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ABSTRACT

The objective of this study was to evaluate the respondeapbainus sativus to the application of the herbicide
tepraloxydim by analyzing photosynthetic and biometric characteristics of the plants. The experiment was conducted in
a greenhouse and treatments were instituted when the plants had five expanded leaves. The herbicide tepraloxydim was
applied at doses of 0, 75, 100, and 125 g of active ingredient per hectare (§.alhdaerbicide dose of 125 g a.i: ha
led to a small decrease in the photosynthetic rate, waterficsenefy, effective quantum yield of PSII, rate of electron
transport, and the concentration of chloroplastidic pigments in the leaResatifus. On the other hand, there was a
small increase in C{@oncentration in the substomatal chamibee number of branches, leaves, flowers, plant height
and dry mass of the stem and flowers were reduced more prominently in response to herbicide doses than the
photosynthetic characteristics. Therefore, treatment with tepraloxydim inhibits the growth and formation of the leaves,
branches and flowers Bf sativus at the stage of development analyzed. Howelgeses of 75, and 100 g a.i:lim@ither
compromise the photosynthetic apparatus nor the stability of cell membranes.
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INTRODUCTION from ather taditional crops, as for example, the soybean

The forage turnipRaphanus sativusL.), which belongs (Chammou.ret ., .2013)' In addition, th.e by-prpduct gf
forage turnip obtained from the extraction of oil from its

to the Brassicaceae family is usually used in crop rotation i ,
since it has high potential in recycling nutrients, mainl eeds may be used in animal feed (de Setata 2010).

phosphorus and nitrogen (Crusogbhl., 2005; Heinzet hus, the fore mentioned characteristics demonstrate that

al., 2011). This species also tolerates adverse environmeriff cultivation of forage turnip can be promising and

conditions, such as low precipitation and higtpuarantee profitability to the farmer

temperatures (Abdet al., 2014; Chemt al., 2014). In general, the maximum productivity potential of crops
Considering that about 36% of the dry matter of thdepends on weed management because competition with

forage turnip seed is composed of lipids (de Setiah, the weed community limits access to watertrients, and

2010), this species has is a potential source of raw matetight, causing productivity losses (Rigai al., 2008).

for the production of biodiesel. The cost of producind\lthough it has great potential in the agricultural scenario,

biodiesel from the forage turnip is lower than the costhe cropeof the forage turnip is still little explored and to
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date there are no registered herbicides for forage turropthe crop of interest for proper management of grasses
cultivated, only for the management of the genotype thhefore specific herbicides can be recommended and thus
is weed. avoid losses for farmersidéal et al., 2000).

As a dicotyledonous, an alternative for the Considering that the forage turnip is a member of the
management of the weed community in the production &8rassicaceae, as are the dicotyledons crambe and colza,
forage turnip may be the use of graminicides of therhich have been shown to be sensitiveAfoCase
aryloxyphenoxypropionate (APP) and cyclohexanedionahibitors (Belkebir & Benhassaine-Kesri, 2013; Concengo
(CHD) classes (Belkebir & Benhassaine-Kesa ., 2013), etal., 2014), we evaluated the hypothesis that the herbicide
which both inhibitAcetyl-CoenzymeA Carboxylase tepraloxydim, representative of the chemical group of CHD,
(ACCase) (Kaundun, 2014). Howeyaeveral species inthe doses of 75, 100, and 125 g a:trhay cause damage
among the dicotyledons are susceptibleAtoCase the photosynthetic and biometric characteristicsRof
inhibitors, such as colza and crambe (Belkebir &ativus plants. Therefore, the objective of this study was
Benhassaine-Kesri, 2013; Concertal., 2014). These to evaluate the responses Rf sativus plants to the
species, as well as the forage turnip, belong to tlapplication of the herbicide tepraloxydim by analyzing
Brassicaceae familfgudies with soybean plants (Belkebir photosynthetic characteristics, membrane permeabhitity
etal., 2006), peanut (Fayetal., 2014), melon and cucumber biometric measurements.

