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Introduction
The mechanisms of voice production are of great 

complexity (Pontes et al., 2005). There are many laryngeal 
diseases that cause changes in the voice. These pathologies 
may be of organic origin, such as nodules, cysts or edemas, 
or of neurological origin, such as paralysis in the vocal 
folds (Davis, 1979; Quek et al., 2002). The laryngeal 
pathologies nodule, Reinke’s edema and paralysis in 
the vocal folds are widely used in studies involving the 
classification of laryngeal pathologies in adults, both 
male and female (Barbosa-Branco and Romariz, 2006; 
Costa et al., 2013; Cummings, 2008; Pinho et al., 2016).

The methods of acoustic evaluation have raised 
interest in research for the development of tools to 
support the diagnosis of laryngeal pathologies, because 

it is a less traumatic method, not causing discomfort to 
the patient, when compared to traditional examinations 
for the detection of laryngeal pathologies. The methods 
of acoustic evaluation can be used both to evaluate the 
quality of voice, to perform pre-diagnosis of laryngeal 
pathologies, as well as the evolution of a medical or 
post-surgical treatment (Rabiner and Schafer, 1978).

There are several nonlinearities involved in vocal fold 
vibration and glottal wave generation. Due to such factors, 
classical methods of data analysis based on a linear model 
have been enriched with methods that are derived from 
the theory of nonlinear dynamical systems (Jiang et al., 
2006). Over the last two decades, researches considering 
the techniques of nonlinear dynamical systems and chaos 
theory include: phoneme classification (Kokkinos and 
Maragos, 2005), automatic speaker recognition (Reynolds 
and Heck, 2000), discrimination between healthy and 
pathological voices (Henriquez et al., 2009), diagnosis 
of laryngeal pathologies and effects of clinical treatments 
(Awan et al., 2010; Chai et al., 2011; Vaziri et al., 2010).

This paper has as main objective to increase the 
classification rates between healthy or pathological 
voices, as well as to discriminate between pathologies 
(discrimination among pathologies is still little explored 
in the literature) by using a more efficient method to 
estimate one parameter used in nonlinear dynamical 
analysis (NDA). This parameter is the reconstruction 
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delay. Fraser and Swinney (1986) introduced a method 
for estimating the reconstruction delay as the first 
minimum of the mutual information in place of the 
interval in which autocorrelation first crosses zero. 
Mutual information is an established concept from 
information theory, which measures dependency between 
random variables and was firstly introduced to measure 
channel capacity (Cover and Thomas, 2006; Shannon and 
Weaver, 1949). By estimating mutual information with 
a more efficient mutual information estimator, which 
was proposed by Kraskov et al. (2004) and is called here 
KSG estimator, we could observe improved classification 
rates. These results were obtained in contrast with the 
naive estimator commonly used (which is based on 
adaptive partitioning).

Methods
This section presents the methods and data used 

in this paper in order to compare and to improve the 
classification rates in NDA.

Naive estimation of reconstruction delay
As mentioned above, to find the reconstruction 

delay it is often used the average mutual information 
method (Fraser and Swinney, 1986). According to this 
method, one can ensure reconstruction vectors with 
the lowest level of redundant information, yet still 
correlated. Information theory aims to identify how 
much information a measurement made at a given time 
t has when observing another measurement, of the same 
signal, at a later time t + τ (Kantz and Schreiber, 2004).

The average mutual information between ( )x t  and 
its outdated version ( )x t + τ  with the naive estimator is 
obtained from a histogram of b bins, created to estimate 
the probability distribution of the data signal ( )x t  
(Costa et al., 2012):
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where ( )( )ip x t  is the probability estimate that the signal 
( )x t  takes a value within the i-th histogram interval, 

( )( ) jp x t + τ  is the probability estimate that ( )x t + τ  is 
the j-th histogram interval and ( ) ( )( ), ijp x t x t + τ  is the 
probability estimate that ( )x t  is in i-th interval and 
( )x t + τ  in j-th interval (Kantz and Schreiber, 2004). 

The reconstruction delay, then, is the value of τ for which 
the average mutual information function reaches its first 
local minimum (Fraser and Swinney, 1986).

