
Original Article
DOI: https://doi.org/10.1590/2446-4740.180044Volume 34, Number 3, p. 246-253, 2018

ISSN 2446-4740 (Online)

Introduction
Spinal cord injury (SCI) is a traumatic event that changes 

abruptly and radically a person’s life. Trauma can happen 
in different situations such as vehicle accidents, gunshot 
wounds and falls, and it affects individual psychosocial 
and physical aspects (National..., 2015). Furthermore, 
there are many complications in this scenario, mainly 
in the respiratory system, that are common in people 
with cervical SCI and are the main causes of death 
(Gollee et al., 2007; Linder, 1993; National..., 2015).

SCI brings consequences to the respiratory system. 
Some of the main complications are pneumonia, atelectasis 
and respiratory failure (Cheng et al., 2006; Wong et al., 
2012). Annually, the number of people who suffer with 
SCI is between 250,000 and 500,000 (Bickenbach et al., 
2013). In 1950, the ratio of death due to respiratory failure 

in people with acute traumatic cervical SCI was 100% 
(Linder, 1993). Fortunately, this number has decreased. 
Between 1973 and 2004, it occurred a 40% decline in 
the number of deaths (Bickenbach et al., 2013), but the 
problem has not been solved yet. According to National 
Spinal Cord Injury Statistical Center (USA), 5.8% of 
paraplegics and 20.5% of quadriplegics need mechanical 
ventilation assistance at the time of admission to rehab. 
At one year post-injury, these numbers reduce to 0.2% 
and 3.5%, respectively (National..., 2015).

Statistics indicate that some of these people may suffer 
with respiratory problems for a long time. One cause is 
the loss of muscle control below the injury level, which 
leads to muscle weakness (Wong et al., 2012). The spinal 
cord consists of 31 neurologic segments: 8  cervical, 
12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal. Phrenic 
motor neurons that provide innervation to the diaphragm 
are located at C3, C4 and C5 segments, and the abdominal 
muscle neurons lie in T7-T12 levels (Siegel and Sapru, 
2011). Therefore, depending on the neurologic lesion 
level, the diaphragm (the main inspiratory muscle) 
and the abdominal muscles (which have an important 
participation in forced expiration) can be impaired. 
Thus, the maintenance of adequate oxygen levels and the 
ability to withdraw airway secretions through coughing 
are affected, allowing the occurrence of several diseases 
(Gollee et al., 2007; Wong et al., 2012).

Health professionals carry out maneuvers to improve 
the quality of life of people with SCI. As an example, 
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secretions can be withdrawn from the airways by means 
of coughing assisted by a professional who forces a 
quick expiration pressuring the abdomen to expel mucus 
(Spivak et al., 2007), and also with the help of medicines 
like mucolytic (McCaughey et al., 2016). The lack of 
oxygen can be supplied with the support of a positive 
pressure device (Linder, 1993), among other techniques. 
The results obtained with these maneuvers can be improved 
with transcutaneous functional electrical stimulation 
(TFES) applied to totally or partially paralyzed respiratory 
muscles: diaphragm and abdomen (Gollee et al., 2007; 
Jorge, 2009; McCaughey et al., 2016).

TFES is a rehabilitation technique that has been 
used for many years to treat respiratory problems as 
respiratory failure and weaning (Ogurtsov et al., 1977). 
It is intended to increase muscular strength and endurance, 
thus improving breathing as a whole (Gollee et al., 2008). 
For individuals who have spontaneous respiration, TFES 
must be synchronized with his/her breathing for better 
application (Gollee et al., 2008; Santos, 2009).

The correct synchronization of TFES and respiratory 
cycling requires that diaphragmatic stimulation be applied 
in the beginning of air inhalation (Jorge, 2009), whereas 
stimulation of the abdominal muscles must be yielded in 
the beginning of exhalation phase (Gollee et al., 2007). 
That is the dynamics of synchronized TFES.

Although synchronized TFES has been used 
successfully, few scientific studies have been conducted 
in this area. In the next topic, we describe research 
projects on synchronized TFES applied to respiratory 
muscles, focusing on their synchronization algorithm.

