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A Constraint 
Programming approach to 
solve the clustering problem 
in open-pit mine planning
Abstract

Since the open-pit precedence-constrained production scheduling problem 
is an NP-hard problem, solving it is always a challenging task, especially from 
a long-term perspective because a mineral deposit containing millions of blocks 
would require several million precedence arcs as constraints, making the solution 
time grow exponentially and making a direct approach unfeasible. Therefore, 
different strategies have been employed since the 1960s to reduce the size of this 
problem, such as determining the ultimate pit limit, subdividing it into phases, 
segmenting the production scheduling problem into long-, mid-, and short-term 
plans, as well as aggregating blocks into clusters, thus significantly reducing the 
number of precedence arcs. Different modeling and clustering strategies have al-
ready been employed in an attempt to reduce the size of the mine sequencing 
problem, such as layer modeling, re-blocking, bench-phase clustering, or polygon 
(mining cut) clustering based on a similarity function. The mining cut clustering 
problem has been solved lately by machine learning and heuristics techniques, and 
this approach can also introduce operational constraints to the mine sequencing 
problem, such as equipment size, minimum pit width, and preferential mining di-
rection. In this study, we propose a mining cut clustering model based on Mixed 
Integer Linear Programming (MILP). Then we solve it by an exact approach and 
by Constraint Programming (CP), analyzing the strengths and weaknesses of the 
Constraint Optimization Problem (COP) and Constraint Satisfaction Problem 
(CSP) techniques. Numerical experiments were carried out on the Bench 15 of the 
Newman1 dataset, demonstrating the superiority of the COP approach.

Keywords: mine planning, mining cut clustering, mixed integer linear programming, 
constraint programming.
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1. Introduction

Mining

The representation of mineral depos-
its in block models proposed by Axelson 
(1964) revolutionized the way of ap-
proaching and studying mining operations 
in these deposits, mainly regarding the 
determination of mine sequencing. How-
ever, even if mathematical models capable 

of representing this problem were already 
available, such as the Linear Program-
ming (LP) models of Manula (1965) and 
Johnson (1969), the limited computational 
capacity at that time was prohibitive even 
for solving small instances. The open-pit 
production scheduling problem can be 

seen as a precedence constrained knapsack 
problem, which is an NP-hard problem, 
signifying that there are no known al-
gorithms capable of solving it exactly in 
polynomial time. Thus, depending on the 
number of constraints imposed, even solv-
ing small scale problems is still a challenge 
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today, even though there are world-class 
deposits containing millions of blocks, 
which result in several millions of pre-
cedence arcs, making the monolithic ap-
proach to the problem impractical. There-
fore, great effort was made to formulate 
subproblems of the main problem of mine 
sequencing, resulting in the subdivision of 
the monolithic problem into three distinct 
time horizons: long-, medium-, and short-
term production scheduling problems.

Lerchs & Grossmann (1965) pro-
posed a Dynamic Programming (DP) 
approach to solve exactly the ultimate 
pit limit (UPL) problem for 2D instances, 
which would make it possible to eliminate 
the blocks whose extraction would not 
be economically feasible from the mine 
sequencing problem. They also formulated 
the UPL problem as a maximum closure 
of a graph problem to solve exactly 3D 
instances, a solution that would wait for 
two decades until its full implementation 
(Whittle, 1988). Lerchs & Grossmann 
(1965) also proposed a parametric al-
gorithm to solve the mine sequencing 
problem, an approach that is still widely 
used today in order to generate nested pits 
and phases, these being considered as a 
reference for the transition from strategic 
planning to tactical and operational plans. 
Nevertheless, even after employing these 
problem reduction strategies, the produc-
tion scheduling can be very difficult to be 
solved, and an additional issue related to 
the convergence between the plans in the 
different time horizons should also be con-
sidered, since the operational plan requires 
several constraints that were ignored 
during the strategic plan determination, 
such as minimum pit width, positioning 
of ramps, equipment size, and preferred 
mining direction.