However, there is evidence that the naive estimator for 
mutual information, obtained as above from histograms, 
is severely biased (Assis  et  al., 2016; Darbellay and 
Vajda, 1999). That is, the estimated mutual information 

value may not depict a true mutual information value 
nor a value close to the true mutual information value. 
This happens because this estimate strongly depends 
on the number b of bins (segments) used.

KSG estimation of reconstruction delay

Kraskov et al. (2004) developed a mutual information 
estimator (KSG estimator). KSG estimator is based on 
the work of Kozachenko and Leonenko (1987), which 
estimates entropy based on the k-th nearest neighbour 
distances. Mutual information can be written as 
(Equation 2):

( ) ( ) ( ) ( ); ,I X Y H X H Y H X Y= + − 	 (2) 

The basic idea of KSG estimator is to use different 
neighbours to estimate the marginal entropies ( )H X  
and ( )H Y  and to estimate the joint entropy ( ),H X Y  in 
order to cancel estimation bias. There are two slightly 
different estimators made by Kraskov  et  al. (2004) 
with similar performance, one of these is adopted here. 
This estimator considers the distance of each point to 
its k-th nearest neighbour, projects the distance in relation 
to X  and Y  and considers the wider spacing of the two: 

 max ,  
2 2 2

yx∈ ∈∈  
=  

 
. With these distances it is possible to count 

the number of points xn  and yn  in relation to X  and Y  
which are at a distance strictly less than the spacing 

2
∈ , 

as illustrated in Figure 1.
The estimate is performed as:

( ) ( ) ( ) ( ) ( ); 1  1x yI X Y k n n N= ψ − ψ + +ψ + +ψ 	 (3)

Figure 1. Determination of n∈ , xn  and yn  for the KSG algorithm, for 
2k =  and a data sample realization (indicated by n). In this example, 
3xn = , 5,yn =  and 13N = .
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where <⬚> denote the arithmetic mean, k  is the number 
of neighbours considered, N  is the sample size and ψ is 
the Digamma function. In this application of estimating 
reconstruction delay, just like with the naive method, 
each speech signal was delayed by τ and then mutual 
information was estimated between the original signal 
samples and the samples of the delayed signal. The number 
of samples of the speech signal was the number of 
samples to estimate mutual information.

If the distributions are very skewed and/or uneven, 
the authors of the method suggest to transform them so 
as to become more uniform (or at least singlehumped and 
more or less symmetric). In this case the KSG estimator 
gave excellent results after transforming the variables 
to logx x′ =  and logy y′ = .

Figure  2 illustrates reconstructed phase space 
examples with the optimum KSG estimated reconstruction 
delay τ to all speech classes considered in this paper.

Experimental data
The Disordered Voice Database (Model 4337, of 

the Kay Elemetrics, recorded by Massachusetts Eye 
and Ear Infirmary (MEEI) Voice and Speech Lab 
(Kay Elemetrics Corp., 1994) was used in the experiments. 
There were 53 talkers voice signals with healthy larynges 
and 118 talkers voice signals affected by laryngeal 
pathologies (55 voice signals of larynges affected by 

paralysis in the vocal folds, 45 voice signals of larynges 
affected by Reinke’s edema, and 18 voice signals of 
larynges affected by vocal nodules). The voice signals 
are from sustained vowel /a/. The voice signals of healthy 
larynges, originally sampled at 50000 samples/s, were 
sub-sampled to 25000 samples/s to match the sampling 
rate of the voice signals of pathological larynges.

Five classes of signals were considered in this study: 
healthy voice (SDL), voice signal with paralysis on vocal 
folds (PRL), voice signal with Reinke’s edema (EDM), 
voice signal with nodules on vocal folds (NDL) and all 
pathologies grouped (PTL). The linear discriminant analysis 
was used to investigate seven cases of discrimination: 
SDL vs. PTL, SDL vs. PRL, SDL vs. EDM, SDL vs. NDL, 
PRL vs. EDM, PRL vs. NDL, and EDM vs. NDL.