Literature review and challenges
Since the respiration principle is based on gas exchange, 

the initial attempts to detect the respiratory events 
involved monitoring air flow. There are applications that 
used air flow sensors mounted on mouthpieces and nose 
clips to acquire respiratory signals (Gollee et al., 2007; 
Sorli et al., 1996). They used different algorithms that 
can extract features of interest from airflow signals and 
help determine the exact moment to apply synchronized 
TFES. One approach is to identify the triggering 
threshold of stimulation as a percent of minimum and/or 
maximum airflow values (Sorli et al., 1996). Another 
approach determines the onset of exhalation calculating 
the cross-correlation between the sensor signal and a 
predefined reference respiratory signal (Gollee et al., 
2007). This combination helps to identify other patterns 
such as speaking to avoid the application of stimulation 
at these moments.

The stimulated muscle group has also changed. 
One focused on diaphragm stimulation (Nohama et al., 
2012) whereas the other focused on the stimulation of 
abdominal muscles (Gollee et al., 2007), respectively, 

synchronizing inspiration and expiration phases. The former 
assisted air intake and the latter assisted coughing.

A different approach is to connect a temperature 
sensor with a face mask in order to synchronize TFES 
with the inhalation phase (Nohama  et  al., 2012). 
The algorithm determined the triggering threshold, both 
respiratory phases and timing to deliver synchronized 
TFES. The electrical stimulator was triggered during the 
inhalation phases because there was only one stimulation 
channel available. Also, the sensor time constant needs 
to be as small as possible to be able to be used with 
this algorithm.

Although effective solutions for TFES synchronization, 
using flow sensors and masks in the oral region 
hampers other activities turning its use impractical in 
normal conditions (Gollee et al., 2007). Masks are not 
comfortable and may cause claustrophobia and anxiety 
(Holanda et al., 2009). Some systems need to monitor a 
predefined number of respiratory cycles before getting 
maximum and minimum amplitude values and this task 
may be performed many times. If a patient’s breathing 
pattern varies it can compromise system accuracy. 
The features can also change between different subjects.

Belt sensors were tried to avoid the limitations of 
face masks. TFES was synchronized with the diaphragm 
activity using a belt that had a fiber optic Bragg grating 
sensor (Wehrle et al., 2001) in patients with diaphragmatic 
impairment (Nohama et al., 2002). However, the fiber 
optic was fragile and broke many times being unsuitable 
for use in real circumstances. Also, two belts with 
embedded piezoelectric sensors were applied to generate 
respiratory signals that were classified, between quiet 
breathing and cough, in real time with an algorithm 
based on Support Vector Machines (SVMs), but the 
system does not synchronize diaphragmatic TFES 
(McCaughey et al., 2014).

Yahya and Faezipour (2014) used a microphone for 
the detection of breathing phases. They could classify 
respiratory phases into inhalations and exhalations with a 
SVM, but this classification was not in real time, and the 
participants had to remain in a special noise-free room.

Other approach for respiratory signal phase detection 
is the use of thermal imaging analysis of respiratory 
activity (Deepika et al., 2016). This method requires 
a special climate room and thermal imaging camera, 
which is usually expensive, therefore impractical for the 
purpose of TFES synchronization. Another technique 
that requires using cameras is the respiratory motion 
tracking using Microsoft Kinect camera by Ernst and 
Saß (2015). They  presented the possibility of using 
special marked shirts to track the respiratory motion 
around the chest in real time, but the system needs 
improvements and it is not clear whether it could be 
used for synchronized TFES.
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In order to solve the aforementioned issues, we 
propose a method to identify both respiratory phases 
during quiet breathing. The goal of this study is to 
develop a non-obstructive sensor module and an 
algorithm able to automatically detect both inspiratory 
and expiratory phases during quiet breathing for a dual 
synchronization TFES system. This module is a part of a 
complete system under development for stimulating both 
respiratory muscles (diaphragm and abdomen), in order 
to contribute to a more efficient respiratory treatment.

Methods
The synchronized TFES system for respiratory 

rehabilitation proposed in this study should identify 
quiet breathing and send information to trigger both 
diaphragmatic TFES and abdominal TFES.

The system is composed of: (1) source of respiratory 
signals represented by a patient, (2) one respiratory 
sensor and (3) an algorithm for the detection of 
respiratory phases and events that will serve to trigger 
(4) the electrical stimulator channels. These modules 
are indicated in Figure 1.

Respiratory source (1)
Anyone who had suffered SCI and diaphragmatic and/or 

abdominal muscle weakness with no contraindications 
to undergo electrical stimulation (such as cardiac 
pacemaking or phrenic nerve lesion) may be a source 
of respiratory signals.