A strategy that was widely used in 
horizontally mineral deposits like coal, 
phosphate, and bauxite mines was to 
model these deposits as 2D seams, layers, 
or strata instead of using a regular block 
model, thus significantly reducing the size 
of the mine sequencing problem. Albach 
(1967) proposed a Chance-Constrained 
Programming (CCP) to assess the un-
certainty in coal seam boundaries, while 
Metz and Jain (1978) proposed a DP-
based model to solve the sequencing of 
phosphate layers, in addition to proposing 
a Mixed Integer Non-Linear Program-
ming (MINLP) model and a heuristic to 
solve it. Klingman & Phillips (1988) pro-
posed an Integer Programming (IP) model 
based on panels that considered the thick-

ness of the phosphate layers and the size 
of a dragline, using a branch-and-bound 
algorithm for solving it, while Samanta et 
al. (2005) employed a genetic algorithm 
(GA) to determine the operational plan of 
a layered bauxite deposit. Although this 
type of model is efficient in simplifying 
the mine sequencing problem, it cannot 
be used in deposits that do not present 
this characteristic of great continuity in 
sub-horizontal directions. Another widely 
used technique, available in commercial 
mine planning software, is to group the 
blocks belonging to the same bench and 
the same phase into bench-phase units, 
determining the geometrical precedence 
and then sequencing these larger units, 
instead of operating on the individual 
blocks, from which we can quote the 
contributions of Menabde et al. (2004), 
Whittle (2004), Epstein et al. (2012), and 
Rezakhah et al. (2020).

Although there are re-blocking 
propositions (Chanda & Ricciardone, 
2002; Jélvez et al., 2016), techniques 
that incorporate slope angle to clusters 
(Ramazan, 2007; Mai et al., 2018), and 
even temporal aggregation propositions 
(Newman & Kuchta, 2007) instead of 
aggregating blocks, the most applied 
methodology today to reduce the size of 
the open-pit mine sequencing problem 
is the mining cut clustering. Through 
this technique, the blocks belonging to 
a same bench are grouped into polygons 
based on a predetermined similarity 
function, and by seeing this process as 
an optimization problem apart from the 
production scheduling problem, it is pos-
sible to incorporate several constraints to 
this clustering problem, such as minimum 
and maximum size of the clusters, shape 
control, minimum width, mining direc-
tion, among others. Another challenge, 
however, is that the clustering problem 
is also NP-hard, such that the solution 
of larger instances is challenging for the 
algorithms, which is why so far, the ma-
jority of published articles have used heu-
ristics and techniques based on machine 
learning in the solution of the mining cut 
clustering problem. Askari-Nasab et al. 
(2010a) proposed an approach based on 
Fuzzy Logic Clustering (FLC) to generate 
mining cuts from an iron ore deposit and 
input them into a production scheduling 
model based on Mixed Integer Linear 
Programming (MILP), an approach that 
was also implemented by Askari-Nasab 
et al. (2011), Ben-Awuah & Askari-
Nasab (2011), and Ben-Awuah et al. 

(2012). Eivazy & Askari-Nasab (2012a), 
in turn, proposed a Fuzzy C-means 
(FCM) approach to generate mining cuts 
and input them into MILP-based mine 
planning models, technique also used by 
Koushavand et al. (2014). Askari-Nasab 
et al. (2010b) developed a two-stage min-
ing cut clustering algorithm based on a 
hierarchical clustering (HC) step, which 
reduces the precedence arcs, and a refin-
ing step based on Tabu Search (TS), a 
technique that was enhanced by Tabesh 
& Askari-Nasab (2011, 2013) and has 
been widely used since then, i.e., Eivazy 
& Askari-Nasab (2012b), Badiozamani 
& Askari-Nasab (2014), and Upadhyay 
& Askari-Nasab (2016).

Askari-Nasab et al. (2013) and  
Tabesh et al. (2013, 2014, 2015) com-
bined the bench-phase stage with the 
HC-TS approach to generate mining 
cuts with each bench-phase and input 
them into a MILP-based production 
scheduling model. Tabesh & Askari-
Nasab (2019) introduced a K-means 
stage to the HC approach and developed 
a stochastic mining cut clustering work-
flow, which independently generates 
clusters for each equally probable real-
ization of a deposit and then applies an 
aggregation technique to extract a final 
clustering model from all realizations. 
Salman et al. (2021) developed a multi-
stage heuristic to generate mining cuts 
that uses K-means, fuzzy membership 
functions, post-processing and a geom-
etry correction step. Nelis & Morales 
(2022) developed a MILP-based model 
that simultaneously solves the mining 
cut and production scheduling problems 
based on blasthole sampling and selective 
mining units (SMUs), so that the model 
elects a list of SMUs to be the representa-
tive of the clusters, attach the other SMUs 
to those clusters and then refine the result 
before the mine sequencing stage. Nelis et 
al. (2022) proposed a MILP-based min-
ing cut clustering model and employed a 
column generation algorithm and Linear 
Programming relaxation to solve the 
problem, followed by an additional step 
that reaches an integer solution from the 
linear solution found in the previous steps. 
Figure 1 shows a diagram based on Nelis 
& Morales (2022) that explains the tran-
sition from strategic to operational mine 
planning, in which SMUs are generated 
from blasthole sampling and aggregated 
in mining cuts before the mine sequencing 
step, where the different colors represent 
the destinations for the mining cuts.
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2. Material and method