Classification

The selected voice signals database are analyzed by 
estimating reconstruction delay. Then, linear discriminant 
analysis and the statistical model using Cross-Validation 
k-fold stratified were performed to detect the presence 
of voice disorders caused by Reinke’s edema, paralysis 
on vocal folds and nodules on vocal folds pathologies 
and to compare with the results obtained using the naive 
estimator. In this work, the value of k is equal to 10 in 
the cross-validation process.

Figure 2. Reconstructed phase space examples of voice signals: (A) healthy, (B) with Reinke´s edema, (C) with nodule on vocal folds and 
(D) with paralysis on vocal folds.
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Initially, the classification performance is analyzed 
considering only two groups signals: one with all grouped 
pathologies and other with healthy voices (SDL vs. PTL). 
Posteriorly, the classification performance is analyzed 
among the other six classification cases: SDL vs. PRL, 
SDL vs. EDM, SDL vs. NDL, PRL vs. EDM, PRL vs. NDL, 
and EDM vs. NDL.

Evaluation and interpretation

In order to measure the accuracy of classifiers in 
each study case, three measures are commonly used: 
accuracy, sensitivity and specificity. These measures are 
related to the ability of a classifier in diagnosing a disease 
in a sick patient (True Positive - TP) or healthy patient 
(False Positive - FP), or, still, diagnosing a healthy state 
in a healthy patient (True Negative - TN) or sick patient 
(False Negative - FN) (Costa et al., 2012).

The accuracy of classification measures the global 
correct classification rate, reflecting the ability of the 
classifier to identify correctly when there is a disorder. 
The accuracy is defined as the ratio between the number 
of correctly classified cases and all presented cases to 
classifier (Costa et al., 2012):

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +

	 (4)

The sensitivity of classification measures the classifier 
ability to identify the disorder when it actually exists. 
Sensitivity is defined as the ratio between the number 
of correctly classified cases with the disorder and the 
total number of cases of the disorder:

TPSensitivity
TP FN

=
+

	 (5)

The specificity of classification measures the ability 
of the classifier to identify the absence of the disorder 
when it actually does not exist. Specificity is defined 
as the ratio between the number of correctly classified 
healthy cases and the total number of healthy cases:

 
TNSpecificity

TN FP
=

+
	 (6)

The classifier presents high performance if it is 
able to obtain high values for accuracy, sensitivity and 
specificity. The representation of sensitivity and specificity 
is clearer when it comes to discrimination between healthy 
and pathological classes. When there is discrimination 
between pathologies, it must be defined in the classifier 
which group will have its correct classification measured 
by sensitivity and which group will have its correct 
classification measured by specificity.

Results
Before presenting the classification results, in this 

section we evaluate both naive and KSG estimators 
using synthetic signals. In the simulations, we generated 
bivariate Gaussian datasets, with 0  mean, unit variance 
and specific values for correlation coefficients: 0r = , 

0.3r = , 0.6r =  and 0.9r = . Figure  3 presents bivariate 
Gaussian datasets, with sample size 500N = .

For these cases, there is an analytical value for mutual 
information, which can be used to compare the estimates:

( ) ( )21;  log 1
2

I X Y r= − − 	 (7)

Figure 4 illustrates the estimation with both methods.
It is visible from the simulations that KSG estimator 

is minimally biased, that is, the mean of the estimator is 
close to the analytical mutual information value, for all 
five values of tested k. However, there is a huge variation 
in the naive estimates according to the number of bins 
used. The mean value of the naive estimates does not 
generally fit the analytical mutual information value, 
especially when using more bins.

Now we present the results obtained from the 
classification process of healthy and pathological voices in 
order to investigate the discriminatory potential of a more 
precisely estimated reconstruction delay. The objective 
is to compare the detection and the discrimination of 
voice disorders with the results obtained with the naive 
estimator. The voice disorders analyzed here are Reinke’s 
edema, paralysis on the vocal folds and nodules on the 
vocal folds.

