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Abstract
In 1998 Genton proposed a variogram estimator

claimed to be robust against outliers and compared it
to Matheron’s and Cressie-Hawkins’ variogram
estimators. Lark (2000) extended the comparison
evaluating the effects of nonnormality. However, the
comparison was limited to the spherical variogram
model. In this paper 4 variogram estimators are
compared including Genton’s by using Monte Carlo
simulation. Data with and without outliers were
simulated using the spherical, exponential and wave
models. The results showed that Genton’s and the Median
estimators were the best choices for contaminated data,
while those of Matheron and Haslett presented better
results for non-contaminated date; this latter being
appropriate only for time series analysis.

Keywords: Spatial statistics, robust and non-robust
variogram estimators, outliers.
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Resumo
Em 1998, Genton propôs, um estimador de

variograma que seria robusto em relação à presença de
valores discrepantes (outliers) e o comparou com os
estimadores propostos por Matheron e Cressie-Hawkins.
Lark (2000) estendeu os resultados, avaliando o
desempenho dos estimadores na presença de não-
normalidade. Entretanto, ambos os trabalhos trataram
apenas do modelo de variograma esférico e com algumas
limitações. Nesse artigo, quatro estimadores de
variogramas, incluindo o de Genton, são comparados
através de simulação de Monte Carlo. Dados sem e com
outliers foram simulados, considerando os modelos de
variograma esférico, exponencial e senoidal. Os resultados
mostraram que os estimadores de Genton e o da Mediana
são melhores para dados com outliers, enquanto que o
de Matheron e o de Hastlett são melhores para dados
sem outliers, sendo o último adequado apenas para o
caso de análise de séries temporais.

Palavras-chave: Estatística espacial, estimadores
robustos e não-robustos de variogramas, dados
discrepantes.
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1. Introduction
Variogram is an important tool in

Geostatistics because it is used in the
kriging procedure (Marchant and Lark,
2004). Many variogram estimators can
be found in literature using parametric and
non-parametric methodologies (Chilès
and Delfiner, 1999). The better known is
Matheron’s (1962) which is very affected
by the presence of outliers in the data
set. Other alternatives are: Cressie and
Hawkins’ (1980) which was build to be
robust against outliers and
nonnormality;  Median’s (Cressie, 1993)
and Genton’s  (1998) which were
supposed to be robust against outliers;
and the estimator proposed by Haslett
(1997) used in a time series context
especially for non-stationary data.
Genton (1998) showed that his estimator
had good performance in comparison to
that of Matheron’s and Cressie &
Hawkins’. However, only spherical
variogram models were considered in his
study and only one replicate was
generated for each simulated model. In
2000, Genton’s comparison was extended
by Lark (2000) who included Dowd’s
variogram estimator in his study and
showed that all the estimators, except
Matheron’s, were very affected by
nonnormality. Both mentioned papers
used only the spherical variogram model.
In this paper, the authors extended
Genton’s and Lark’s results in respect to
the outliers problem for non-spherical
model and explored the wave variogram
model, which has not appeared very
often in other published studies. The
Hastlett´s (1997) variogram estimator was
also included in the study.

2. Methods and materials
2.1 Geostatistics
methodolody

Geostatistics methodology was
initially formulated for geological data
(Matheron,1962). Nowdays, it has been
used in many other fields, even for
variables that are not of the physical-
chemistry nature (Cressie, 1993; Mingoti

et. al, 2006). Let {Z(x), x ∈ D} be the spatial intrinsically stationary stochastic
process, i.e.

(i)   E [Z(x)] = µ  ,  ∀∀∀∀∀ x ∈∈∈∈∈ D

(ii) Var [Z(xl) - Z (xk)] =  2γγγγγ (xl - xk) , where  xl ≠≠≠≠≠ xk ∈∈∈∈∈ D.