As aforementioned, the mining cut 
clustering problem is a block aggregation 
technique capable of reducing precedence 
arcs and adding operational constraints to 
the production scheduling problem model, 
requiring a similarity index to determine 
which features are considered and how 
the blocks will interact to generate these 
clusters. Bagirov et al. (2020) presented 
some variants of Minkowski norms that 
are often used in clustering problems, such 
as those based on the L1-norm (Manhat-
tan of city block norm), on the L2-norm 
(this considers the Euclidean distance), 
or on the L∞-norm (Chebyshev norm). 
However, Tabesh & Askari-Nasab (2011) 
claim that the requirement of coding the 
variables of the mining cuts clustering 
problem as binary variables would pre-
vent Minkowski norms from considering 
the similarities between the categories, as 
well as using a simple matching coefficient 
approach would fail, so they proposed a 

hierarchy of distances idea to calculate the 
similarities between variables. 

Considering I as the domain 
of blocks, j as a partition of I for  
j =1,…,n,∀j ∈ J, they proposed a similar-
ity index between two blocks b,c ∈ j as  
............................................. The R

b,c
 and 

C
b,c

 parameters are the penalties attrib-
uted to blocks with different lithologies 
and not located above the same cluster, 
respectively, considering an optimization 
in multiple benches. Therefore, if two 
blocks belong to the same lithology, their 
R

b,c
 value will be greater than two blocks 

from different lithologies. Likewise, the 
value of C

b,c
 will be higher if both blocks 

b,c ∈ j are above blocks belonging to the 
same cluster, aiming to increase the simi-
larity function Sb,c in these specific circum-
stances. Conversely, Db,c and G 

b,c
 are the 

normalized distance and the normalized 
difference of grades between blocks b and 
c, respectively. Consequently, the greater 

these distances between two blocks  
b,c ∈ j, the more the similarity function Sb,c 
will be penalized. W

D
 and W

G
 are calibra-

tion weights which, like penalties, can be 
assigned values between 0 and 1. Tabesh 
& Askari-Nasab (2013) formulated vari-
ants to this similarity function, includ-
ing................., ................  where T

b,c
 is 

the penalty applied to blocks that are not 
sent to the same destination. In this way, 
blocks that have different destinations 
receive lower T

b,c
 values, thus penalizing 

the similarity function S
b,c

. In this study, a 
similarity index         ................................
is as a combination of the indices em-
ployed in Tabesh & Askari-Nasab (2011, 
2013). As we approach block aggrega-
tion in mining cuts as an optimization 
problem, we also develop a MILP-based 
model to address the mining cut clus-
tering problem, independently of the 
production scheduling problem, a model 
described below.

Indices and sets:
I: Set of blocks in a bench (the problem domain);
J: Set of partitions that, when added together, equal the domain;
i: Index of a block (i = 1,…,m, ∀i ∈ I);
j: Index of a cluster (j = 1,…,n, ∀j ∈ J);
b,c: Indices representing two blocks in the domain I (b,c = 1,…,m, ∀b, c ∈ I);
adj4

b
: Set of blocks adjacent to b in the N-S and E-W directions (b = 1,…,m, ∀b ∈ I);

adj8
b
: Set of blocks adjacent to b in the N-S, E-W, NE-SW and NW-SE directions (b = 1,…,m, ∀b ∈ I);

Sb,c: Set that computes the similarity function between each block b and c (b,c = 1,…,m, ∀b, c ∈ I);
Dist

b,c
: Set that computes the Euclidian distance between each block b and c (b,c = 1,…,m, ∀b, c ∈ I).