Reconstruction delay estimation
Initially we estimate the value of reconstruction 

delay using the naive estimator and the KSG estimator, 
in order to compare which method was able to estimate 

Figure 3. Bivariate Gaussian datasets with different correlation coefficients r.
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Figure 4. Mutual information estimates using the naive estimator (A) and the KSG estimator (B). The naive estimates are plotted as a function of 
the number of bins used in the procedure. The KSG estimates are plotted as a function of the number of neighbours used in the estimation. The data 
had Gaussian distributions with zero mean, unit variance and correlation coefficients 0r = , 0.3r = , 0.6r =  and 0.9r = , in each panel. Solid blue 
lines indicate mean values over 100 trials, each trial with sample size 400, dashed blue lines indicate 10% to 90% of the values, whereas red lines 
indicate analytical mutual information value.

lower values. This was an interesting investigatory step, 
since it is desirable to estimate the lowest value of τ that 
reduces redundant information among vectors. Figure 5 
illustrates the distribution of average values of τ for signals 
of healthy voices (SDL) and signals of pathologies with 
Reinke’s edema (EDM), nodules (NDL) and paralysis 
(PRL). We used both naive and KSG estimators. When 
using KSG estimator, we used the parameter 3k = , as 
recommended in literature (Kraskov et al., 2004).

The results presented in Figure 5 revealed some 
differences in values of reconstruction delay between naive 
estimator and KSG estimator for all classes considered. 
In some cases the values of reconstruction delay fall more 
than a half. For example, for edema class, the naive method 
estimates a value of reconstruction delay 16τ =  while KSG 

estimator estimates a value 8τ =  to the same speech signal. 
For nodule class, the naive method estimates a value of 
reconstruction delay 15τ =  while KSG estimator estimates 
a value 7τ =  to the same speech signal. For paralysis class, 
the classical method estimates a value of reconstruction 
delay 20τ =  while KSG estimator estimates a value 9τ =  
to the same speech signal.

We performed statistical tests to confirm the 
hypothesis that the distribution for each class and method 
were significantly different. We chose non-parametric 
statistical tests because they are more broadly 
acceptable. To evaluate differences in the medians of 
the reconstructed τ’s with both methods within a single 
class, we used Wilcoxon signed-rank test. On the other 
hand, to evaluate differences between classes using KSG 
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method, we used Wilcoxon rank sum test. The obtained 
results were: SDL(Naive) x SDL(KSG) – p= 0.0042 
and h=1, EDM(Naive) x EDM(KSG) – p= 0,0001and 
h=1, NDL(Naive) x NDL(KSG) – p= 0.0005 and 
h= 1, PRL(Naive) x PRL(KSG) – p= 061.1467e−  
and h= 1, SDL(KSG) x EDM(KSG) – p= 0.0003 
and h= 1, SDL(KSG) x NDL(KSG) – p= 057.6711e−   
and h= 1, SDL(KSG) x PRL(KSG) – p= 0.0041 
and h= 1, SDL(KSG) x PTL(KSG) – p= 057.3534  e−   
and h= 1, EDM(KSG) x NDL(KSG) – p= 0.1017 and 
h= 0, PRL(KSG) x EDM(KSG) – p= 0.6084 and h= 0, 
PRL(KSG) x NDL(KSG) – p=0.0314 and h=1.

Thus, there are significant differences between KSG 
estimated τ and naive estimated τ for all considered 
classes. When using KSG method to estimate τ, we 
observe that the comparison of SDL x EDM, SDL x NDL, 
SDL x PRL, SDL x PTL and PRL x NDL presented 
significant statistical differences among the estimated τ. 
We observe that the only cases where there was not a 
significant difference between KSG estimated τ were 
the comparisons EDM x NDL and PRL x EDM.

Classification between healthy voices versus 
affected voices by pathologies

This section presents the results obtained between 
healthy voice signals (SDL) and voice signals affected by 
diseases, Reiken’s Edema (EDM), Paralysis (PRL) and 
Nodule (NDL), individually: SDL x EDM, SDL x PRL 
and SDL x NDL, and grouping all the pathologies in a 
single class: SDL x PTL.