(Vidal et al., 2000), and some species of the family

Geraniaceae also demonstrated the sensitivities of thageATERIAL AND METHODS

species to this class of herbicides (Christopher & Holtum,

2000). Plant Material and Experimental Conditions

Plant susceptibility tACCase inhibitor herbicidescan  The experiment was conducted under a randomized
be observed by physiological changes, such as decreablmtk design in a greenhouse. SeedRaphanus sativus
photosynthetic rate and water use efficiency ang@ultivar CATIAL 1000) were sown in a mixture of two parts
disturbances in electron transport at the photochemiaafidystroferric red latosol with one part fine sand, with the
stage of photosynthesis and membrane permeabilipyrpose of having one plant per pot. Each pot containing
(Dayan & Watson, 201; Dayan & Zaccaro, 2012; 4 dn? of substrate, 2 g of dolomitic limestone were added,
Concengoet al., 2014).ACCase is responsible for the with a relative neutralization power of 100%. Subsequently
formation of malonyl-CoA, which is required in thefertilization was carried out with 2.8 g of urea, 1.7 g of
synthesis of fatty acids and secondary metabolites, sutiono-ammonium phosphate, 2 g of potassium chloride,
as suberins and flavonoids (Kaundun, 20T#)o forms 0.9 g of magnesium sulfate, 0.02 g of copper sulfate, 0.14 g
of ACCase are generally found in plants: one heteromerd¢ zinc sulfate, and 0.03 g of boric acid. The liming and
form in plastids and the other homomeric form in thadduction were performed based on the results of the
cytoplasm (Sasaki & Nagano, 2004). chemical and physical analyses of the substrate, which

In this way enzyme inhibitor herbicides can be usegresented the following composition: pH®- 5.8; P =
safely with dicotyledons because these herbicides inhilfit9 mg dn¥; K =9 mg dn¥; Ca = 0.59 cmatim?, Mg = 0.17
only the homomeric form #fCCaseThe opposite occurs cmoldm® Al = 0.05 cmoldm?; H +Al = 1.8 cmoldm?; S
with the species of the Poaceae family since they haw€).8 mg dn¥; B=0.1 mg dnj; Cu=0.5mgdr Fe =118
only the homomeric form &CCase, both in the cytoplasm mg dm?, Mn=16.7 mg dni; Zn = 0.2 mg dm; Na=1.8 mg
and in the plastids. Since about 80% oftfixCase activity dm?, base saturation = 30%; cation exchange capacity =
in the leaves occurs in plastids, inhibition of this enzym2.6 cmoldm-3; organic matter = 6.2%; clay = 38.5%; silt =
leads to the death of species of the family Poaceae (Délye5%; and sand = 54%.

2005). The herbicide tepraloxydim was applied at 26 days after

The herbicide tepraloxydim (adCCase inhibitor), sowingR. sativus(4 to 5 leaves). The treatments consisted of
belongs to the chemical group of CHD - (EZ)—(RS) -2—{1the following doses: 0 (only water), 75, 100, and 125 grams of
[(2E)-3-chloroallyloxymino] propil}-3-hydroxy-5- active ingredient per hectare (g a.i.:*harhese doses
perhydropyran-4-ylcyelohex-2-em-1-one, has a mechanistarrespond to 0, 75, 100, and 125%, respectively; of the
of systemic action. This herbicide is recommended in posecommended dose of the product for the bean, cotton, and
emergence for some dicotyledons, such as soybeasgybean crops, as well & sativus, all of which are
cotton, and common beans (maximum dose of 0.5 liter pdicotyledons. Mineral oil was used in the spray mixture at the
hectare) (Rodrigues &lmeida, 201). Howevey the concentration of 0.5%. For application, a sprayer was used
occurrence of sensitivity in dicotyledon specie&@Case with constant pressure, maintained by compressgd/@®
inhibitors (Belkebir & Benhassaine-Kesri, 2013; Concenca bar containing four spray nozzles and nozzle series. The
etal., 2014) reinforces the need for studies on the selectivigplume of the spray mixture used was 200 £.ha
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The gas exchanges were measured at 3, 7 and 11 dgyysctrophotometer (model 60S, Thermo Scientific,
after application of the herbicide (DAAH). The chlorophylIMadison, USA), and the concentrations were calculated
a fluorescence image and the concentration dfccording toNellburn (1994) and expressed by the leaf
chloroplastidic pigments were analyzed at 11 DAAHarea.
whereas the biometric characteristics of the plants were

determined at 12 DAAH. Rate of electrolyte |leakage
Leaf discs (0.6 crf) were immersed in ultrapure water
Gas exchange and the initial conductivity was measured after 24 h. The

