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ABSTRACT
The purpose of this work is to present the Weighted Forward Search (FSW) method for the detection of outliers in asset 
pricing data. This new estimator, which is based on an algorithm that downweights the most anomalous observations of 
the dataset, is tested using both simulated and empirical asset pricing data. The impact of outliers on the estimation of asset 
pricing models is assessed under different scenarios, and the results are evaluated with associated statistical tests based on 
this new approach. Our proposal generates an alternative procedure for robust estimation of portfolio betas, allowing for the 
comparison between concurrent asset pricing models. The algorithm, which is both efficient and robust to outliers, is used 
to provide robust estimates of the models’ parameters in a comparison with traditional econometric estimation methods 
usually used in the literature. In particular, the precision of the alphas is highly increased when the Forward Search (FS) 
method is used. We use Monte Carlo simulations, and also the well-known dataset of equity factor returns provided by Prof. 
Kenneth French, consisting of the 25 Fama-French portfolios on the United States of America equity market using single 
and three-factor models, on monthly and annual basis. Our results indicate that the marginal rejection of the Fama-French 
three-factor model is influenced by the presence of outliers in the portfolios, when using monthly returns. In annual data, 
the use of robust methods increases the rejection level of null alphas in the Capital Asset Pricing Model (CAPM) and the 
Fama-French three-factor model, with more efficient estimates in the absence of outliers and consistent alphas when outliers 
are present.
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1. INTRODUCTION

The Capital Asset Pricing Model (CAPM) introduced 
by Sharpe (1964) and Lintner (1965) represents a path-
breaking milestone in the history of financial theory. The 
publication of these seminal papers led to the development 
of a large body of research in various areas of finance, 
both from normative and positive points of view. From a 
positive standpoint, the model has been used, for example, 
to explain the cross-section of expected returns (Fama 
& MacBeth, 1973) and the performance of mutual funds 
(Jensen, 1967). From a normative view, the model has 
been used in the context of capital budgeting decisions 
and portfolio management (Sharpe, 1963).

Nonetheless, the linear risk-return relationship posited 
by the model did not suffice to explain the cross-section 
of expected return and a number of departures from 
the model (usually called anomalies) were revealed (see 
Fama and French [2008]). There is, nowadays, “mounting 
evidence against it based on the cross section of stock 
returns” (Da, Guo & Jagannathan, 2012).

As evidences against the model started to appear, 
more sophisticated models, such as the Arbitrage Pricing 
Model (APT) (Ross, 1976), were developed. A model that 
is able to capture many of the anomalies not explained by 
the CAPM is the Fama and French (1992, 1993) three-
factor model.

More interesting, however, is the fact that the evidences 
against the CAPM did not prevent it from becoming 
the most used model for the determination of the cost 
of capital in the context of capital budgeting decisions 
(Graham & Harvey, 2001). Moreover, there is empirical 
support in favor of the CAPM for this purpose (Da et 
al., 2012).

The choice of the ordinary least squares (OLS) method 
for the estimation of the CAPM parameters is natural, 
given that it is the best linear unbiased estimator (BLUE) 
under the normality assumptions posed by the CAPM 
theory. However, an often neglected issue related to stocks 
and market returns when opting for the OLS estimator 
is the overwhelming evidence that these returns are not 
normally distributed (see Mandelbrot [1963] and Merton 
[1976]) and exhibit fat tailed empirical distributions, 
i.e, the distributions of stock returns contain outliers, 
observations that do not belong with the majority of the 
(normally distributed) data. In the context of regression 
methods, outliers are, according to Rousseeuw and Leroy 
(1987), data points (observations) that deviate from the 
linear relation followed by the majority of the data, taking 
into consideration both the explanatory variables (X) 

and the response variable (Y) simultaneously. Therefore, 
extreme values both in the Y and X variables are not 
considered outliers, as long as they conform to the linear 
relation of the bulk of the data.

It is widely known that the OLS method is extremely 
sensitive to the presence of outliers in the data (both in the 
X and in Y variables). One can prove that its breakdown 
point – “the smallest fraction of bad observations that may 
cause an estimator to take on arbitrarily large aberrant 
values” (Huber & Ronchetti, 2009, p. 8) – is equal to 
0%, indicating that a single “bad” observation can cause 
massive distortions in the parameter estimate (Rousseeuw 
& Leroy, 1987).

Knez and Ready (1997) argue that outliers are not 
necessarily to be viewed as observations to be discarded 
or deleted, nor that they are irrelevant observations. On 
the contrary, they are viewed as “precious”, since they may 
provide a lot of information about the data generating 
process and a proper model specification.

Therefore, the existence of outliers in the regression 
variables motivates the following research question: can 
the application of new robust statistical methods for the 
analysis and estimation of the parameters of asset pricing 
models allow for the detection and treatment of the outlying 
data in financial returns, providing more reliable estimates 
of alphas and betas (parameters of the asset pricing model 
specified in equation 11) of equity portfolios?

This work consists in the application of the forward 
search (FS), a robust method, in the context of asset 
pricing models. More specifically, its aim is to assess the 
impact of outliers on parameter estimation in these models 
and to test the performance of a new weighted FS (FSW) 
estimator in the estimation of asset pricing models. In 
order to accomplish these goals, we conduct a series of 
Monte Carlo simulation experiments and compare the 
performance of the FSW with OLS and least trimmed 
squares (LTS).

Moreover, we apply the FSW estimator on time series 
regressions of the 25 Fama and French (1993) portfolios. 
It is, to our knowledge, the first application of estimators 
with high efficiency and high-breakdown point in this 
context, as previous research, such as Knez and Ready 
(1997) and Bailer (2005), has focused on the impact of 
outliers in cross-section regressions using methods which 
are either efficient or robust.

The paper is organized as follows. On Section 2, a 
literature review is conducted. On Section 3, the new 
FSW estimator is presented and defined. On Section 4, the 
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new method is applied to simulated and real market data 
and the estimation results are presented. Lastly, Section 

5 presents our final remarks, limitations of the research, 
contributions, and possible extensions.