This study presents a MILP-based 
model for the mining cut clustering 
problem, in addition to a Constraint 
Programming (CP) approach to solve 
the proposed model, where the mining 
cut clustering problem, the similarity 
index employed, and the MILP-based 
mathematical model are defined. The 
proposed methodology is applied to the 
Newman1’s Bench 15 (Espinoza et al., 
2013), comparing techniques and dis-
cussing the results. However, CP is not 
exactly an algorithm, but a paradigm 
that integrates techniques from artificial 

intelligence, computer science, opera-
tions research and programming lan-
guages, including constraint propagation 
(Kleer & Sussman, 1978), branch-and-
bound, and chronological backtracking 
(Golomb & Baumert, 1965). In this 
context, considering that a constraint 
represents a Cartesian product of the 
domains of the variables of a problem, 
a Constraint Satisfaction Problem (CSP) 
approach (Mackworth, 1977) can de-
termine the finite sets of variables that 
satisfies all constraints simultaneously. 
Thus, a filtering step reduces the domain 

of each variable so that it still contains 
all the values that can be assumed to 
satisfy the constraints. The Constraint 
Optimization Problem (COP) approach, 
in turn, introduces the minimization (or 
maximization) of an objective function 
to this CSP workflow, resulting in an op-
timal solution for the variables without 
violating the constraints. CP has already 
been used by other authors in optimiza-
tion problems, as in Khiari et al. (2010), 
Guns et al. (2013, 2016), and Dao et al. 
(2013, 2016, 2017), but never in solving 
the mining cut clustering problem.

Figure 1 - Scheme showing the transition from strategic horizon, 
based on exploratory blocks, to operational mine planning (Modified from Nelis & Morales, 2022).
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Equations 1 and 2, respectively, aim 
to count the blocks assigned to each cluster 
y

j
 and ensure the assignment of a partition to 

each block x
i
, while Equation 3 assures that 

only one cluster will be assigned to each 
block in the domain I. The min_n_cluster 
and max_n_cluster parameters are cre-
ated to avoid determining the number of 
clusters in advance, allowing each parti-
tion to be empty or not at the end of the 
optimization, as long as all blocks have 
been assigned to some cluster. Equations 
4 to 6 determine that each valid cluster 

must respect these boundaries, while any 
empty cluster must not contain blocks. In 
order to guarantee a smooth geometry for 
the clusters and avoid large recesses and 
corners, Equations 7 and 8 ensure that 
each block b ∈ j has at least one neighbor 
in the set adj4

b
 and two neighbors in the 

set adj8
b
 belonging to the same partition j, 

resulting in clusters with adequate edges. 
This is an arbitrary parameter that can 
be managed depending on minimum 
pit width and size of the mining equip-
ment. Equation 9, finally, assures that 

all blocks b and c only belong to a same 
cluster j if they have a maximum Euclid-
ian distance less than or equal to the 
arbitrary parameter γ, then guaranteeing 
the continuity of the clusters. It is worth 
noting that the decisions about each j be-
ing empty or valid clusters in Equations 
4 and 5 are indicator constraints, as well 
as M

b,j
 being equal to 1 in Equations 7 

to 9, such that these special constraints 
must be implemented according to the 
language or library being used, being 
linearized or not.

Decision Variables:
M

i,j
 ∈ {0,1}: Binary variable which assigns a cluster j to each block i (i = 1,…,m, ∀i ∈ I, j = 1,…,n, ∀j ∈ J);

x
i  
∈ {1, J}: Integer variable which assigns to each block i the value corresponding to the index of its cluster j (i = 1,…,m, ∀i ∈ I, j = 1,…,n, ∀j ∈ J);

y
j
 ∈ {0,I}: Integer variable which counts the number of blocks assigned to each cluster j (j = 1,…,n, ∀j ∈ J);

p ∈ {0,1}: Binary variable used to linearize the objective function.

Parameters:
min_size_cluster: Minimum number of blocks assigned to each cluster;
max_size_cluster: Maximum number of blocks assigned to each cluster;
min_n_cluster: Minimum number of clusters allowed for a bench;
max_n_cluster: Maximum number of clusters allowed for a bench;
γ: Maximum Euclidian distance (maximum diameter) between two blocks b,c assigned to a cluster j (b,c = 1,…,m, ∀b, c ∈ I, j = 1,…,n, ∀j ∈ J).

