reduced model (a = 0) and the complete
model (a > 0). This comparison is to test the significance

for the parameter range (a):

Under normal data, the statistic of LRT test has
approximately a chi-square distribution with v degrees of
freedom given by:

X2
v
 = [-2LogL

1
] - [-2LogL

D
],

Where,

LogL is the maximum point for the logarithm of the residual
likelihood function for the reduced model with independent
errors (I) and complete model with dependent errors (D),
the degree of freedom v is obtained from the difference
between the number of parameters of the complete model
and reduced model (Duarte, 2000).

The LRT test was also used to compare the models
with and without nugget effect, and a test for significance
of the parameter nugget effect (C

0
) as follows:

The quality of fit of the models was evaluated by the
Akaike Information Criterion (AIC), which penalizes models
with large number of parameters (p). It is considered the
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most parsimonious model, one that had the lowest absolute
value for this criterion. The AIC is given by:

AIC = -2LogL + 2p,

Where,

p is the number of estimated parameters and logl the
logarithm of the maximum of the likelihood function
(Akaike, 1973).

SAS procedures (SAS, 2003) were used for the Durbin-
Watson test (proc autoreg), to calculate semivariances and
generate empirical semivariograms (proc variogram) to fit
the geostatistical models and the analyses of the models

with independent and dependent errors (proc mixed).

RESULTS AND DISCUSSION

In the analysis of randomized blocks, six of the eight
experiments evaluated showed spatial dependence of
errors: one with weak dependence and five with moderate
dependence, according to the intervals of the degree of
dependence estimated (Table 2). Thus, in experiments with
spatial dependence, the selection of bean progenies will
be more efficient with methods that take into account the
spatial variability of errors.

Duarte & Vencovsky (2005) evaluated the classification
of soybean genotypes, and found a coincidence of only
46% between the two statistical analysis models, spatial
and non-spatial. Storck et al. (2011) also found similar
results for 26 competition trials of bean cultivars. In these
trials, the selective accuracy increased on average from
0.82 to 0.89 by using the Papadakis method, which is one
of the spatial analysis methods that uses the errors of
neighboring plots as a covariate to perform a more effective
control of the spatial variability.

However, experiments with no or weak spatial
dependence do not require spatial analysis methods.

The spatial analysis of Papadakis and moving means
has not improved the experimental precision of sugarcane
genotype evaluation (Candido et al., 2009). In selection
trials of clones of orange cv. Pera, autoregressive models
to describe the spatial dependence of errors provided small
gains in quality of fit in comparison with the randomized
blocks analysis (Maia et al., 2013). The authors explained
the results were probably due to the absence of spatial
dependence in the evaluated trials.

Yang et al. (2004) analyzed data from 157 trials of pear
varieties, and found that the efficiency of the spatial
analysis was higher in trials where the blocks were large
and with great number of varieties evaluated, probably
because of the greater heterogeneity within blocks. Costa
et al. (2005) also argued that it is expected that in experiments
with greater heterogeneity intrablock, the use of spatial
analysis becomes more efficient.

However, in this study there was no relation between
the size of the experiments and the spatial dependence of
errors. For example, experiments 1, 2, 5 and 6 had similar
sizes, ranging from 25 to 49 progenies, but nonetheless,
the first two experiments had no spatial dependence and
the others had moderate spatial dependence (Table 2).
The experiment 7, though with the largest size, had
estimated spatial dependence weak to moderate, with
degree of dependence of 0.25, which was lower than the
degree of dependence of the much smaller experiments 5
and 6 (Table 2).

The results of the spatial dependence of the experiment
7 are shown in Tables 3, 4 and 5, whereas the results of
other experiments are described in the text.

Experiment 7 was installed in a 15x15 lattice to evaluate
225 progenies, and occupied an area of   approximately
1,800 m2. In the lattice analysis of this experiment, the
statistic d of the DW test for the spatial autocorrelation
between errors, from the 1st to the 3rd order, ranged from
1.9134 to 2.0407, with p-values of 0.2985, 0.1385 and 0.3776,
respectively (Table 3), indicating zero autocorrelation or
independence between errors. However, in the randomized
blocks, the statistic d ranged from 1.6144 to 1.6762,
indicating significant spatial autocorrelation (p <0.0001)
of 1st, 2nd and 3rd order estimated 0.1619, 0.1928 and 0.1769,
respectively. This result shows the spatial dependence of
the estimated errors only in the randomized blocks analysis.

Comparing the fitted models, the LRT test (Table 4)
showed that in the randomized blocks analysis, models
with dependent errors, with and without nugget effect (C

0
),

differed significantly (p 0.0004) from the model with
independent errors, except for the Gaussian model without
nugget effect. The same test (LRT), comparing models with
and without nugget effect, showed that models with nugget
effect were the most suitable, since this parameter was
significant (p <0.0001).