2. LITERATURE REVIEW

In this section, a literature review on asset pricing – 
CAPM and multifactor models – and on the use of robust 
estimators in this context is presented.

2.1 CAPM

The theoretical foundations of the CAPM were laid 
down by the seminal works of Sharpe (1964) and Lintner 
(1965). While both authors developed the mathematical 
groundwork of the model based on assumptions about 
markets, asset returns, and utility functions of investors, 
they did not develop empirical studies or applications of 
the model.

Black, Jensen, and Scholes (1972) developed one of 
the two benchmark frameworks for testing asset pricing 
models, namely the time-series regression approach. The 
authors proposed a simple test of the model: estimate 
alphas of a large number of securities and assess whether 
the estimates are statistically equal to 0, as predicted by 
the theory.

Even though Black et al. (1972) had developed cross-
sectional tests of the CAPM, the most widely used cross-
sectional regression approach until today is the one 
developed by Fama and MacBeth (1973). The so-called 
Fama and MacBeth (1973) procedure proposed by the 
authors consists of three steps:

i.	 Time-series OLS regression of equation 1 obtaining 
estimates 𝛽𝛽��  for each portfolio i.

where ri,t = Ri,t – Rf,t and rM,t = RM,t – Rf,t are, 
respectively, the excess returns of asset and the 
excess return of the market (a traded aggregate 
wealth index) over the risk free rate rf,t at month 
t, αi and βi are the alpha and beta of stock i, and 
εi,t is the zero-mean, constant-variance error 
term.

ii.	 For each month t, run a cross-sectional regression 
of equation 2 using the beta estimates obtained in 
step (i) as independent variables.

iii.	As a result of step (ii), one obtains a time-series 
of regression coefficients estimates 𝛾𝛾��,� and 𝛾𝛾��,� and 
computes time-series averages and t tests, assuming 
ηi,t – is the zero-mean, constant-variance error 
term – is independent of the regressors.

While Black et al. (1972) and Fama and MacBeth 
(1973) were all interested in testing the CAPM using a 
large number of portfolios, their conclusions were based 
on univariate portfolio-specific t statistics. In light of 
the limitations of these statistical tests, Gibbons, Ross, 
and Shanken (1989) proposed a multivariate statistic to 
test whether all the intercepts are jointly equal to 0. The 
authors have showed that the so-called Gibbons Ross 
Shanken (GRS) statistic has an F distribution with degrees 
of freedom N and T – N – 1:

where T is the number of observations for each portfolio, N 
is the number of portfolios, ET(f) and 𝜎𝜎�(f) are, respectively, 
the sample mean and standard deviation of the factor, 𝛼𝛼�  is 
a vector of the estimated intercepts, and Σ�  is the variance-
covariance matrix of the residuals resulting from the N 
regressions. The test can be easily extended to consider 
more than one factor, i.e., to test multifactor asset pricing 

models (Cochrane, 2001, p. 217). The GRS statistic is still 
today the standard test of asset pricing models.

In spite of the empirical evidence provided by Fama 
and MacBeth (1973) of the linear risk-return relationship 
posited by the theory, the literature of asset pricing shortly 
turned towards the development of multifactor models, 
which are discussed in the next section.

𝑟𝑟�,� �  𝛼𝛼� � ��𝑟𝑟�,� � ��,� 1
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2.2 Multifactor Models

Ross (1976) developed the arbitrage pricing theory 
(APT), which explicitly takes into account the possibility 
that stock returns may be generated by a multifactor 
model of the form:

While the APT represents a generalization of the 
CAPM, it falls short in determining or providing evidence 
of which factors are (or should be) considered by investors.

Roll (1988) compared the explanatory power of 
the CAPM and a five-factor APT model in explaining 
individual stock returns. His results indicate that the 
multifactor model provided higher average R2 (adjusted 
for degrees of freedom) than the single-factor model, 
but for his disappointment, overall average R2 was only 
about 0.20 for daily returns and 0.35 for monthly returns.

Fama and French (1992, 1993) extended Roll’s (1988) 
analysis to portfolios returns. Fama and French (1992) 
used size, market beta, leverage, earning/price, and book-
to-market equity (BE/ME) as explanatory variables of 
the cross section of average stock returns. The results 
obtained by Fama and French (1992) based on the two-
step Fama and MacBeth (1973) procedure indicate that 
used combined, two variables – size and BE/ME – seem to 
explain the cross-section of average returns, absorbing the 
explanatory power of other variables, such as market beta, 
leverage, and earning/price. Additionally, their results do 
not support the central idea of the CAPM, that average 
returns are positively related to market beta. In fact, they 
argue that this relationship is not present in the 1963-1990 
period, and is very weak in the longer 1941-1990 period.

In a subsequent paper, Fama and French (1993) 
concentrated on the identification of common risk factors 
in the returns of stocks and bonds. Differently from Fama 
and French (1992), their analysis is based on the time-
series regression approach of Black et al. (1972) instead 
of the Fama and MacBeth (1973) procedure. Regarding 
the stock returns analysis, the authors test the explanatory 
power of three risk factors (market, size, and BE/ME) 
on the returns of 25 size-BE/ME sorted portfolios. Their 
main results indicate that the size and BE/ME factors can 
explain the differences in average returns across stocks, 
but the difference between the average returns on stocks 
and one-month bills is explained by the market factor.

Despite the strong evidences provided by Fama and 
French (1992, 1993) against the CAPM and in favor of the 
three-factor model, their results were received with relative 
skepticism by other researchers. Kothari, Shanken, and 
Sloan (1995) argued that the BE/ME premium in Fama 

and French (1992) was overstated, due to a survivorship 
bias in the Compustat data used, which was likely to 
include distressed firms that survived and to exclude those 
that went bankrupt. Moreover, they provide empirical 
evidence in favor of the CAPM, as their results indicate 
that there is a statistically significant market risk premium 
when betas are computed on annual, instead of monthly, 
returns.