Respiratory sensor (2)
A non-invasive sensor is responsible for detecting 

the respiratory phases. The literature indicates that 
accelerometers (Drugman et al., 2007), air flow sensors 

(Gollee et al., 2007), etc., were already used as respiratory 
sensors. In this study, a strain-gage based load cell 
attached to a belt was used for the detection of both 
respiratory phases.

Sensors usually need conditioning and acquisition 
circuits. This study used INA126 instrumentation 
amplifier. The respiratory signal passband comprises 
the range 0.2-0.3 Hz (12 to 20 rpm - respirations per 
minute). Therefore, active 5th order Butterworth low-pass 
filter with cutoff frequency set to 4 Hz was implemented 
at the input circuit. The conditioned signal was then 
sent to a Renesas© RPBRX62N board to be processed 
by the synchronization software. This board contains 
the microcontroller RX62N which has up to 512 KB 
flash memory and 96 KB RAM, 10-bit analog to digital 
converter (A/D), 12-bit digital to analog converter (D/A), 
I/O pins, timers, and all circuitry required to build this 
project in a small unit (Renesas..., 2015). The sampling 
frequency was set to 1 kHz.

The operation principle of the sensor is the variation of 
the traction force exerted by the patient’s rib cage on the 
load cell extremities (positioned on the last ribs) during 
the respiratory movement. When patients breathe, the 
load cell outstretches accordingly producing oscillating 
waveform signals that rise during inhalation phases and 
fall during exhalation phases, as illustrated in Figure 2.

Respiratory pattern identification system (3)
This module is responsible for detecting the current 

respiratory phase in real time and without training. 
An  algorithm applies linear approximation calculus 
to short segments of signal determining their slopes. 
Figure 2 illustrates a respiratory signal and two examples 
of segments formed by a set of samples that can be fitted 
to straight line equations using the linear least squares 

Figure 1. Block diagram of a dual synchronized TFES system with automatic respiratory phase detection.



Automatic respiratory phase detector 249Res. Biomed. Eng. 2018 September; 34(3): 246-253 249/253

method. The acquisition system feeds every consecutive 
chunk of 20 samples (corresponding to 20ms) into an array. 
The array size was defined according to the following 
experiment: starting with a window size of 5 samples, the 
response of the algorithm to one controlled respiratory 
cycle was recorded; the generated false positives and the 
respiratory cycle frequency were recorded; the window 
size was increased by 5 samples and the experiment 
was repeated until the algorithm generated only true 
positives. Figure 3 shows the curve for the different 
window sizes versus false positives. The 20 samples 
window size was the chosen one.

Each ith sample represents time value Xi, and its 
corresponding amplitude value, Yi, so one can perform a 
linear regression. The β coefficient (Equation 1) indicates 
line inclination and direction. The linear correlation r 
coefficient (Equation 2) provides an indication whether 
vector samples may be assumed as a straight line. 
The n value corresponds to the number of samples of 
the segment analyzed, which in this case is 20.
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For each segment, the algorithm continuously 
analyzes β and r coefficients and verifies whether the 
signal is rising or falling, corresponding to inhalation 
or exhalation, as shown in Figure 4. The system throws 
a flag every time there is a valid phase shift. Only the 
segments that have β and r greater than a predefined value 
for inhalation or exhalation can be flagged. Throwing a 

valid flag immediately triggers the TFES application. 
In summary, the algorithm has the following behavior:

1.	 Every 20ms a set of 20 samples is buffered 
(1 kHz sampling frequency). These values are 
inserted into an array, and β and r coefficients 
are calculated;

2.	 If r ≤ -0.7 and β ≤ -0.5 and the previously detected 
event was an inhalation, then an exhalation phase 
is flagged. Previous event is considered to ensure 
that signalization happens only once;

3.	 If r ≥ +0.7 and β ≥ +0.5 and the previously detected 
event was an exhalation, then an inhalation phase 
is flagged;

4.	 If none of the previous conditions are fully 
satisfied, the system does not indicate any event.

The algorithm in Figure 4 controls the synchronization 
module which is responsible for delivering electrical stimuli. 
When a patient begins inhaling, the electrical stimuli 
must be yielded on the diaphragm, and the abdominal 
muscles have to be stimulated in the beginning of the 
exhalation phase, as illustrated in Figure 5.