Table 1 presents the obtained values of accuracy, 
sensitivity and specificity in signal healthy voices (SDL) 
and pathological (PTL) using KSG and naive estimators. 
The pathological voice signals comprise, in this case, the 
signals of all the pathologies (Reinke’s edema, paralysis 
and nodule) grouped in the same class.

Table 2 presents the obtained values of accuracy, 
sensitivity and specificity in healthy voice signals (SDL) 
and voices signals affected by (EDM), healthy voice 

signals (SDL) and voices signals affected by (PRL), 
and in healthy voice signals (SDL) and voices signals 
affected by (NDL) using KSG estimator.

As seen from the previous tables, results obtained 
using KSG estimation of the reconstruction delay, in 
all classification cases, revealed significant differences 
from the results obtained using the naive estimator. In the 
classification between healthy voices and pathological 
voices, the accuracy obtained value was 68,86%, 
from 60,66% the naive estimator. In classification 
Healthy x Reinke’s Edema, the accuracy obtained value 
was 69,22%, from 63,78% of the naive estimator. In the 
classification Healthy x Paralysis on vocal folds, the 
accuracy obtained value was 70,18%, from 68,64% of 
the naive estimator and classification Healthy x Nodule 
on vocal folds, the accuracy obtained value was 80,00%, 
from 73,32% of the naive estimator.

Classification of pathologically affected voices
This section presents the results obtained in the 

classification of voice signals affected by Reiken’s edema 
(EDM), Nodules on the vocal folds (NDL) and Paralysis 
on the vocal folds (PRL) pathologies: EDM x NDL, 
PRL x NDL and PRL x EDM.

Table 3 presents the values obtained of accuracy, 
sensitivity and specificity in voice signals affected by 
EDM and voice signals affected by NDL. There are also 
the results obtained in the classification of voice signals 
affected by PRL and voice signals affected by NDL, 
and voice signals affected by PRL and voice signals 
affected by EDM.

Figure 5. Distribution of mean values of reconstruction delay τ for signals of healthy voices (SDL) and voices with Reinke’s edema (EDM), nodule 
(NDL) and paralysys (PRL), estimated with the naive and KSG methods.

Table 1. Rates of classification (%) Healthy x Pathological.

Healthy voices x Pathological voices

Measures KSG Naive estimator
Accuracy 68.86 ±  3.64 60.66 ±  4.80
Sensitivity 64.67 ±  8.84 62.67 ±  6.54
Specificity 70.38 ±  4.92 57.12 ±  5.36
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As it can be seen, the results obtained using the 
reconstruction delay estimated with the KSG estimator, 
for classification case EDM x NDL, presented higher 
average accuracy of the classifier when compared with 
results from naive estimator. Moreover, the obtained 
results using the reconstruction delay estimated with 
the KSG estimator also offered greater mean sensitivity.

For the classification case PRL x NDL, the results 
obtained using the reconstruction delay estimated with 
the KSG estimator presented higher average accuracy 
of the classifier when compared with results from naive 
estimator. Sensitivity and specificity also presented 
increased values.

For the classification case PRL x EDM, the results 
obtained using KSG estimated reconstruction delay 
presented lower average accuracy of the classifier 

when compared with results from the naive estimator, 
the accuracy obtained value was 43,44% from 55,56% 
of the naive estimator. However, the variance in this 
case was lower for all criteria with the KSG estimator.

Discussion

Discrimination between voices pathologies using 
nonlinear measurements is still not much explored. Some 
papers use several non-linear combined measures such as 
Costa et al. (2013) who combine 8 nonlinear measurements 
in healthy x pathological classification. They use the same 
database presented in this paper. In the classification 
between pathological voices the authors combine the 
8 nonlinear measurements with LPC (Linear Predictive 
Coding). Pinho et al. (2016) use great, medium, minimum 

Table 2. Rates of classification (%) Healthy x Edema, Healthy x Paralysis and Healthy x Nodule.