Fama and French (1996) tested the hypothesis that 
the BE/ME premium was spurious by applying the 
three-factor model to various data sets. Their results 
reconfirmed the existence of the BE/ME premium and its 
statistical significance. Additionally, the authors provide 
evidence that the three-factor model explains many of 
the patterns in stock returns – the so-called anomalies 
–, which are not captured by the CAPM. Nonetheless, 
the three-factor model is not able to capture the short-
term return continuation anomaly, currently known as 
the momentum anomaly, which was later analyzed by 
Carhart (1997).

2.3 Robust Estimation of Asset Pricing Models

The application of robust regression methods in the 
context of asset pricing models dates back to the work 
of Sharpe (1971), in which the mean absolute deviation 
(MAD) method was applied to estimate parameters of 
the CAPM. His results show that the two methods give 
similar beta estimates, but quite different alfa estimates 
when applied to stocks or non-diversified portfolios. 
Nonetheless, the author concludes that the gains of the 
MAD over OLS are modest.

Cornell and Dietrich (1978) have also developed a 
comparative analysis of MAD versus OLS, in order to 
test the stability of the beta coefficients across time. In 
line with Sharpe’s (1971) conclusions, the authors find 
it “disappointing … that the MAD technique fails to 
improve on OLS”.

Chan and Lakonishok (1992) compared the 
performance of various robust estimation methods on 
both simulated and market data. The authors present the 
performance of each method under the null case where 
there are no outliers in the data and also when the stock 
returns are heavy-tailed. Their results reconfirm the poor 
performance of MAD. On the other hand, the authors 
reported that the use of trimmed regression quantile 
estimators results in loss of efficiency of only about 10% 
under the null case, and in efficiency gains of up to 80% 
under the alternative where the dependent variable is 
heavy-tailed, providing strong evidence in favor of the 
application of robust methods for beta estimation. The 
authors focus their analysis on beta estimation, leaving 

𝑟𝑟�,� �  𝑟𝑟�,� � ��,�𝑓𝑓�,� � �� ��,�𝑓𝑓�,� � ��,� 4
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aside the performance of the methods with respect to 
alpha estimation.

Bowie and Bradfield (1998) extended the work of Chan 
and Lakonishok (1992) by assessing the relative performance 
of a wider range of robust estimators when applied for beta 
estimation of securities listed on the Johannesburg Stock 
Exchange. Their results, based on jackknife measures of 
efficiency, indicate that robust methods are less sensitive 
than OLS to model misspecification – such as extreme 
excess market returns –, and that the superior efficiency 
of the robust estimators was caused by non-normality in 
the distribution of residuals.

To our knowledge, Knez and Ready (1997) were the 
first to study the impacts of applying such techniques 
on cross-sectional regressions (second step of the Fama 
and MacBeth [1973] procedure). The authors apply 
the LTS on the cross-sectional regression data used in 
Fama and French (1992) and analyze the risk premia 
on size and book-to-market factors. The authors show 
that the negative relationship between average returns 
and size obtained by Fama and French is caused by only 
a few influential firms. In fact, their results indicate that 
trimming 1% of the most extreme observations each 
month leads to a positive relationship between average 
returns and size. The authors restrict their analysis to size 
and book-to-market factors and do not use market betas 
as an explanatory variable for the cross section of average 
returns. Additionally, the authors do not apply the LTS for 
the estimation of “pre-ranking” and “post-ranking” betas.

Bailer (2005) further extended Knez and Ready’s 
(1997) analysis in at least four directions. First, he uses 
the MM-estimator instead of LTS. Second, he introduces 
market betas (as well as size and book-to-market) as an 
explanatory variable of average returns. Third, he applies 
the robust methods both in the first and second steps of 
the Fama and MacBeth (1973) procedure, as well as in the 
time-series averages of cross-sectional estimates. Fourth, 
he applies the methodology to more recent time periods. 
The author concludes that OLS alphas tend to be over-
biased and classical betas are highly sensitive to outliers, 
while robust alphas and betas are superior predictors. The 
author also finds that the beta and size risk premiums 
found to be respectively flat and negative in Fama and 
French (1992) turn out to be flat or negative for beta 
and positive for size when only 1 to 3% of the data are 
rejected, reconfirming Knez and Ready’s (1997) results.

Despite the vast literature on the robust estimation of 
asset pricing models, we are not aware of the application 
of methods with high-breakdown and high efficiency 
properties – such as the FSW and FSI – in this context, 
as all the methods previously mentioned either present 
high efficiency (MM-estimator) or high-breakdown (LTS).

In the next section, the FS – a high efficiency and 
high-breakdown robust estimator – is presented.

2.4 The FS

The FS described by Atkinson and Riani (2000) is a 
robust method that provides useful plots, which allows 
one to understand the real structure of the data being 
analyzed and assess the agreement between the data and 
the model. Differently from backward methods, the FS 
is immune to the well-known masking and swamping 
effects (Atkinson & Riani, 2000).

The basic concepts of the FS algorithm date back to 
the work of Hadi (1992), where the idea of fitting a model 
to subsets of increasing sizes was introduced. Hadi and 
Simonoff (1993) used it in a regression framework, while 
Atkinson (1994) and Hadi (1994) applied it to multivariate 
data. Atkinson and Riani (2000) and Atkinson, Riani, and 
Cerioli (2004) published books that discuss deeply how 
the FS can be applied in the regression and multivariate 
analysis contexts, respectively.

The FS is composed of three steps:

i.	 choice of the initial subset;
ii.	 addition of observations through the search;
iii.	monitoring of key quantities during the search.