The estimates for the parameter range, in the
randomized blocks analysis ranged from 33.3 to 43 m (Table
4). According to the AIC criterion and the LRT test, the
exponential model with nugget effect was the most
appropriate to consider the spatial dependence of errors,
with the following estimates for the parameters contribution
(C), range (a) and nugget effect (C

0
), 1,646.86; 33.3 and

4,858.93, respectively (Table 4). These results show that
plots separated by distances shorter than 33.3 m present
dependent errors, and also that the error variance is
dependent on the distance between plots, so that their
location contributes to an increase in error variance of up
to 1,646.86. Costa et al. (2005) found no significant
differences between the spherical, exponential and
Gaussian models for the estimates of variance components.
However, Duarte & Vencovsky (2005), evaluating the
efficiency of spatial statistical analysis in the selection of
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soybean genotypes, found similar results to those of
experiment 7, significant spatial autocorrelation by the DW
test, and best fit for the exponential model with a range of
20.4 m. In the study of Negash et al. (2014), the exponential
model also showed the best quality fit for most of the
evaluated trials.

The lattice analysis of experiment 7 found range
estimates of zero or close to zero and non-significant LRT
test (p> 0.01), indicating that the models with dependent
errors were not different from the model with independent
errors (Table 5), which characterizes spatial independence
of errors in the lattice analysis.

Similarly, Costa et al. (2005) also concluded that the
spatial analysis did not improve the accuracy of
experiments of evaluation of bean and corn progenies, in
lattice analysis. The authors did not test the spatial
dependence of errors, but probably the errors estimated in
the lattice analysis did not show spatial dependence, which
explains the results.

Negash et al. (2014) pointed out that the advantages
and validity of using spatial analysis methods depend on
the existence of spatial dependence. In some trials, they
found that the traditional analysis was more efficient than
spatial analysis.

In experiment 1, in a 7x7 lattice, the statistic d DW test
for spatial autocorrelation between errors, from 1st to 3rd

order, showed values very close   to 2 for the lattice analysis
with p-values   of 0.0728, 0.2236 and 0.2590, indicating
non-significant autocorrelation (p> 0.01). In the randomized

blocks analysis, the estimates for statistic d ranged from
1.6727 to 1.8608 with p-values   of 0.1987, 0.0432 and 0.0334,
also indicating non-significant spatial autocorrelation (p>
0.01). These results show that for Experiment 1, the
estimated errors in both the lattice and randomized blocks
analyses are independent, i.e., no spatial dependence. The
LRT test also showed non-significant result, which
characterizes spatial independence of errors (p> 0.01).

Experiment 2, in a 5x5 lattice, showed structure of spatial
dependence similar to those of experiment 1. The DW test
found non-significant autocorrelation for the estimated
errors in the lattice and randomized blocks analyses. In the
randomized blocks analysis, the LRT test for exponential,
spherical and Gaussian models with nugget effect showed
p-values   of 0.1572, 0.1353 and 0.1422, respectively, and
for the models without nugget effect, the p-values   were
0.0483, 0.0614 and 0.0613, respectively. Thus, the models
with dependent errors were not significantly different from
the model with independent errors.

In experiment 3, in a 20x20 lattice, the estimated errors
in the lattice analysis were randomly distributed in the
experimental area, according to the DW test for spatial
autocorrelation. The spatial autocorrelations were not
significant with p-values   of 0.2164, 0.1909 and 0.4502 for
the 1st, 2nd and 3rd orders, respectively. In the randomized
blocks analysis, the spatial autocorrelations were also
non-significant at 1% probability with p-values   of 0.0141,
0.1418 and 0.0609, indicating independence of errors. The
LRT test, in the block analysis, found that the

Table 2: Class and spatial dependence degree (GD) estimated in the experiments, type of lattice, and size of experiments of bean yield
evaluation, in randomized blocks analysis

Class GD Experiment Type of lattice Size of experiment (m2)

Moderate 0.25 7 15x15 23.50 x 79.40 = 1,865.9
Weak 0.09 3 20x20 21.38 x 45.80 = 979.20
Moderate 0.43 8 10x10 25.65 x 30.65 = 786.17
Moderate 0.35 4 10x10 21.15 x34. 60 = 731.79
Moderate 0.34 5 7x7 19.35 x 20.60 = 398.61
Moderate 0.52 6 6x6 20.93 x 17.80 = 372.55
Null 0 2 5x5 12.83 x 28.10 = 360.52
Null 0 1 7x7 20.25 x 16.80 = 340.20

Table 3: Result of Durbin-Watson test for significance of spatial autocorrelation from 1st to 3rd order, between errors estimated in the
lattice and randomized blocks analyses for bean yield of experiment 7