The quantities 2γγγγγ (.)  and (.) are called, respectively, variogram and semivariogram
of the process {Z(x), x ∈ ∈ ∈ ∈ ∈ D}, where D is the domain under investigation. When the
variogram is only a function of the distance between the two coordinates, ||xl - xk||=h,
the process is also called isotropic. The variogram determines the weights given to
each sample value in the prediction of unsampled locations and it is also used to
estimate the kriging variance.

2.2 Variogram estimators
In this section, we briefly present the variogram estimators, so-called sample or

experimental variograms, which will be compared in this paper. We use the
conventional notation for Geostatistics methodology. For all the estimators, Nh, is
the cardinality of N(h) = {(xi, xj):||xi - xj)||=h} and {Z(x1), Z(x2),...,Z(xn)}is a sample of
the spatial process {Z(x), x ∈∈∈∈∈D}.

2.2.1 Matheron’s classical variogram estimator

The estimator based on the method-of-moments proposed by Matheron (1962)
is defined in (1) and is unbiased for the true theoretical  values. It is the average of
the squared differences between observations separated by the distance h.

(1)

This estimator is very affected by the presence of outliers and even a single
discrepant datum can distort the final variogram estimates.

2.2.2 Cressie-hawkins robust variogram estimator

The estimator proposed by Cressie and Hawkins (1980) is given by

(2)

where  is a correction factor for bias when the variable

Z(.) is normal. This estimator was built to be robust against outliers and nonnormality
for distributions that are normal-like in the central region but heavier than normal in
the tails.

2.2.3  Median variogram estimator

The median variogram estimator (Cressie and Hawkins, 1980) is defined as

(3)
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where med(.) denotes the median and Bh is a correction factor for bias when the
variable Z(.) is normal. Asymptotically Bh=0.457. This estimator is also known as
Dowd’s (1984) and it is supposed to be robust against outliers.

2.2.4 Genton’s highly robust variogram estimator

The estimator proposed by Genton (1998) is defined as:

(4)

where ,

 is the kth order statistics of the differences (Vi(h) - Vj(h)) and [w] is

the integer part of w. The factor 2.2191 is a correction for bias when Z(.) has a normal
distribution. Genton’s estimator is based on Rousseeuw and Croux (1993)
methodology. It is claimed to be highly robust against outliers.

2.2.5  Haslett’s  variogram estimator

The variogram proposed by Haslett (1997) in the univariate time series context
is defined as:

(5)

where dhi = (Z(xi) - Z(xj)). Haslett’s estimator is the sample variance of the differences
(Z(xi) - Z(xj))and it was proposed as a tool to recognize ARMA stochastic processes
in time series context. In his paper Haslett showed that his estimator had a good
performance for non-stationary series.

2.3 Monte Carlo Simulation
In order to compare the performance of the variogram estimators, 100 samples

of size n=100 were simulated from each of the theoretical variograms presented in
Figure 1. Basically, the data were generated according to the methodology proposed
by Sharp (1982). The idea is to represent the semivariogram model in terms of an
ARMA (p,q) stationary process (Box and Jenkins, 1976). If Z(x), x∈ℜ∈ℜ∈ℜ∈ℜ∈ℜ, follows an

ARMA(p,q) stationary process then the
theoretical variogram of Z(.) can be
expressed as

2γγγγγ (h;θθθθθ) = 2σσσσσ² (1 - ρρρρρh) (6)

where σσσσσ² is the variance of the process,
ρρρρρh is the autocorrelation between Z(x)
and Z(x+h), and θθθθθ is the parameter vector
of the theoretical variogram of the
process. By using the relation (6) and
changing the values of (p,q), it is
possible to generate variogram models
such as spherical, exponential and wave.
For p=1 and q=0 the related variogram is
the spherical. For p=1 and q=1 the
exponential variogram is generated and
finally for p=q=1 the related variogram is
the wave. For all ARMA processes
considered in this paper the random noise
was generated according to a normal
distribution with zero mean and fixed
variance. All generated series have the
same mean value. Data with and without
outliers were simulated. The percentage
of outlier contamination were 5,10 and
15%. The introduction of outliers was
performed in three steps: (1) first a sample
was simulated from the respective
ARMA process without outliers, i.e,
Z(x)=δ+φZ(x-1)-αe(x-1)+ e(x), with e(.)
being the random error generated from a
normal distribution; (2) then a second
sample was simulated from the same
ARMA model but with a constant added,
i.e, Z(x)=δ+φ Z(x-1)-αe(x-1) + e(x) + δ* ;
(3) a percentual of the first sample was
then substituted  for values from a
second sample. By using this procedure,
it was assured that the theoretical
covariance and correlation structure from
both ARMA models (generating data
with and without outliers) were the same.