The first step is designed to identify a subset of the 
data, which is free of outliers – a clean data set (CDS). 
This is accomplished by the use of a high-breakdown 
robust estimator, such as the least median of squares or 
the LTS. The LTS estimator is given by (Rousseeuw and 
Leroy, 1987):

where (e2)1:n ≤ … ≤ (e2) n:n are the ordered squared residuals. 
The estimated parameter vector (𝛽𝛽� ) is, therefore, the 
vector that minimizes the sum of the h (out of n) smallest 
squared residuals.

In the initial step of the FS, the model is fitted to m0 = p 
observations and h = 1

2 , resulting in the highest 
breakdown point (50%) that can be achieved by the LTS 
method, in which p represents the number of parameters 
to be estimated.

The minimization in equation 5 is performed only 
approximately by searching over a large number (usually 
10,000 or higher) of subsets of size p chosen at random. 
This procedure provides a subset that is free of outliers. 
Thus, the initial subset is the subset of size p that yields the 
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minimum value of the sum in equation 5. The parameter 
estimate that minimizes equation 5 is  𝛽𝛽���.

The second step is designed to successively add 
observations to the initial subset by their closeness to 
the bulk of the data, as the search evolves. Given a subset 
S(m) of dimension m ≥ p, the search moves forward to 
finding subset S(m+1) by selecting the m + 1 observations 
with the smallest squared scaled residuals 𝑒𝑒�,���� 

� , i = 1, …, 
n. Residuals 𝑒𝑒�,����  are computed as

where 𝛽𝛽�� is obtained by applying OLS on the observations 
that form subset S(m), for m > m0.

In most moves from m to m + 1, only one observation 
joins the subset, but the method allows the inclusion of 
more than one observation as one or more leave S(m). 
Step 2 is repeated until m = n, and all observations are 
included in S(m).

The third step is the monitoring of quantities of interest. 
During the search, various quantities are monitored and 
recorded, so that informative plots can be produced and 
analyzed.

An important aspect is that estimates of σ2 are not 
constant during the search. For each subset S(m), an 
estimate 𝑠𝑠�����  is produced, and as m increases, 𝑠𝑠�����  
increases smoothly if there are no outliers in the data. 
An abrupt change in the trajectory of 𝑠𝑠�����  at m = m’ is 
an indication that an outlier has joined the subset.

An interesting property of the FS is that it is insensitive 
to the initial subset – provided that it is free of outliers – 
and the trajectories of the monitored quantities during the 
search converge, so that (roughly) the last one third of the 
observations to enter the search are the same irrespective 
of the initial subset (Atkinson, Riani, & Cerioli, 2006).

Even though the method was originally developed for 
data diagnostics, it has been recently extended, becoming 
an automatic robust procedure.

Riani, Atkinson, and Cerioli (2009) developed a hard 
rejection method based on the FS described by Atkinson 
and Riani (2000) algorithm where outlier detection is 

based on (simulated or approximated) minimum deletion 
residual envelopes, according to the following rules:

i.	 in the central part of the search, three consecutive 
values of rmin(m,n) exceed the 99.99% envelope or 
one exceeds the 99.999% bound;

ii.	 in the final part of the search, two consecutive 
values of rmin(m,n) exceed 99.9% and one exceeds 
the 99% bound;

iii.	rmin(n – 2, n) exceeds the 99.9% envelope;
iv.	 rmin(n – 1, n) exceeds the 99% envelope and, in this 

case, a single outlier is detected and the procedure 
terminates.

The final part of the search is defined as m ≥ n – [13 � 𝑛𝑛
200�

�.�
].

The authors consider the break of any of the 4 rules as a 
signal, which is later reconfirmed by the superimposition 
of minimum deletion residual envelopes. The procedure 
is intended to provide a nominal size of 1%, meaning that 
the method should identify, on average, a signal once in 
every 100 outlier-free samples.

Grossi and Laurini (2009) develop a soft weighting 
robust estimator based on the FS described by Atkinson 
and Riani (2000). Their method is based on simulation 
envelopes, where the studentized residuals obtained 
during each stage of the search are compared with 
simulated envelope bounds. If the studentized residual 
lies outside the envelope, the distance between the value of 
the residual and the closest envelope bound is computed 
and used to calculate the weight of that observation, which 
will be used in a weighted regression. The envelopes are 
calculated at each stage of the search, based on parameter 
estimates, which are computed using the observations 
within the CDS.

More recently, Crosato and Grossi (2017) extended 
the FSW procedure of Grossi and Laurini (2009), 
developing a new approach for the identification of 
outliers in dependent data, more specifically in generalized 
autoregressive conditional heteroskedasticity (GARCH) 
models.

𝑒𝑒�,���� � �� � ���𝛽𝛽�� 6



Identifying outliers in asset pricing data with a new weighted forward search estimator

464 R. Cont. Fin. – USP, São Paulo, v. 31, n. 84, p. 458-472, Sept./Dec. 2020

3. A NEW FSW ESTIMATOR 

The FSW combines the soft trimming concept used 
by Grossi and Laurini (2009) and Crosato and Grossi 
(2017) with the “early stopping” concept proposed by 
Riani et al. (2009). While the former allows flexibility in 
down weighing observations, the latter guarantees the 
high breakdown of the method, allowing weights to be 
computed before the inclusion of outliers in the subset. 
Additionally, the FSW is based on a modified version of 
the simulation envelopes proposed by Atkinson (1981), 
which are constructed for every subset S(m), subject to 

1
2  ≤ m ≤ m* . When m = m*, i.e., when any of 

the 4 rules used in the hard trimming method developed 
by Riani et al. (2009) is broken, the search is interrupted 
and weights are calculated before any outlier is included 
in the subset.

3.1 Simulation Envelopes

Simulation envelopes have long been used for the 
detection of outliers (see Atkinson [1981] and Flack and 
Flores [1989]). In the context of the FS, the simulation 
envelopes reflect the distribution of the studentized 
residuals at a specific subset size m of the search.