Figure 2. Respiratory signal generated by the strain-gage based sensor. Identifying the slope (β) of successive linear approximations provides the 
time stamps that delimit both inhalation and exhalation phases.

Figure 3. Different window sizes versus false positives.
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Electrical stimulator (4)
This module contains electronic circuits responsible 

for applying electrical current to patients through 
transcutaneous electrodes. There are two TFES channels, 
one for diaphragmatic and the other for abdominal 
stimulation.

In vivo tests
As this article focuses on respiratory signal acquisition, 

sensor operation and on synchronization algorithm, 
in vivo tests did not involve the application of electrical 
stimulation. The experimental protocol was approved 
by the Ethics Committee on Research in Humans Board 
of the Federal University of Technology, Paraná, Brazil 
(n. 871679). All volunteers gave their informed consent 
prior to their inclusion in the study.

The process of recruiting volunteers utilized the 
following inclusion criteria: males or females with stable 

health condition, and 20-60 years old. The exclusion 
criteria involved the following: respiratory and/or 
postural problems, pregnancy, and dermatological 
problems in the abdominal region (at sensor belt site). 
Ten volunteers participated in this study. Age, weight, 
height, thoraco‑abdominal circumference and body mass 
index (BMI) of participants are indicated in Table 1.

The load cell was placed on the abdomen, on the last 
rib region, and the belt was fastened. The volunteer was 
then instructed to lie down on a stretcher in a comfortable 
position and allowed to relax for 1 min. The volunteer 
was instructed to breathe quietly for 1 min. Therefore, 
an expert physiotherapist pressed a pushbutton at the 
beginning of each inhalation and exhalation phases as 
perceived by her visual observation of the expansion 
and relaxation of the rib cage. Respiratory signals and 
system generated flag signals were acquired and saved 
for later analysis. Inhalation and exhalation flags were 
compared with the reference signal produced by the 
physiotherapist. The true positives, false positives and 
false negatives of each respiratory event were counted.

Results
Figure 6 shows a superposition of the strain gage‑based 

sensor signal (yellow – filtered respiratory signal), 
system generated flag signals (green – inspiratory phase; 
blue – expiratory phase), and the signal produced by the 
physiotherapist (pink – respiratory phases).

The automatic detection of inspiratory events indicated 
6.7% false negatives, 5.8% false positives and 87.5% 
true positives, as indicated in Table 2. The percent ratio 
of hits and errors in the detection of expiratory events 
reached 4.9% classified as false positives, 0.8% as false 
negatives and 94.3% as true positives.

Figure 4. Flowchart of the developed algorithm for dual TFES synchronization.

Figure 5. Illustration of synchronized TFES signals. (a) Quiet breathing 
and (b) TFES applied to diaphragm (D), and abdomen (A).
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Table 1. Demographics of volunteers.

Id Age (years) Mass (kg) Height (cm)

Thoraco-
abdominal 

circumference 
(cm)

Gender
Body mass 

index  
(kg/m2)

Respiratory 
rate (bpm)

1 38 64 159 86 Female 25.3 18
2 31 96 186 101 Male 27.7 17
3 27 71 163 87 Male 26.7 23
4 27 120 193 102 Male 32.2 22
5 36 53 159 73 Female 21.2 12
6 21 73 176 86 Male 23.6 20
7 21 50 163 69 Female 18.8 16
8 26 78 173 87 Male 26.1 20
9 40 60 146 84 Female 28.1 17
10 27 70 173 78 Female 23.4 15

Mean 
±standard 
deviation

29.4±6.69 73.5±20.9 169.1±13.9 85.3±10.6 - 25.3±3.8 18±3.3

Figure 6. Respiratory signal detected for a 38 years old woman. Waveforms obtained with a digital oscilloscope: Yellow waveform represents the 
respiratory signal; Green pulses correspond to the inspiratory event start flag; Blue pulses represent the expiratory event start flag and the pink ones 
are the signals produced by the physiotherapist.

Table 2. Percentage of correctness after automatic event detector.