Gas exchange froR. sativus plants was measured in samples were then kept at 100 °C for 1 h, and the final
fully expanded leaves to determine the net photosynthefienductivity was evaluated. The electrical conductivity
rate @, pmol CQ m?s?), stomatal conductancg(mol of the leaf sample was measured using a conductivity me-
H,O m? s?), transpiration rate§, mmol HO m?s?) and ter (CD-850 model, Instrutherm, Brazil), and the rate of
ratio between internalQ) and external ¢,) CO, electrolyte leakage (%) was calculated according to Silva
concentrations/C,). The water use efficiency (WUE) etal., (2014).
was calculated as the ratio betwegrand E. The
parameters were measured using an infrared gas analyzer
(IRGA, model LI6400xt, Li-CorNebraska, EUA)The The plants were measured to determine their height (H,
measurements of, g, E, andC/C, were performed m), number of leaves (NL), number of nodes (NN), number
between 8:00 and 11:00 am under consta®fbPranches(NB), number of flowers (NF), and stem diameter

photosynthetically active radiatiolPAR, 1000 pmol (SD, mm). Leaves, stems and flowers were separated, packed

Biometric analyses

photons ¥ s%) and temperature (25 °C). in paper bags and dried in a forced-air-circulation oven (65
°C) for 48 h to obtain leaf dry matter (LDM, g), stem dry
Chlorophyll a fluorescence matter (SDM, g), and flowers dry matter (FDM, g).

The data and images of chlorophyll a fluorescence Statistical analyses
were measured and obtained in the same leaf of the ) ] )
photosynthesis using a modulated imagingvP The obtained data_were submitted tp _analys_ls of
fluorometer (Hein2Walz, Efeltrich, Germany). For the varlanc_e and to the adjustment of the |OgI§tIC nonlinear
measurements, leaves were initially dark-acclimated f6#9"€Ssion model, represented by the following formula:
40 min so that the reaction centers were fully openég@/ (1+ (x/b) ¢), where a = value of the analyzed variable
to obtain the minimalR,) and maximal chlorophyll in the lowest dose of the herbicide, b = dose of the herbicide

fluorescence K. ). From these values, the potentialreSponSible for the 50% decrease of the analyzed variable
M7 '

quantum yield of PSIIF,/F, = (F, — F)IF,] was (I, and c = slope of th_e curve arou_nd t,g(ed_e Souzaat_ _
calculated according to Gengt al. (1989).After al., 2000). For the variables that did not fit the logistic
sample illumination, saturation pulses were applied {8°d€l @ linear model was uségtion Sat 3 software was
determine the light-acclimated variables: the quantuHised for the stgtlstlcal analysis of the data, and the graphics
yield of photochemical energy conversion in PS}( were made using the software SigmaWI1&0 (SPSS Inc.,

the quenching of regulateoY,\(PQ), and the non- USA).

regulated Y, ,) non-photochemical dissipation. Thg

was also used to estimate the apparent eIectr&ESULTSAND DISCUSSION
transport rateETR= Y, x PARX A_,x 0.5) (Bilgeret The application of the herbicide tepraloxydim at the

leaf

al., 1995), wherd?AR is the photon flux (umol rhs?)  lowest doses did not cause visual damage to the leaves of
on the leavesA__ is the amount corresponding to theR. sativus plants (Figures 1A, B, and C). Howeyérne

fraction of incident light absorbed by the leaves, andose of 125 g a.i. Haffected the formation of new leaves,
0.5 is the excitation energy fraction directed to the PSévidenced by the leaf wrinkling symptoms (Figure 1D).

(Laisk & Loreto, 1996). These symptoms of wrinkling on young leaves, observed
o at seven DAAH, suggest that the synthesis of lipids, which
Photosynthetic pigments are essential constituents of membranes, was limited. Thus,