Healthy voices x Voices with edema

Measures KSG Naive estimator
Accuracy 69.22 ±  5.51 63.78 ±  5.51
Sensitivity 66.00 ±  7.18 65.00  ±  6.62
Specificity 72.50 ±  5.59 60.50 ±  9.77

Healthy voices x Voices with paralysis

Measures KSG Naive estimator
Accuracy 70.18 ± 5.76 68.64 ± 5.52
Sensitivity 67.34 ± 7.21 60.67 ± 4.92
Specificity 64.00 ± 6.14 66.00 ± 9.11

Healthy Voices x Voices with Nodule

Measures KSG Naive Estimator
Accuracy 80.00 ± 7.13 73.32 ± 5.34
Sensitivity 81.67 ± 7.19 81.67 ± 6.05
Specificity 75.00 ± 11.18 70.00 ± 13.34

Table 3. Rates of classification (%) Edema x Nodule, Paralysis x Nodule and Paralysis x Edema.

Affected voices by edema x Affected voices by nodule

Measures KSG Naive estimator
Accuracy 63.52 ± 6.83 59.05 ± 7.31
Sensitivity 63.50 ± 10.06 61.05 ± 9.84
Specificity 45.00 ± 15.73 55.00 ± 8.98

Affected voices by paralysis x Affected voices by nodule

Measures KSG Naive estimator
Accuracy 64.29 ± 4.39 57.14 ± 6.39
Sensitivity 66.67 ± 8.02 61.33 ± 7.77
Specificity 65.00 ± 13.03 50.00 ± 12.92

Affected voices by paralysis x Affected voices by edema

Measures KSG Naive estimator
Accuracy 43.44 ± 3.99 55.56 ± 5.46
Sensitivity 48.34 ± 5.43 52.00 ± 6.43
Specificity 38.00 ± 5.01 58.50 ± 8.76
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and maximum values of τ to resconstruct phase space 
and use image measurements for discrimination between 
healthy x pathological voices. Henriquez et al. (2009) use 
4 non-linear measurements combined to discriminate 
between healthy x pathological voices.

In this paper we used a single nonlinear measurement 
both in healthy x pathological voices and classification 
between pathological voices. We presented the 
reconstruction delay as a parameter applied in order 
to detect the presence of voice pathologies or in order 
to discriminate pathologies. This reconstruction delay 
was estimated by a new method of estimation named 
KSG, which has presented less biased estimates when 
compared with the naive estimator usually adopted.

The choice of a more accurate estimator makes 
the classifier more efficient, since KSG estimation 
approaches a value that better fits the characteristics of a 
true reconstruction delay. It is a well known fact that a too 
short reconstruction delay will not capture the dynamics 
of the data, while a too large reconstruction delay will 
make it completely independent in a statistical sense 
(Abarbanel, 1996). The reconstruction delay estimated 
with KSG method captures the dynamics of voice data 
more reliably, which in turn allows improved performance 
of classification. This was observed in the results of this 
paper. The reconstruction delay estimated with KSG 
method diagnosed more accurately in most cases.

For the first analyzed case, discrimination between 
healthy voices versus pathological voices, the classification 
with KSG estimator presented improved performance 
when compared to classification with the naive estimator, 
for the criteria accuracy and sensitivity.

The comparison between heathy voices and voices 
with some particular pathology (the second classification 
case, Healthy x Edema, Healthy x Paralysis and Healthy 
x Nodule) showed that KSG estimator once again 
presented improved performance over the naive method.

In classification between pathology voices, the results 
obtained with KSG estimator, for classification cases Edema 
x Nodule and Paralysis x Nodule, confirm the superiority 
of this method. Only for the classification case Paralysis 
x Edema the results with naive estimator were better than 
using KSG estimator. This fact may have occurred by 
some particular characteristic of the signals affected by 
paralysis and edema. As a matter of fact, the statistical 
test showed that the KSG estimated τ for both classes 
(paralysis and edema) were not significantly different. 
This explains why the discriminatory potential of the 
reconstruction delay is reduced in this particular case.

We stress that the results obtained in this paper 
are interesting for the case of detection of a disease as 
also for the case of classification between pathologies. 
The classification between pathologies is still an 
unexplored subject in the literature.

Finally, from the present work, we conclude that 
the use of KSG estimation for the reconstruction delay 
on phase space is a promising technique, which can be 
considered to improve the diagnosis of voice related 
pathologies.
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