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ABSTRACT

Introduction: Forecasting dengue cases in a population by using time-series models 
can provide useful information that can be used to facilitate the planning of public health 
interventions. The objective of this article was to develop a forecasting model for dengue 
incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. 
Methods: The forecasting model for dengue incidence was performed with R software using 
the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model 
based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the 
model using the data collected between January and December of 2009. Results: SARIMA 
(2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number 
of dengue cases in a given month can be estimated by the number of dengue cases occurring 
one, two and twelve months prior. The predicted values for 2009 are relatively close to the 
observed values. Conclusions: The results of this article indicate that SARIMA models are 
useful tools for monitoring dengue incidence. We also observe that the SARIMA model is 
capable of representing with relative precision the number of cases in a next year.
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RESUMO

Introdução: A predição do número de casos de dengue em uma população utilizando 
modelos de series temporais pode trazer informações úteis para um melhor planejamento de 
intervenções públicas de saúde. O objetivo deste artigo é desenvolver um modelo capaz de 
descrever e predizer a incidência de dengue em Campinas, sudeste do Brasil, considerando a 
metodologia de Box e Jenkins. Métodos: O modelo seasonal autoregressive integrated moving 
average (SARIMA) para os dados de incidência de dengue em Campinas, foi implementado 
no programa R. Ajustamos um modelo baseado na incidência mensal notificada da doença de 
1998 a 2008 e validado pelos dados de janeiro a dezembro de 2009. Resultados: O modelo 
SARIMA (2,1,2) (1,1,1)12 foi o mais adequado aos dados. Este modelo indicou que o número 
de casos de dengue em um dado mês pode ser estimado pelo número de casos ocorridos há 
um, dois e doze meses. Os valores preditos para 2009 são relativamente próximos aos valores 
observados. Conclusões: Os resultados deste artigo indicam que os modelos SARIMA são 
ferramentas úteis para o monitoramento da incidência da dengue. Observamos ainda que o 
modelo SARIMA é capaz de representar com relativa precisão o número de casos de dengue 
em um ano consecutivo à série de dados usada no ajuste do modelo.

Palavras-chaves: Dengue. SARIMA. Análise de séries temporais. Estatística.

INTRODUCTION

Dengue is a disease of great importance for public 
health in tropical and sub-tropical areas of the world. 
The disease is transmitted by the bites of infected 
Aedes mosquitoes, and its symptoms, which include 
headache and muscle and joint pain, are very similar 
to those of fever-causing illnesses. It is estimated 
that between 50 and 100 million cases of dengue 
fever occur each year1,2, and about two-thirds of the 
world's population live in areas infested with dengue 
vectors3. In the first decade of the 21st century, Brazil 
ranked among the countries with the highest dengue 
incidence in the world4. In Brazil, more than three 
million cases were reported from 2000 to 2005, 
comprising approximately 70% of reported dengue 
fever cases in the Americas5.

Dengue can be caused by any of the four 
serotypes of dengue virus, designated DEN-1, 
DEN-2, DEN-3, and DEN-4. In Brazil, the first 
laboratory-confirmed dengue outbreak was reported 
in 1981-1982 in the State of Roraima6, and no further 
dengue activity was reported until 1986 with the 
introduction of DEN-1 in the State of Rio de Janeiro7. 
The DEN-2 serotype was introduced in 1990 in 
Rio de Janeiro during a period of DEN-1 serotype 
circulation8. In the following years, the DEN-2 
serotype spread to other Brazilian regions, with more 
severe clinical presentations9. In 1994, DEN-3 virus 
was reintroduced in the Americas after an absence 
of 16 years, and in 2000, it was introduced in Rio de 
Janeiro, causing a large epidemic of dengue fever10,11. 
The first report of DEN-4 in Brazil was in the State 
of Roraima in 198212.

Mathematical and statistical models can provide 
substantial contributions to the understanding 
of the dynamics of dengue transmission and the 
trends of growth in the number of cases of the 
disease. Recently, statistical tools such as time series 
analyses13,14 have been used by several authors  to 
describe and forecast the number of cases of dengue 
in specific populations15-19. Among these models, the 
seasonal autoregressive integrated moving average 
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METHODS

RESULTS

(SARIMA) model is useful in situations when the time series data 
exhibit seasonality-periodic fluctuations that recur with about the 
same intensity each year. This characteristic makes the SARIMA 
model adequate for studies concerning monthly dengue data, given 
that the number of dengue cases in a population tends to be subject 
to seasonal variations, with a maximum in the rainy season and a 
minimum during the dry season.