Chlorophyll a, chlorophyllb, total chlorophyll, and heteromeri®\CCase probably did not supply all the acetyl-
carotenoids were measured according to Gbata(2014). CoA carboxylation to malonyl-CoA that was required,
Three leaf discs (0.6 énwere immersed in 5 mL of a compromising leaf growth zones by inadequate formation
dimethyl sulfoxide (DMSO) solution saturated with calciunof cell membranes and organelles (Délye, 2005).
carbonate and incubated at 86€or 24 hoursAbsorbance The probable inhibition of the homomeAC€Case by
was measured at 665.1, 649.1, and 480.0 nm in-®I3V the herbicide tepraloxydim also compromised the growth
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and development &. sativus. Therefore, the formation of herbicide sethoxydim (Belkebir & Benhassaine-Kestri, 2013).
new structures, such as branches and flowers, and #iéhough there was a reduction in the chloroplast pigment
height of the plants were inhibited by the application adontent inR. sativus in this studythis was not enough to
the different doses of the herbicide (Figure 2). trigger chlorosis and foliar necrosis, which was observed
The numbers of leaves (NL), branches (NB) and floweia peanut plants (Fayetal., 2014).
(NF) as well as the dry matter weights of the stems (SDM), In addition to the biometric variables and the
flowers (FDM), and the plant height (H) all decreased aschloroplast pigment content, the parameters of gas
function of the doses of the herbicide tepraloxydim (Figuexchanges photosynthetic ra#),(instantaneous water
re 2A, C, GD, H, and F)As indicated by the lower values use efficiency (WUE), internal concentration of CQC),
of I, which represent the dose of the herbicide responsilded the ratio between the internal and external CO
for the 50% decrease of the analyzed variable (de $buz&oncentration@/C,) differed as a function of the doses
al., 2000), that the most sensitive biometric characteristicd tepraloxydim (Figure 4A, D, E, and F). There was also a
were FDM (83.01 g a.i. iy NB (97.06 g a.i. h§, and H difference as a function of the DAAH factor since the
(107.75 g a.i. h§. However it was not possible to adjust measurements were performed at 3, 7, and 11 DAAH. These
leaf dry matter (LDM) to the regression model Rnsitivus  variations inA, g, WUE and transpiration rat&j are due
stem diameter (SD) did not differ as a function of thexclusively to the environmental conditions at the time of
herbicide dose (Figure 2B and E). In this se¥ikgletal.  analysis and to the differentiation of the plant material as a
(2000) also observed reductions in the biometrifunction of the phenological stage change (Figure 5A, B,
characteristics of cucumber and melon plants. The le@f and D)VariablesA andWUE decreased in response to
area and total dry matter of the plants were reduced imcreased herbicide rates a@g andC/C, increased.
response to application of tA€Case inhibitor herbicide However these changes were not of high oraéth the
fluazifop-p-butyl (Mdal et al., 2000).The decrease of LDM decrease and increase more accentuated only at the higher
(approximately 50%) iBrassica napus plants treated with dose of 125 g a.i. Ha
the herbicide sethoxydim was also reported by Belkebir & The reduction imA in young leaves oR. sativus in
Benhassaine-Kesri (2013). Howeyerthis work withR.  response tdCCase inhibitor action was also reported in
sativus plants, there was no change in LDM. Crambe abyssinica plants treated with the herbicides
There were a reduction in the chlorophyll andgethoxydim, fluazifop-p-butyl, and clethodim (Concenco
carotenoid content iR. sativus in response to the doseset al., 2014) Already Xiaet al. (2006) reported a marked
of the herbicide tepraloxydim (Figure 3). This supports théecrease (up to 63%) in C@ssimilation in cucumber
hypothesis that this herbicide restricted the biosynthegtants treated with the fluazifop-p-butyl and haloxyfop-p-
of lipids, which are essential constituents of membranasethyl herbicides at doses of about 40 and 27 g &.,. ha
including chloroplast membranes. Corroborating thisespectivelyConsidering tha&aCCase inhibitors block lipid
hypothesis, Fayes al. (2014) reported that the herbicidesynthesis, the action of these herbicides on the
fluazifop-p-butyl also reduced the concentration ophotosynthetic process is indirect. This indirect action
chloroplastidic pigments from leaves of newly formedan be observed in this stydyecause it required a high
peanut plants. Similarlyhe chlorophyll content of leaves dose of the herbicide tepraloxydim to redéddey 50% in
of B. napuswas reduced in response to treatment with tHe. sativus, according to the Jof 220.77 g a.i. ha