Figure 1 - Simulated theoretical variogram models.

(a) - Spherical (b) - Exponential (c) - Wave
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square mean error (SME) values for each
variogram estimator are presented in
Tables 1 and 2, for the first 4 lags, for
data with and without outliers.

3. Results and
discussion

For data with no outliers, the
analysis of the results showed that for
the spherical and exponential variogram
models, Haslett’s estimator achieved the
best performance followed by
Matheron’s, Genton’s and Cressie &
Hawkins’. The Median estimator
presented the highest number of errors
and greatest dispersion. In the case of
the wave variogram, for the initial lag h,
all the estimators were able to recover
the general mathematical form of the

Table 1 - Square Root of the Square Error Mean - Data without outliers.

theoretical variogram model of the spatial
process. However, for larger h, the errors
increased significantly especially for

values of h near to  ][
2
n . The best

estimators for the wave variogram were
Matheron’s followed by Haslett’s,
Cressie & Hawkins’ and Genton’s.
Median presented the worst results. For
the spherical and exponential variogram
models having 5, 10 and 15% of outliers,
the Median estimator presented the best
performance, followed by Genton’s and
Cressie & Hawkins’. Haslett’s and
Matheron’s had the worse results. In
general, for small and larger lags and
regardless of the estimators used, the
insertion of a larger amount of outliers in
the data increased the value of the
variogram estimates and the number of

Lag(h) Matheron Cressie-H Genton Median Haslett

1 0.8034 0.9935 10.503 14.089 0.8227

2 19.634 22.847 27.761 30.901 20.129

3 33.191 39.047 41.226 50.996 33.983

4 46.550 54.796 65.026 68.990 47.663

1 35.912 36.797 33.997 37.970 35.431

2 24.040 26.932 32.882 32.881 24.646

3 59.628 62.213 67.707 72.892 61.130

4 93.087 95.355 111.677 113.774 94.964

1 26.658 41.787 43.520 72.689 26.830

2 97.376 164.102 198.830 266.239 98.185

3 188.116 331.809 343.898 555.262 189.798

4 265.146 511.283 604.818 887.817 267.636

Spherical Variogram

Exponential Variogram

Wave Variogram

All the variogram estimators were
calculated for each generated sample for

h={1,2,…, ][
2
n }. The value  ][

2
n was

chosen according to Journel and
Huijbregts’ rule (1997). For each value of
h the estimated and the theoretical
variogram values were compared by
using the mean, the absolute, the relative
and the squared mean errors. For each
estimator, the average of the variogram
estimates for each lag was calculated.
They are presented in Figures 2 to 4 with
the squared root of the square mean error
(SME) values. In each graph the
simulated variogram model is
represented by a solid line. All mean
errors presented a geometrical form
similar to the squared root of the SME
and will not be shown in this paper. The
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Figure 2 - Performance results for variogram estimators - spherical model.
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Figure 3 - Performance results for variogram estimators - exponential model.
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Figure 4 - Performance results for variogram estimators - wave.
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Table 2 - Square Root of the Square Error Mean- Data with outliers.