Typeofanalysis Order d p-valor

Lattice 1 2.0407 -0.0203 0.2985
2 1.9134 0.0043 0.1385
3 1.9701 0.0149 0.3776

Blocks 1 1.6762 0.1619 <0.0001
2 1.6144 0.1928 <0.0001
3 1.6462 0.1769 <0.0001

  = spatial autocorrelation estimated; d = statistic of the Durbin-Watson test.
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exponential, spherical and Gaussian models with nugget
effect, were significantly different from the reduced model
with independent errors (p <0.0001). Therefore, the range
was significantly different from zero, showing that the
errors had spatial dependence. The nugget effect was
also significant (p <0.0001). The AIC test and previous
results showed that the most suitable geostatistical model
to analyze experiment 3, in randomized blocks analysis,
was the Gaussian model with nugget effect with the
following estimated parameters (C = 125.98, a = 5.9 and C

0

=
 
1,216.61). Thus, all errors associated with plots with

distance shorter than 5.9 m are correlated. Estimates of
the Gaussian model parameters were used to calculate
the spatial dependence of errors (GD), indicating weak
spatial dependence (GD = 0.09). Contradictory results of

DW and LRT tests appeared only in experiment 3. The
DW test showed that the errors were not spatially
correlated, while the LRT test showed that the range and
the nugget effect were significant, although the spatial
dependence was weak.

In the experiment 4, in a 10x10 lattice, the statistic d of
the DW test for spatial autocorrelation between errors in
the lattice analysis, were close to 2 with p-values   of
0.4385, 0.3503 and 0.0757, indicating that the errors are
spatially independent. However, in the randomized blocks
analysis, the autocorrelation was significant (p <0.0002),
indicating that errors are correlated up to the 3rd order,
with estimated    autocorrelation values of 0.3020, 0.2847
and 0.2070 for 1st, 2nd and 3rd orders, respectively. Thus, it
is characterized independence of errors in the lattice

Table 4: Estimates of the parameters contribution (C), range (a) and nugget effect (C
0
), maximum value for the logarithm of the

likelihood function (-2 Log L), Akaike Information Criterion (AIC), statistic of the likelihood ratio test LRT of for the comparison
between geostatistical models, with and without nugget effect, compared to the model with independent errors, in the randomized
blocks analysis of the experiment 7

C a C
0

-2 Log L AIC LRT p-value

Models with nugget effect

Exp(1) 1,646.86 33.3 4,858.93 7,725.8 7,731.8 75.9 <0.0001
(56.5) (<0.0001)

Sph 2,131.00 35 4,989.55 7,727.2 7,733.2 74.5 <0.0001
(62) (<0.0001)

Gau 2,156.11 43 5,441.78 7,739.9 7,745.9 61.8 <0.0001
(61.8) (<0.0001)

Models without nugget effect

Exp 6,213.54 1.8 - 7,782.3 7,786.3 19.4 <0.0001
Sph 6,146.14 1.4 - 7,789.2 7,793.2 12.5 0.0004
Gau 6,171.81 0 - 7,801.7 7,805.7 0 1,0

Model with independent errors

6,171.81 - - 7,801.7 7.803.7 - -
1Geostatistical models: Exp = Exponential, Sph= Spherical, Gau = Gaussian.

Table 5: Estimates of the parameters contribution (C), range (a) and nugget effect (C
0
), maximum value for the logarithm of the

likelihood function (-2 Log L), Akaike Information Criterion (AIC), statistic the likelihood ratio test (LRT) for the comparison
between geostatistical models, with and without nugget effect, compared to the model with independent errors, in the lattice analysis
of the experiment 7

C r     C
0

-2 Log L    AIC LRT p-value

Modelswith nugget effect

Exp(1) 141.43 6.1 4,481.79 7,606.3 7,712.3 0.5 0.7788
Sph 173.36 5.9 4,449.64 7,605.7 7,611.7 1.1 0.5769
Gau 134.82 5.9 4,489.01 7,605.6 7,611.6 1.2 0.5488

Models without nugget effect

Exp 4,621.47 0 - 7,606.8 7,610.8 0 1,0
Sph 4,621.47 0.1 - 7,606.8 7,610.8 0 1,0
Gau 4,621.47 0 - 7,606.8 7,610.8 0 1,0

Model with independent erros

4,621.47 - - 7,606.8 7,610.8 - -
1Geostatistical models: Exp= Exponential, Sph= Spherical, Gau = Gaussian.
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analysis and spatial dependence in the randomized blocks
analysis for experiment 4. The LRT test showed that in
the randomized blocks analysis the models with
dependent errors (with or without nugget effect) differed
from the reduced model with independent errors (p
<0.0001), except for the Gaussian model without nugget
effect. Estimates of the range for the randomized blocks
analysis varied between 1.5 and 18.1 m. According to the
AIC criterion and the results of the LRT test, the Gaussian
model with nugget effect was the most appropriate, the
following estimates for the parameters (C = 2,657.42, a =
9.6 and C0 = 4,899.60), which reflects moderate spatial
dependence (GD = 0.35). In the analysis in lattice all
geostatistical models, with and without nugget effect did
not differ from the reduced model with independent errors,
indicating that the analysis in lattice ensured the
independence of the errors.