The envelopes proposed by Atkinson (1981) are 
generated in 4 steps:

i.	 Simulate M vectors Z of dimension (n x 1) from 
the standardized normal distribution;

ii.	 regress each of these vectors on the X matrix and 
obtain M simulated vectors of studentized residuals 
Rz(i);

iii.	order the elements of each simulated studentized 
residual vector;

iv.	 for each i = 1,…n, select li = min rz(i) and ui = max rz(i). 
These lower and upper values for the ith-order 
statistic of the M simulated residual vectors form 
the lower and upper bounds of the diagnostic 
envelopes, respectively.

Setting M = 19, one obtains envelope bounds 
corresponding to the 5th and 95th percentiles of the 
distribution of the ith-order statistic of the externally 
studentized residual vector, given X.

The methodology above is immediately applicable when 
OLS regressions are run on the full set of observations. 
However, given that the FS starts with subset size m = p, 

the envelope is obtained by simulating M vectors Z and 
running a FS for each of these M vectors on matrix X, such 
as in Atkinson and Riani (2006), allowing the envelopes 
to be independent of the initial subset of the FS.

The envelopes are constructed according to the 
following steps:

i.	 simulate M vectors Z of dimension (n x 1) from 
the standardized normal distribution;

ii.	 conduct a FS of each of these vectors on the X 
matrix and obtain for each subset size m, M 
simulated vectors of studentized residuals rz;

iii.	for each subset size , order the elements of each 
simulated studentized residual vector, obtaining M 
simulated vectors of ordered studentized residuals 
rz

*. Grouping all these vectors, one obtains, for 
each subset m, a matrix R with dimension (M x n), 
populated with elements r(i,j);

iv.	 for each subset size m, sort each column of matrix 
R, such that the lowest value of the residuals in that 
column is allocated in the 1st row and the highest 
value is allocated in the last row, obtaining matrix 
R*, with elements r*

(i,j);
v.	 in order to obtain 5% and 95% envelope bounds 

select for each subset size , elements li = r*
(i,0.05M) and 

ui = r*
(i,0.95M), for i = 1,…n. These upper and lower 

values for the ith-order statistic of the M simulated 
residual vectors form the upper and lower bounds 
of the diagnostic envelopes, respectively.

3.2 Weighing Observations

For every m ≥ h, the envelopes are constructed and 
the distance of the studentized residuals to the envelopes 
is computed.

The distance for observation i at subset size m is 
calculated by:

At the end of the search, the average distance of each 
residual to the envelope is used to determine the weights 
of each observation in the weighted regression. The overall 
average distance of observation i, calculated when the 
search is interrupted, is given by:

 

𝜋𝜋���� �  �
0,  𝑖𝑖𝑖𝑖 𝑙𝑙� � 𝑟𝑟� � 𝑢𝑢�

�𝑙𝑙� � 𝑟𝑟��, 𝑖𝑖𝑖𝑖 𝑟𝑟� �  𝑙𝑙�
�𝑟𝑟� � 𝑢𝑢��, 𝑖𝑖𝑖𝑖 𝑟𝑟� �  𝑢𝑢�
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The weight attributed to observation i is then calculated 
as:

Finally, parameters are estimated through a weighted 
regression:

Notice from equations 8 and 10 that, even if the search 
is interrupted before the inclusion of all observations in 
the subset (i.e., m* < n), all observations are used for the 
estimation of 𝛽𝛽� .

4. DATA ANALYSIS

In this section, the performance of the FSW is assessed 
with simulated data, and the new estimator is applied to 
market data.

4.1 Application to Simulated Data

In this section, we conduct Monte Carlo simulations 
in order to assess the properties of the FSW estimator in 
a number of experiments specially designed to reproduce 
usual assumptions and stylized facts about the models and 
data used in the context of asset pricing. We also compare 
the performance of the FSW with OLS and LTS estimators 
both for outlier-free and for contaminated data. The LTS 
is set to trim 30% of the observations of the data.

We simulate pairs of asset and factors returns based 
on the true (beta) parameters and then estimate the 
parameters of the model from the simulated data.

In order to assess the bias, average discrepancy, and 
comparative efficiency of each estimator, we compute 
summary statistics of the cross-sectional distribution 
(across the N replications). The statistics are the mean 
estimated intercept (α) and mean estimated slopes (βk), 
along with their cross-sectional average discrepancy (root-
mean-square deviation [RMSE]) of estimated parameters 
away from their true values. We also compute the relative 
efficiency (r.e) of each estimator, determined as the 
squared ratio between the RMSE of the OLS estimates 
and the RMSE of the robust procedure � 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅���

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�������
�
 in similar 

fashion to the analysis performed by Chan and Lakonishok 
(1992). Additionally, we present Diebold-Mariano (DM) 
statistics for the null hypothesis that the robust method 
and the OLS have equal forecast accuracy in forecasting 
the true parameters used across the N simulations.

All our experiments are based on the following general 
return-generating process:

We set N = 1,000 simulations and report results for T = 
60, 180, 300.

The Monte Carlo experiment consists of sampling 
random numbers for each of the K factors and for the 
error term of equation 11. The distributions from which 
the random numbers are sampled – as detailed below – are 
designed to replicate the mean and the SD of the factors 
and the error term. 

In each experiment, we follow Grossi and Laurini 
(2011) and randomly replace 30% of the values of the 
dependent and independent variables with values drawn 
from a distribution with higher variance. This procedure 
results in fat-tailed distributions for both the dependent 
and independent variables, which are consistent with 
returns on stocks or portfolios. The variance of the 
contaminated data has been set at five times the original 
variance of the variable.

Setting K = 3, i.e., the return-generating process is the 
Fama and French (1992, 1993) three-factor model, where 
factor 1, 2, and 3 stand for, respectively, the excess market, 
size (small minus big [SMB]), and BE/ME (high minus 
low [HML]) returns. In each simulation i, excess market 
returns are drawn from a normal distribution with mean 
0.43% and SD 4.54% – these values were taken from Fama 
and French (1993) –, and residuals εt are drawn from a 
normal distribution with mean 0 and SD 2.5%, and were 
designed to reproduce the average R2 of approximately 
75% obtained by the same authors. Factor 2 is drawn from 
a normal distribution with mean 0.27% and SD 2.89% 
and factor 3 is drawn from a normal distribution with 

𝑟𝑟�,� �  � � ��𝑓𝑓�,� � �� ��𝑓𝑓�,� � ��,�;
 � � 1, … ,𝑁𝑁;
� � 1, … ,𝑇𝑇;
� � 1, … ,𝐾𝐾.