Constraints:
The constraints implemented in our MILP-based model are determined according to equations (1) to (9):

The objective function aims to maxi-
mize the sum of the similarity functions 
calculated between each block b,c assigned 
to each cluster j, then the result is divided by 
two to avoid symmetry issues (computing S

b,c
 

and S
c,b

). Thus, we would like to compute S
b,c

 
only when blocks b and c belong to the same 
cluster j, and the way to guarantee this would 
be to multiply the M

b,j
 and M

c,j
 variables by S

b,c
, 

resulting in a non-linear model. Therefore, a 

binary variable p ∈ {0,1} was introduced as 
an indicator constraint, assuming the value 
1 only when M

b,j
 and M

c,j
 were equal to 1, 

resulting in the linearized objective function 
as written in equation (10):

However, to solve the MILP 
model using the CSP approach, just 

omit the objective function, or write 
it as Max 0, as the algorithm extracts 

any feasible solution, not necessarily an 
optimal solution.

Objective Function:

y
j 
= ∑

i ∈ [1,m] Mi,j
 , ∀j ∈ J

x
i
= ∑

j ∈ [1,n] Mi,j
 × j, ∀i ∈ I

∑
j ∈ [1,n] Mi,j

 =1,∀i ∈ I

j ≠ Ø ⇒ y
j 
≥ min_size_cluster,∀j ∈ J

j = Ø ⇒ y
j 
= 0,∀j ∈ J

y
j 
≤ max_size_cluster, ∀j ∈ J

M
b,j

 = 1 ⇒ ∑
j ∈ [1,n] Mc,j

 ≥ 1,∀b ∈ j,c ∈ adj4
b

Max ∑
j∈[1,n] ∑b,c ∈ j

 (S
b,c

 × p) ⁄ 2

M
b,j

 = 1 ⇒ ∑
j ∈ [1,n] Mc,j

 ≥ 2,∀b ∈ j,c ∈ adj8
b

M
b,j

 = 1,M
c,j

= 1⇒ Dist
b,c

 ≤ γ,∀b,c ∈ j,∀j ∈ J

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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Figure 2 - Distribution of destinations (a), lithologies (b), and grades (c) of the Newman1's Bench 15.

The case study shown in the next 
section was run on a computer from the 
Laboratory of Mineral Research and 
Mining Planning (LPM) of the Federal 
University of Rio Grande do Sul (UFRGS), 
whose operating system has the Windows 
Server 2022, equipped with 2 Xeon 4214R 
2.40 GHz 12-core processors, 256 GB 
of RAM, 4 SSDs of 1 TB and 1 exter-
nal HD of 4 TB. The experiments were 
executed on bench 15 of the Newman1 

dataset (Espinoza et al., 2013), using 
the OR-Tools packages in Python, and 
those that rely on CP techniques used the 
CP-SAT solver, while those that rely on a 
MILP approach used the SCIP solver. The 
methodologies were compared in terms 
of processing time and the best solution 
achieved considering the objective func-
tion, as well as mine planning parameters, 
such as the mass of ore and waste sent to 
different destinations, the grades distribu-

tion, geometallurgical, and lithological 
classification dominant in each cluster. In 
addition, the silhouette coefficient, which 
has values between -1 and 1 and where 
high scores indicate better clusters, the 
Calinski-Harabasz index, where higher 
scores indicate better defined clusters, 
and the Davies-Bouldin index, which 
has a minimum score of 0 and where the 
lower the index, the better the separation 
between the clusters were also presented.

The Newman1 dataset has 1,060 
blocks distributed in 24 benches, con-
taining 4 lithologies and 2 a priori 
destinations, and although the bench 15 
has 83 blocks, 3 of them were excluded 
from the analysis because they did not 
have enough neighbor blocks to meet 
the parameters of the mathematical 
model, remaining 80 blocks. The min_
size_cluster and max_size_cluster parameters 
were determined as 5 and 16 blocks, 

respectively, and the min_n_cluster was 
achieved by dividing the total number 
of blocks by max_size_cluster, while the 
max_n_cluster was achieved by dividing it 
by min_size_cluster. The true coordinates 
of the block model were not available, 
so the spacing between a block and its 
neighbors in the E-W or N-S directions 
equals 1. The parameter γ, related to the 
cluster’s continuity, was set to 5. The 
adjustment of this parameter must be 

done meticulously for the instance stud-
ied. Low values may make it impossible 
to obtain feasible solutions, while high 
values would allow mixtures between 
elements from different clusters without 
violating the problem's constraints. 
Therefore, the γ value was obtained from 
trial-and-error experiments. Figure 2 
shows the distribution of destinations 
(a), lithologies (b), and grades (c) of the 
Newman1's Bench 15.