The objective of this study was to develop time series models to 
forecast the monthly dengue incidence in Campinas, a city located 
in the State of São Paulo, Brazil, on the basis of reported incidence 
rates available from 1998 to 2008; these models were then validated 
using the data collected between January and December of 2009. 
Forecasting dengue cases in a population using time-series models 
can provide useful information that can be used to facilitate the 
planning of public health interventions.

Campinas is a city of nearly one million inhabitants and is 
located in the southeastern part of Brazil, in the State of São Paulo. 
Campinas is 100km from the City of São Paulo, which is the state 
capital and the largest metropolitan area in Brazil. The economic 
and demographic growth in the last decades has transformed 
the city into an important industrial and commercial center. 
The city has an international airport, several universities and an 
extensive public health network. According to the 2000 Brazilian 
Demographic Census (IBGE Foundation), Campinas has a Gini 
index of relative inequality of 42% and a poverty incidence of 
9.8%. In Campinas, dengue transmission was identified for the 
first time in 199620.

The monthly number of confirmed cases of dengue in Campinas 
was obtained from the Municipal Health Secretary of Campinas 
(available in http://2009.campinas.sp.gov.br/saude/). The dataset 
was divided into two parts: the data observed from January 1998 to 
December 2008, which were used to develop the time series model, 
and the monthly number of dengue cases during the year 2009, which 
was used to validate the model.

Let Y´ = (Y1, Y2, …,Yn) be a time series of data. A seasonal ARIMA 
model13,14,21,22 (SARIMA) with S observations per period, denoted by 
SARIMA(p,d,q)(P,D,Q)S, is given by Φ(LS)φ(L) (1 – L)d (1 – LS)
DYt = Θ(LS) θ(L) εt , where L is the lag operator given by Lk = Yt – k/ 
Yt, φ(L) = 1 – φ1 L

1 – φ2 L
2 –  ….– φpL

p is an autoregressive (AR) 
polynomial function of order p with vector of coefficients φ´ = (φ1, 
φ2,…, φp),  θ(L) = 1 + θ1L1 + θ2L2 + … + θq L

q  isa moving average 
(MA) polynomial of order q with vector of coefficients θ´ = (θ1, 
θ2,…, θq), Φ(LS) = 1 – φS,1 L

S – φ S,2 L
2S –  ….– φ S,PLPS and Θ(LS) = 1 

+ θ S,1LS + θ S,2L2S + … + θ S,Q LQS are seasonal polynomial functions 
of order P and Q, respectively, that satisfy the stationarity and 
invertibility conditions, d is the number of differencing passes needed 
to stationarize the series, D is the number of seasonal differences and 
εt are error terms assumed to be independent identically distributed 
random variables sampled from a distribution with a mean equal to 
zero and the variance σ2

ε. In time series analyses, the variables εt are 
commonly referred to as white noises, and they are interpreted as an 
exogenous effect that the model is not able to explain. Considering 
the time series of monthly dengue incidence, this white noise can 
be, for example, an effect of climatic variables, eventual campaigns 

of prevention and education, the introduction/reintroduction of 
a dengue serotype in a susceptible population or random factors. 

Thus, in the present article, we used the statistical software R23 
to fit SARIMA models to dengue incidence from 1998 to 2008 in 
Campinas using the Box-Jenkins modeling approach24. The adequacy 
of the each model was verified by plots of the histogram and an 
autocorrelation (ACF) of the standardized residuals and the Ljung-
Box test25, which is a test for hypotheses of no correlation across a 
specified number of time lags. ACF of the residuals and Ljung-Box 
statistics are useful for testing the randomness of the residuals. The 
Akaike information criterion (AIC)26was employed to compare 
the goodness-of-fit of different models. Lower AIC values indicate 
better fit.