11

 

𝜋𝜋� �  
� 𝜋𝜋����

�∗

����������
𝑚𝑚∗ �  �� � � � 1�

2
 

 

 

8

 

𝑤𝑤� �  𝑒𝑒��� 
 

 

9

 

𝛽𝛽� �  �𝑋𝑋𝑋𝑋𝑋𝑋𝑋���𝑋𝑋𝑋𝑋𝑋𝑋𝑋 

 

 

10



Identifying outliers in asset pricing data with a new weighted forward search estimator

466 R. Cont. Fin. – USP, São Paulo, v. 31, n. 84, p. 458-472, Sept./Dec. 2020

average 0.40% and SD 2.54%. Lastly, α, β1, β2, and β3 are 
set to 0 and 1, 1.5, and 0.5, respectively.

Table 1 presents the results obtained when data is 
not contaminated: all the methods are unbiased and the 
FSW is highly efficient when data is not contaminated, 
showing efficiencies of at least, in contrast to the LTS, 
whose efficiency is approximately only 40%. The results 

of the DM test indicate that one should reject, at the 5% 
significance level, the null hypothesis that the FSW and 
the OLS methods have equal forecast accuracy when T = 
180 and T = 300. When T = 60, one cannot reject that the 
FSW and OLS have equal forecast accuracy. Nonetheless, 
one should reject the null hypothesis that the LTS and 
OLS have equal forecast accuracy for every T.

Table 1 
Monte Carlo simulation – Three-factor model: Clean data results using Monte Carlo simulation on three alternative sample sizes

Estimation 
method

Performance 
statistic

T = 60 T = 180 T = 300

α β1 β 2 β 3 α β1 β 2 β 3 α β1 β 2 β 3

OLS

Bias -0.01% 0.08% 0.52% -0.41% 0.01% -0.29% 0.02% 0.22% 0.00% -0.13% -0.13% 0.14%

RMSE (0.00) (0.08) (0.11) (0.14) (0.00) (0.04) (0.07) (0.07) (0.00) (0.03) (0.05) (0.06)

r.e. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DM - - - - - - - - - - - -

LTS (70%)

Bias 0.01% -0.26% 0.23% 0.08% 0.00% -0.26% 0.00% -0.38% 0.00% -0.19% -0.41% 0.19%

RMSE (0.01) (0.12) (0.17) (0.21) (0.00) (0.06) (0.10) (0.12) (0.00) (0.05) (0.07) (0.09)

r.e. 0.42 0.41 0.43 0.44 0.43 0.43 0.39 0.40 0.44 0.45 0.50 0.43

DM 13.43 7.79 12.86 10.79 16.07 14.39 14.79 15.64 15.40 15.89 16.31 15.62

FSW

Bias 0.00% 0.07% 0.50% -0.44% 0.01% -0.29% 0.01% 0.22% 0.00% -0.13% -0.13% 0.14%

RMSE (0.00) (0.08) (0.11) (0.14) (0.00) (0.04) (0.07) (0.07) (0.00) (0.03) (0.05) (0.06)

r.e. 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DM -2.26 -2.00 -1.42 -2.60 0.89 -0.68 -0.57 0.40 -0.82 0.18 -0.66 -0.91

DM = Diebold-Mariano; FSW = weighted forward search; LTS = least trimmed squares; OLS = ordinary least squares; r.e. = 
relative efficiency; RMSE = root-mean-square deviation; T = number of monthly simulated returns.
Source: Elaborated by the authors. 

Table 2 presents the results obtained when data is 
contaminated with outliers: the FSW and LTS offer 
protection against the outliers introduced in the data, 
as they present much lower RMSE than OLS. However, 
the FSW presents higher efficiency than the LTS. Once 
again, all the methods provide unbiased estimates both 

for the intercept and for slopes. At the 5% significance 
level, the DM statistics indicate the rejection of the null 
hypothesis that the LTS and FSW methods have the 
same forecast accuracy of the OLS method; the DM 
statistics indicating higher rejection levels for the FSW 
than for the LTS.

Table 2 
Monte Carlo simulation – Three-factor model: Contaminated data results using Monte Carlo simulation on three alternative 
sample sizes

Estimation 
method

Performance 
statistic

T = 60 T = 180 T = 300

α β1 β 2 β 3 α β1 β 2 β 3 α β1 β 2 β 3

OLS

Bias 0.00% -0.03% 0.14% -0.05% 0.03% -0.24% 0.07% 0.53% 0.00% -0.11% -0.07% 0.45%

RMSE (0.01) (0.08) (0.12) (0.14) (0.00) (0.04) (0.07) (0.08) (0.00) (0.03) (0.05) (0.06)

r.e. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DM - - - - - - - - - - - -

LTS (70%)

Bias 0.01% 0.05% 0.00% -0.03% 0.01% -0.09% 0.26% 0.26% 0.00% -0.01% -0.12% 0.03%

RMSE (0.01) (0.06) (0.08) (0.10) (0.00) (0.03) (0.04) (0.05) (0.00) (0.02) (0.03) (0.04)

r.e. 2.54 1.88 2.13 1.97 2.43 2.18 2.30 2.33 2.50 2.16 2.39 2.06

DM 12.67 6.39 9.55 8.43 13.22 10.57 11.21 12.13 13.18 11.37 13.06 11.11
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Estimation 
method