In experiment 5, in a 7x7 lattice, the results of randomized
blocks analysis were similar to experiment 4, with moderate
spatial dependence (GD = 0.34), but the exponential model
did not show the best fit. Also, according to the AIC criterion,
the Gaussian model with nugget effect was the most suitable
for the randomized blocks analysis with the estimated
parameters (C = 1,415.70, a = 7.2 and C

0
 = 2,629.69). For the

lattice analysis, all models, with and without nugget effect,
were not different from the model with independent errors,
indicating that the lattice analysis ensured the
independence of errors.

In experiment 6, in a 6x6 lattice, there was spatial
autocorrelation of 1st order (p <0.001) in the randomized
blocks analysis, with estimated value of 0.367; and 2nd order,
with estimated value of 0.201. The LRT test showed that
the range was significant (p <0.0004) for all models, with
and without nugget effect, and the nugget effect was
significant for the spherical and Gaussian models with p-
values of   0.003 and 0.004, respectively, and non-significant
for the exponential model with p-value of 0.2059. The most
suitable models for the randomized blocks analysis were:
exponential without nugget effect, spherical with nugget
effect, and Gaussian with nugget effect. All models showed
very similar values, but according to the AIC criterion, the
spherical model was the most suitable for the randomized
blocks analysis with the estimated parameters (C = 5,191.
76, a = 6.8 and C

0
 = 4,738.01), with moderate spatial

dependence (GD = 0.52). For the lattice analysis, all models,
with and without nugget effect, were non-significant (p>
0.05), indicating independence of errors.

In experiment 8, in a 10x10 lattice, considering the
randomized blocks analysis, the DW test indicated
significant 1st order spatial autocorrelation (p <0.001), with
estimated value of 0.324. The LRT test showed that in the
randomized blocks analysis, the models with dependent
errors, with or without nugget effect, differed from the

model with independent errors (p <0.0001). The same test,
comparing the models with and without nugget effect,
showed that the models Gaussian with nugget effect, and
exponential and spherical without nugget effect were the
most suitable. According to the AIC criterion, the Gaussian
model was the most suitable, with the estimated parameters
(C = 2,494.34, a = 3 m and C

0
 = 3,213.23), and moderate

spatial dependence (GD = 0.43).

The lattice analysis for experiment 8 showed spatial
autocorrelation of 1st order of 0.170, and significant by the
DW test (p <0.01). The LRT test showed that the
geostatistical models differed from the model with
independent errors (p <0.008), indicating significant range,
with non-significant nugget effect. According to the AIC
criterion, the exponential model without nugget effect was
the most suitable with the estimated parameters C = 4347.65
and a = 1.7, and moderate spatial dependence (GD = 0.43).
Thus, spatial dependence was characterized in experiment
8, for both analyses, block and lattice.

Therefore, the evaluation of the spatial dependence of
errors in the eight experiments of genetic evaluation of
bean yield found that the use of spatial analysis is required
in the experiments 4, 5, 6, 7 and 8. In the other experiments,
since the spatial dependence was zero or weak, the spatial
analysis does not contribute to increase the experimental
accuracy and hence does not increase the efficiency of
progeny selection.

Thus, for the analysis of data from experiments 4, 5, 6,
7 and 8, or future experiments installed in the same area we
can recommend two alternatives. Lattice analysis for
independent errors (model 1) or randomized blocks analysis
for dependent errors (model 3), which considers the spatial
dependence of errors using the exponential, spherical or
Gaussian models to describe the spatial variability of errors.
The advantage of the spatial analysis is that in situations
with restrictions on the establishment of experiments in
lattice, it would be possible to install the experiment in
randomized blocks and perform the analysis using
geostatistical models to consider the spatial dependence
of the errors.

CONCLUSIONS

Weak to moderate spatial dependence of errors was
identified in lattice experiments for yield evaluation of bean
progenies analyzed in randomized blocks. However, the
lattice analysis was effective to ensure the independence
of errors in most experiments.

The geostatistical models spherical, exponential and
Gaussian, with nugget effect, were efficient to characterize
the spatial structure of errors estimated in the randomized
blocks analysis, which is an alternative analysis when there
are restrictions to the installation of lattice experiments.
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