Volunteer
ID

Inhalation detection
Number of 
inhalations

Exhalation detection
Number of 
exhalationsTrue 

positivesa
False 

positivesb
False 

negativesc
True 

positivesa
False 

positivesb
False 

negativesc

1 14 0 0 14 15 0 0 15
2 9 1 1 10 7 1 0 7
3 12 0 0 12 12 0 0 12
4 11 0 0 11 12 0 0 12
5 8 0 1 9 9 0 0 9
6 11 0 1 12 12 0 0 12
7 8 2 2 10 11 1 0 11
8 7 0 2 9 11 0 1 12
9 15 2 1 16 15 2 0 15
10 10 2 0 10 11 2 0 11

Total 105 (87.5%) 7 (5.8%) 8 (6.7%) 113 115 (94.3%) 6 (4.9%) 1 (0.8%) 116
aTrue positives: 1 detection – 1 event; bFalse positives: 1 detection – no event; cFalse negatives: No detection – 1 event.
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Discussion
The synchronization algorithm implemented in our 

system does not require the determination of minimum 
or maximum points, as observed in Nohama et al. (2012) 
and Sorli et al. (1996). There is no need for previous 
training and the linear approximation is calculated 
simultaneously with signal acquisition. Changes in 
amplitude do not interfere with respiratory phase 
identification. Adjustments in the parameters of linear 
correlation and angular coefficients change the sensitivity 
for the detection of inspiratory and expiratory events. 
The values of these parameters used in this study were 
determined empirically during in vivo tests.

In a preliminary analysis, signaling errors were 
identified due to physiotherapist misinterpretations while 
identifying the onsets of inspiratory and expiratory phases, 
as well as volunteer’s body movements produced noise 
that was interpreted by the system as respiratory events. 
These facts can partially explain the hit rate differences 
between the inspiratory and expiratory events. Despise 
this, Santos (2009) compared two types of diaphragmatic 
TFES: (i) synchronized by a physiotherapist, and 
(ii) synchronized by a microcontroller system with a 
temperature sensor. Regarding blood oxygenation, and 
the breathing process improvement, the latter performed 
better (13.1% increase) than the former (0.7% increase).

Some studies wait a fixed time (1.5s) between 
subsequent detections to avoid incorrect stimuli triggering 
(Sorli et al., 1996). The drawback is the extra delay, 
compromising the detection of the next phase depending 
on the respiratory rate. This does not happen with the 
developed algorithm since a small 20 samples window 
favors the fast processing and can cope with different 
respiratory frequencies. Although our work did not 
involve adventitious events, these may complicate the 
scenario when using fixed stimulation rate. All in all, 
their system increased the average value of tidal volume 
about 65%, and average ventilation about 70% during 
expiration. However, greater number of samples implies 
less accuracy. The buffer size of 20 samples was chosen 
empirically for presenting the best trade off obtained.

McCaughey et al. (2014) developed a Support Vector 
Machine based algorithm for real-time classification of 
respiratory activity, and synchronization of abdominal 
TFES at the start of exhalation during quiet breathing 
and cough, using the signal of two piezoelectric belts. 
They had to construct different Support Vector Machines 
for each participant, differently of the work we presented 
on this paper in which the same algorithm can be used 
for all participants. Another difference is the number 
of sensors used, McCaughey  et  al. (2014) used two 
belts for respiratory activity acquisition. With their 
method they achieved 96.1% of detection accuracy 

during quiet breathing, for 10 participants. In the work 
presented in this paper the inspiratory and expiratory 
events detection accuracy was, respectively, 87.5% and 
94.3% for 10 volunteers.

Generally, due to sensor limitations, sensing the 
alterations in the thoraco-abdominal volume requires 
that patients remain still or almost still. In this condition, 
without movement artifacts, the synchronization module 
can satisfactorily detect the onset of inspiratory and 
expiratory phases.

In conclusion, the sensing method that analyzes the 
thoraco-abdominal volume variation by means of strain 
gauges encapsulated in a load cell can be used in the 
acquisition of respiratory signals with patients remaining 
in a quasi-static position during treatment. The algorithm 
based on the statistical analysis of the signal and a small 
sample size performed accordingly and satisfactorily. 
It also avoided long delays. The software and hardware 
operations were validated with tests performed in humans, 
obtaining 87.5% for inspiratory and 94.3% for expiratory 
event detection success rates. Thus, an innovative system 
combining a statistical based algorithm for automatic 
detection of quiet breathing and a strain-gage based 
sensor that can be employed to synchronize a TFES 
system has been successfully developed.
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