Performance 
statistic

T = 60 T = 180 T = 300

α β1 β 2 β 3 α β1 β 2 β 3 α β1 β 2 β 3

FSW

Bias 0.00% -0.03% 0.09% -0.02% 0.00% -0.04% 0.22% 0.23% -0.01% -0.06% -0.07% 0.04%

RMSE (0.01) (0.05) (0.08) (0.09) (0.00) (0.02) (0.04) (0.04) (0.00) (0.02) (0.03) (0.03)

r.e. 2.78 2.51 2.57 2.56 3.52 3.42 3.57 3.48 3.72 3.59 3.65 3.16

DM -14.99 -14.71 -14.34 -15.23 -15.46 -15.14 -16.25 -15.17 -15.33 -14.40 -15.02 -15.19

DM = Diebold-Mariano; FSW = weighted forward search; LTS = least trimmed squares; OLS = ordinary least squares; r r.e. = 
relative efficiency; RMSE = root-mean-square deviation; T = number of monthly simulated returns.
Source: Elaborated by the authors. 

The results of the Monte Carlo simulations support 
the use of FSW for the estimation of parameters of asset 
pricing models. In the next section, these estimators are 
applied on real market data.

4.2 Application to Financial Data

In this section, we apply the FSW to the time series 
regressions framework developed by Black et al. (1972) 
and used by Fama and French (1993, 1996).

The dependent variables used in our tests are the excess 
returns of the well-known Fama-French 25 portfolios 
applied to the United States of America equity market 
(Fama & French, 1993), whereas the independent variables 
considered are the SMB, HML, and excess market returns. 
We perform GRS tests of whether the robustly and non-
robustly estimated intercepts of all the portfolios are 
jointly equal to 0 and present results based on the CAPM 
and the three-factor models.

We also estimate the model on annual data, as 
according to Kothari et al. (1995), there are at least 
three reasons for using longer measurement interval 
returns in asset pricing tests: (i) the CAPM does not 
provide explicit guidance on the choice of interval 
for assessment of the explanatory power of beta; (ii) 
the use of longer interval returns mitigates biases in 
the beta estimates due to trading frictions and non-
synchronous trading; (iii) using annual data is one 
way of bypassing statistical complications created by 
seasonality in monthly returns.

Given the lower availability of annual data (i.e., 
smaller sample size), our tests are based on the 
longer period of 1927-2012, yielding time series of 86 
observations. Estimates on monthly data are based on 
the period July/1963-December/1991, as in Fama and 
French (1993).

The estimated CAPM and three-factor models follow 
the specifications in equations 12 and 13, respectively:

where T = 86 for annual data and T = 342 for monthly data.
In the single-factor model, the FSW intercept 

estimates obtained for each individual portfolio with 
monthly data are similar to those obtained by Fama 
and French (1993) with the OLS. The signs of the 25 
intercept estimates are identical in both methods and all 
significant (|t – statistic| > 2) intercepts obtained with OLS 
are significant when estimated with the FSW.

The three-factor FSW estimates are also similar to those 
obtained with OLS. All the 4 t – statistics with absolute 
values higher than 2 obtained with OLS also presented 
absolute values higher than 2 when estimated with FSW. 

Moreover, the absolute values of the t – statistics of two of 
these portfolios are considerably higher when estimated 
with FSW. Besides that, one additional portfolio presents 
t – statistics with absolute value higher than 2 when FSW 
is used. Overall, results based on independent t – tests 
suggest a worse explanatory power of the three-factor 
model when robust estimates are used.

Figures 1 and 2 show additional outputs obtained 
when applying the FSW on annual data, namely, the 
weights attributed to each observation of the dataset and 
the studentized residuals of the observations along with 
the simulation envelopes. 

𝑟𝑟�,� � 𝑟𝑟�,� �  𝑎𝑎� � ���𝑟𝑟�,� � 𝑟𝑟�,�� � ��,� ;
 � � 1, … , 25;
� � 1, … ,𝑇𝑇.

12

𝑟𝑟�,� � 𝑟𝑟�,� � �� � ���𝑟𝑟�,� � 𝑟𝑟�,�� � ��𝑆𝑆𝑆𝑆𝑆𝑆� � ��𝐻𝐻𝐻𝐻𝐻𝐻� � ��,� 
� � 1, … , 25;
� � 1, … ,𝑇𝑇.

13

Table 2 
Cont.
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Figure 1 Weights attributed by the weighted forward search (FSW): Portfolio 2, three-factor model
Source: Elaborated by the authors. 

Figure 1 presents the weight wi – defined in 
equation 9 – of each observation, obtained as a result of 
the weighted estimation procedure. The results show that 
7 observations, namely observations 6, 7, 9, 10, 12, 13, 
and 17, were severely down weighted by the FSW, while 
2 others, observations 1 and 2, were attributed weights 

between 0.2 and 0.6. The observed downweighing results 
from these observations lying outside the bounds of the 
simulation envelopes during the search. 

Figure 2 shows the distribution of sorted studentized 
residuals when m* = 77, i.e., when the search is 
interrupted.

Figure 2 Sorted studentized residuals and simulation envelopes
Source: Elaborated by the authors.

The upper and lower solid curves represent the 
simulation envelope bounds. There are 9 observations 
lying outside the lower envelope bound on the bottom-left 
of the plot, corroborating the results presented in Figure 1. 

These 9 observations are the ones with the lowest weights 
in Figure 1. The largest the distance of an observation 
from the bulk of the data – which lies within the envelope 
bounds – the lowest is its weight.
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4.2.1 Influential observations
In this section, we analyze the observations that 

were down weighted by the FSW. Figure 3 shows the 

average “outlyingness” – defined as one minus wi obtained 
according to equation 9 – of each observation across the 
25 portfolios for monthly data.

Figure 3 Average outlyingness across the 25 portfolios: Monthly data
Source: Elaborated by the authors. 