Comments:

3. Results and discussion

(a) (b)

(c)
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Initially, an attempt was made to 
obtain an exact MILP solution so that 
it could be compared to the solutions 
obtained by CP, but after running 
for 1,180,110.13 seconds (13.66 days) 
considering a gap of 10% as a stopping 
criterion, no optimum solution was 
reached. To illustrate how it is difficult 
to solve NP-hard problems by exact 
algorithms as their size increases, it was 
possible to obtain an exact solution for 
the Newman1's Bench 3, containing 15 
blocks, in 11.19 seconds, while a solu-
tion with a gap of 1% was obtained for 
Bench 9, with 49 blocks, in 2,472.97 
seconds, thus taking 221 times longer 
for a problem approximately 3 times 
larger. Therefore, given the impos-

sibility of obtaining an exact solution 
to serve as a parameter in an accept-
able time, we chose to explore the 
feasible solution space of the Bench 
15 through the CSP approach, and 
considering a stopping criterium of 
7 days (604,839.38 seconds), the CSP 
algorithm identified 74,581 feasible so-
lutions, although there is no guarantee 
that the entire solution space has been 
explored or that an optimal solution 
has been identified. It was possible to 
identify a discontinuity in the solution 
space, since 27,308 feasible solutions 
(36.62%) presented values between 
246,607,154.18 and 404,699,200.11, 
while 47,273 solutions (63.38%) reached 
values between 4,727,646,352.89 and 

4,891,735,908.29, the latter being the 
best solution found. Furthermore, 
we solved the proposed model by the 
COP approach considering a stopping 
criterion of 60 seconds and, includ-
ing the time required to generate the 
mathematical model in the solver, in 
117.14 seconds the algorithm reached 
a solution with an objective function 
of 4,893,625,450.99, slightly better 
than the best solution obtained by the 
CSP approach, but 5,163 times faster 
than investigating exhaustively the 
solution space to find it. Figure 3 pres-
ents the clusters generated by the best 
solutions of the Newman1's Bench 15 
achieved by CSP (a) and COP (b) ap-
proaches, respectively.

The CP approaches resulted in 
solutions with different numbers of 
clusters, and the optimization indi-
cators were favorable to the COP 
solution, proving the speed and con-
vergence capacity of the technique. 
However, the right side of the solution 
obtained by COP draws attention, in-
cluding one unnecessary waste block 
in the red cluster sent to the processing 
plant, which would increase the dilu-
tion and reduce the economic return 
of the solution. Considering that the 
entire Bench 15 was excavated, the 
present value of each block was cal-
culated, all of which presented mining 
costs, but only the blocks sent to the 
processing plant presented processing 

costs and benefits. 
Mining costs are equivalent to 

the tonnage multiplied by the mining 
cost of each block, information that is 
already available in the dataset. The 
processing cost calculation is similar, 
although the cost of processing an 
OXOR lithology block differs from 
the cost of processing a block con-
taining other lithologies. Finally, the 
processing benefit can be calculated 
by multiplying the selling price by 
the grade, mass, and recovery of the 
processed block. Furthermore, if this 
revenue is subtracted by mining and 
processing costs, we have the present 
value of a processed block. As it was 
also not indicated in the dataset what 

the monetary unit of the economic 
calculations would be, we chose to 
just call them units. Therefore, the 
present value of the CSP solution was 
equivalent to 217,379.77 units, while 
the solution achieved by COP resulted 
in a present value of 202,523.99 units. 
This difference must be attributed to 
the chosen similarity function, as the 
COP approach was more efficient in 
optimizing the model than the CSP 
approach, but as there were several 
factors composing this function, the 
trade-off among the factors affected 
the economic return of the best overall 
solution. Table 1 presents a summary 
of the best results obtained by the  
two techniques.

Figure 3 - Clusters generated in Newman1's Bench 15 by the CSP (a) and COP (b) approaches, respectively.

(a) (b)
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