Lag(h) Matheron Cressie-H Genton Median Haslett
1 654.445 92.983 33.770 20.120 661.554
2 653.371 137.552 78.191 48.475 660.820
3 654.517 178.439 109.140 74.404 662.282
4 671.959 215.220 156.547 101.247 680.150

1 1.085.309 239.243 83.459 43.988 1.140.997
2 1.078.840 318.031 176.450 91.820 1.149.541
3 1.048.934 372.010 236.223 134.933 1.106.994
4 1.076.420 433.446 331.939 181.427 1.143.266

1 1.563.961 456.329 149.521 68.490 1.580.291
2 1.548.231 567.293 295.837 139.458 1.564.785
3 1.516.532 653.019 392.787 200.122 1.532.945
4 1.520.011 705.257 509.807 247.440 1.536.659

1 656.070 65.617 14.249 23.514 663.533
2 713.765 174.251 109.808 67.798 722.099
3 734.944 262.287 186.249 139.898 743.573
4 747.219 315.131 268.705 196.350 755.985

1 1.152.196 217.412 51.002 21.652 1.167.444
2 1.143.526 351.862 206.261 103.604 1.159.428
3 1.166.803 458.268 315.021 194.810 1.181.755
4 1.176.336 541.807 447.674 271.093 1.192.505

1 1.447.039 383.122 110.299 35.470 1.462.512
2 1.515.220 615.008 373.650 177.080 1.531.612
3 1.505.296 722.597 512.435 283.309 1.521.783
4 1.523.626 828.245 710.080 393.094 1.540.404

1 1.554.921 352.822 191.793 139.841 1.573.291
2 1.465.806 735.577 732.720 534.613 1.490.297
3 1.372.436 1.069.226 1.144.364 1.096.379 1.405.224
4 1.287.531 1.347.030 1.663.621 1.678.248 1.328.201

1 2.469.558 755.574 414.729 228.535 2.497.187
2 2.381.877 1.332.707 1.351.223 787.117 2.415.639
3 2.160.840 1.749.147 1.874.147 1.499.643 2.201.810
4 2.047.295 2.128.884 2.550.874 2.374.310 2.096.445

1 3.173.478 1.254.706 772.100 401.619 3.208.233
2 2.949.795 1.956.174 2.122.154 1.350.985 2.989.318
3 2.796.696 2.538.375 2.844.294 2.481.067 2.844.066
4 2.523.909 2.852.847 3.309.492 3.385.333 2.578.106

Wave Variogram - 15% outliers

Exponential Variogram - 10% outliers

Exponential Variogram - 15% outliers

Wave Variogram - 5%  outliers

Wave Variogram - 10% outliers

Spherical Variogram - 5%  outliers

Spherical Variogram - 10%  outliers

Spherical Variogram - 15%  outliers

Exponential Variogram - 5%  outliers
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estimates errors. For contaminated data
all the robust estimators were able to
recover the geometric form of the
spherical, exponential and wave
theoretical variograms. Matheron’s and
Haslett’s estimators were only able to
recover the geometrical form of the wave
model. The estimators in the robust class
presented better results for the wave
variogram in the initial lags in
comparison to the non-robust ones.  The
simulations also show that in general the
variogram estimators overestimate the
true values of the theoretical variograms.
These results were similar to those
observed in Genton’ paper (1998) for the
spherical model. In relation to the Journel
and Huijbregts’ rule (1997), Matheron,
Cressie-Hawkins and Genton’s
estimators presented more stable values

around the reference number  ][
2
n ,

contrary to the Median estimator, which
was very unstable in this neighborhood,
and to the Haslett’s one,which had the
tendency to degenerate before the value
 ][

2
n . Since in general the sample variogram

values for h=1,2,…, ][
2
n   are used to fit

the parameters of the true spatial model,
the results presented in this paper are
important because they show that
Journel and Huijbregts’ rule was not
suitable for Haslett’s and Median
estimators.

4. Conclusions
The results showed that in the presence of outliers, Genton’s and  Median

variogram estimators should be preferred for the estimation of all the theoretical
variogram models presented in this paper. For data without outliers, Matheron’s and
Haslett’s had better performance except for the wave variogram model. Therefore, a
previous analysis for the presence of outliers in the data set is crucial in order to
decide which variogram estimator is more appropriate. The Journel and Huijbregts’
rule (1997) did not work very well for the Haslett’s and Median estimators.
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