The higher the bar of an observation in Figure 3, 
the higher its degree of outlyingness. Three conclusions 
can be immediately obtained from Figure 3: (i) average 
outlyingness is higher in the single-factor setting than in 
the three-factor one; (ii) the most outlying observations 
in the three-factor setting also show a high degree of 
outlyingness in the single-factor setting, i.e., there are 
common influential observations across the portfolios 
in both settings; (iii) there is a cluster of influential 
observations around the year of 1974.

The 4 most outlying observations (highest bars) 
in both setting are circumscribed in the period from 
September 1973 to January 1976. Interestingly, the period 

corresponds to the well-known stock market crash of 
1973-1974 (see Shiller [2015]).

It is worth mentioning that not all observations 
identified as influential are related to extreme values of a 
specific factor (dependent variable). For instance, February 
1976, which is the 4th and 7th most outlying observation, 
respectively, in the single-factor and three-factor setting, 
corresponds only to an excess market return of 0.32%. 
Additionally, the most extreme value of the excess market 
return – which is 23.24% and corresponds to October 
1987 – is not among the 10 most influential observations.

Figure 4 shows the average outlyingness of each 
observation across the 25 portfolios for annual data.

Figure 4 Average outlyingness across the 25 portfolios: annual data
Source: Elaborated by the authors. 

In contrast to Figure 3, now the three-factor model 
shows a higher average outlyingness than in the single-
factor setting. Figure 4 reveals the presence of clusters of 
influential observations: around 1933 and around 2000, 
which correspond to, respectively, the end of the 4-year 
recession post the 1929 stock market crash (1935 and 1936 
correspond to the implementation of Franklin Roosevelt’s 

New Deal Policy) and the collapse of the dot-com bubble. 
A comparison of Figures 3 and 4 suggests that the SMB 
and HML factors are able to explain extreme returns, 
which are considered outliers in a single-factor setting 
for monthly data, but not for annual data.

While the year of 1933, the most outlying observation, 
is in fact the most extreme excess return of factor 1, the 
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year of 1954 – the 2nd most extreme return – does not 
stand out as an outlying year.

Our results also corroborate the findings of Knez and 
Ready (1997) and Bailer (2005) that January is, indeed, 
an influential month. In the single-factor setting, the 
average outlyingness of the month of January across the 25 
portfolios is 3.6 times the average outlyingness of October, 
the 2nd most outlying month, whereas in the three-factor 

setting, the average outlyingness of the month of January 
is 1.43 times the average outlyingness of September, the 
2nd most outlying month.

4.2.2 GRS tests
In order to test whether all the intercepts are jointly 

equal to 0, we compute the GRS (1989) statistics and 
p-values. Results are presented in Table 3.

Table 3 
Gibbons Ross Shanken (GRS) test: monthly and annual data

Monthly Annual

Single-factor Three-factor Single-factor Three-factor

OLS FSW OLS FSW OLS FSW OLS FSW

GRS statistic 2.20 2.68 1.59 2.09 2.68 2.97 2.49 2.31

p-value (%) 99.90 100.00 96.20 99.79 99.91 99.97 99.78 99.54

FSW = weighted forward search; OLS = ordinary least squares.
Source: Elaborated by the authors. 

Results on monthly data indicate that the three-factor 
model – estimated with OLS – is marginally rejected 
at the 0.95 level, while the CAPM is rejected at the 
0.99 level, in line with the results of Fama and French 
(1993). Our results also show that using the robust 
estimates obtained with the FS leads to an increase in 
the rejection level of both models. In particular, the 

three-factor model rejection level shifts from 0.9620 
to 0.9979.

Using annual data, there is no significant difference 
from using OLS or robust estimates in both the single-
factor and the three-factor model, but the robust estimates 
increase the rejection level of the single-factor model 
and decrease the rejection level of the three-factor one.

5. FINAL REMARKS

Our aim in this paper is to assess the impact of 
outliers on the estimation of asset pricing models and 
in associated statistical tests. For this, we propose a 
new weighted robust estimator, which was developed 
and applied for the estimation of asset pricing models. 
Comparison of the performance of the FSW, OLS, and 
LTS on simulated data indicates that the FSW method 
provides more reliable estimates in the presence of 
outliers, at the same time being almost as efficient 
as OLS when data is outlier-free. It should be also 
noticed that the precision of the intercept estimates 
is highly increased when the FS methods are used on 
contaminated data.

One contribution of the research is the application 
of the FSW – both efficient and robust – on the Fama 
and French (1993) 25 portfolios, which are a benchmark 
frequently used in the literature. The FSW allowed us to 
identify that many of these portfolios contain outlying 
observations, both in the single and three-factor model 
settings. The rejection levels in the GRS tests were 
increased when robust estimates were used, indicating 

that the marginal rejection of the three-factor model is 
influenced by the presence of outliers in the portfolios. 
This is in line with previous research, which indicates that 
estimates of asset pricing models are highly sensitive to 
a few influential returns.

Another contribution of this paper is the estimation 
of the Fama and French (1993) three-factor model on 
annual data. Our results indicate that the model does not 
perform as well as it does on monthly data in explaining 
the cross-section of expected returns. Moreover, more 
outlying observations are detected in the three-factor 
model than in the single-factor CAPM. This is in contrast 
to our results on monthly data. The results of the GRS tests 
support the rejection of the hypothesis that the intercepts 
of the portfolios are jointly 0, both for the CAPM and for 
the three-factor model.

We have also provided evidence that some observations 
are commonly considered outliers both in the single 
and three-factor models. It is possible to relate these 
observations to particularly relevant events in the 
economy, such as financial market crashes, economic 
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crisis, and asset price bubbles. This is one direction that 
should be explored further.

Limitations of the research include the assumption 
that beta coefficients and risk premiums are constant 
across time. These assumptions could be relaxed 
and one could explore to what extent the results of 

the conditional CAPM, such as those provided by 
Jagannathan and Wang (1996) are influenced by the 
presence of outliers.

Another promising possible way for future research 
would be to extend the works of Jensen (1967) and Carhart 
(1997) on the performance of mutual funds.
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