Figure 1: Symptoms on leaves Baphanus sativus 7 days after application of the herbicide tepraloxydim at doses of 0 (A), 75 (B),
100 (C), and 125 g a.i. hgD).
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The reduction in th®WUE in this study is mainly due photosynthetic apparatus (Sileaal., 2014; Limaet
to the decrease in G@ssimilation sinc& did not differin  al., 2017). In this studythe chlorophyli fluorescence
response to herbicide doses (Figure 4D and Cparameters of minimal fluorescenég)( relative electron
Corroborating these results, the accumulation of @O transport rateETR), and the effective quantum yield of
the substomatal chamber in response to the herbicide R8Il (Y, ) of R. sativus differed according to the increasing
evidenced by the small increasé&drand in theC/C_ ratio, doses of the herbicide tepraloxydim (Figure 6A-B,,E-F
demonstrates that the limitationAnwas due, at least in and G-H). Howevelthe potential quantum yield of PSII
part, to the impairment of C@ssimilation by inhibition of (F /F), quantum yield of regulated energy dissipation
the Calvin-Benson cycle. of PSII (YNPQ), and quantum yield of non-regulated

The chlorophylla fluorescence measures are gooénergy dissipation of PSIk( ) did not differ (Figure
indicators of herbicide-promoted stresses to th@C-D, I-J, and K-L). Thus, th& /F, values, which
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plantstreated with different doses of the herbicide tepraloxydim. Data are means 6j.(
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Figure 4. Photosynthetic rateAf (A), stomatal conductancg) (B), transpiration rateH) (C), water use efficiencyUE) (D),
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Rev CeresVigosa, v67, n.1, p. 052-061, jan/feb, 2020




58 Gabriel MartinAlmeidaet al.

30 ® 14
25 - __ L 1.2
—_— = ;s
"7 20 - / - / T //‘/ L 0.9
E / 7 I 8
S )
< 15 / - 0.7 -
g =
2 10 - 0.5 E
< C
5 / - 0.2
0 Z. / . . . : 0.0
'© ®
'aN 5 - 715
= T -
:é 41 % 4 + /?l-( = 6.0 "-';
: _ /’“ _ / z
a 31 / / / -45 D
< 3
g 2 L 30 £
= =
S 1 15
g / e
" % % /A , % 0.0

3 7 11 3 7 11
Days after application of the herbicide Days after application of the herbicide

Figure5: Photosynthetic raté\f (A), stomatal conductancg) (B), water use efficiencyNUE) (C), and transpiration rat&) (D)
of Raphanus sativus plants at 3, 7, and 11 days after application of the herbicide tempraloxydim. The bars represent the standard
error of the meansi(= 24).

remained around 0.8, show that there was nmgression modelY, ., andY,, have the function of
photoinhibition (Maxwell & Johnson, 2000). Similardissipating the energy absorbed in the form of heat by
values for this parameter &f/F,, were visualized by the xanthophyll cycle, which is activated by the
Silvaetal. (2014) and Mourat al. (2018) inR. sativus  protonation of the thylakoid lumen (Ruban, 2016). This
plants, when compared to the control plants, provingrotonation leads to the de-epoxidation of vialaxanthin,
that these were ideal values for this species. The incredsaming anteraxanthin, which forms zeaxanthin (Kromdijk
of F, as a function of the increase of the doses of that al., 2016; Mathuret al., 2018). This dissipation of
herbicide tepraloxydim, even in a non-high ordean energy is a way of protecting the photosynthetic
indication of the limitations in the transfer of theapparatus against the excess energy of excitation in
excitation energy from the antenna pigments to thgeneral and the formation of reactive oxygen species in
reaction center (Limet al., 2017; Batistat al., 2018).  particular (Cardonat al., 2018).

The reduction oA values is related to the reduction  The rate of electrolyte liberatiofREEL) of R. sativus
of Y, and ETR, since the energy destined for thplants was not altered by the herbicide tepraloxydim (Fi-
photochemical dissipation decreased as a function gfire 7). This is an indication that there was no damage at
the increment of the doses of the herbicidéhe membrane level (Duke & Kenyon, 1993). Thus,
tepraloxydim.Thus, the reduction &TPand NADPH corroborating the chlorophylla fluorescence
formation was probably the limiting factor for the Calvin-measurements, in which there was no reduction d¥ the
Benson cycle, since there was no stomatal limitation, &, values, thereby indicating the stability of PSIl and the
evidenced by thg_values. Unlikey,, theYNPQ andY,, chloroplast membranes.
remained unchanged, even with increasi’n,g? at the
dose of 125 g a.i. Hathis could not be adjusted to theCONCL USION
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