Table 1 and panel (a) of Figure 1 show the monthly number of 
dengue cases in Campinas between 1998 and 2009. Observing the 
graph in panel (a) of Figure 1, we note a peak in the dengue incidence 
in 1998, followed by two non-epidemic years. In 2001 and 2002, there 
were two yearly peaks, followed by one small yearly peak and two non-
epidemic years (2004 and 2005). The large number of cases observed 
in 2001 and 2002 coincides with the introduction of dengue virus 
serotype 3 (DEN-3). This virus serotype was introduced in 2000 5,27, 
and it led to a large and severe epidemic of the disease in Brazil28, with 
more than 1.2 million cases reported in 2001 and 2002 in addition 
to the circulation of DEN-1 and DEN-2. A relatively large number of 
cases of dengue was observed in Campinas in 2007 (9,218 cases), again 
followed by two non-epidemic years (2008 and 2009). Considering 
the time series in Table 1, March and April are of particular interest, 
because these are the months with the highest number of dengue cases.

We generated logarithms of the data exhibited in Table 1 to 
induce constant variance. Thus, Y´ = (Y1, Y2, …, Yn) is the vector of 
the natural logarithms of the monthly number of cases of dengue 
from  2000 to 2008 , in which we added 1 to deal with the logarithm 
of zero values in cases of non-occurrence of dengue in a given month. 
Considering a plot of the series Y1, Y2, …,Yn against time (not shown 
here), we note that there is still some trend, but we should be able 
to obtain a more stationary series from first differencing. Thus, we 
consider d = 1. 

Panels (b) and (c) of Figure 1 show graphs of the estimated auto 
correlation function (ACF) and partial auto correlation function 
(PACF) of the transformed series using data from 1998 to 2008. The 
ACF of the logarithmically transformed series exhibits periodicity of 
length S = 12. This result  was expected, because the dengue incidence 
shows a seasonal cycle. The PACF suggests that p should be equal to 2, 
given that partial autocorrelations are near to zero at all lags that exceed 
2, and the ACF suggests a moving-average of order q equal to 2 or 3, 
given that its autocovariances are close to zero at lags that exceed 3.

Table 2 shows values of AIC and the estimates for the variance 
σ2

ε for the SARIMA models fitted to the monthly number of cases 
of dengue from 2000 to2008, considering different choices of p and 
q. Problems with convergence were encountered when using D = 0. 
Therefore, considering that 1 seasonal difference is usually sufficient 
(D = 1), we set D to 1 in all models in Table 2. The model with the 
lowest AIC value for this data set, and therefore the best-fit model, 
was SARIMA (2,1,2)(1,1,1)12(Table 2). Considering this model, 
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TABLE 1 - Number of confirmed cases of dengue by month in Campinas, 1998-2009.

					     Months	

Year	 Jan	 Feb	 Mar	 Apr	 May	 June	 July	 Aug	 Sep	 Oct	 Nov	 Dec	 Total

1998	 237	 331	 562	 187	 32	 11	 6	 4	 7	 7	 5	 8	 1,397

1999	 7	 12	 27	 49	 8	 3	 1	 3	 3	 0	 0	 4	 117

2000	 6	 11	 21	 15	 8	 4	 4	 3	 0	 2	 2	 5	 81

2001	 32	 38	 160	 223	 136	 21	 13	 10	 2	 2	 5	 85	 727

2002	 224	 364	 348	 266	 156	 50	 8	 9	 6	 4	 7	 22	 1,464

2003	 90	 91	 125	 76	 28	 7	 2	 0	 0	 1	 0	 3	 423

2004	 9	 8	 6	 3	 1	 0	 0	 0	 0	 0	 0	 3	 30

2005	 5	 7	 8	 38	 29	 17	 8	 2	 2	 0	 0	 3	 119

2006	 8	 24	 187	 292	 129	 31	 7	 16	 10	 17	 10	 11	 742

2007	 157	 828	 2,891	 3,050	 1,903	 207	 53	 12	 26	 36	 37	 18	 9,218

2008	 33	 31	 64	 76	 19	 9	 7	 8	 2	 8	 6	 14	 277

2009	 17	 29	 53	 40	 25	 16	 2	 3	 2	 3	 3	 7	 200

TABLE 2 - Akaike information criterion values considering different SARIMA 
(p,1,q)(1,1,1)12 models and estimates for σ2

ε.

Model	 AIC value	 Estimate for σ2
ε

(2,1,2)(1,1,1)12	 269.08	 0.4139

(2,1,1)(1,1,1)12	 275.60	 0.4193

(1,1,2)(1,1,1)12	 276.27	 0.4227

(1,1,1)(1,1,1)12	 277.13	 0.4344

(2,1,3)(1,1,1)12	 273.52	 0.3918

(1,1,3)(1,1,1)12	 276.91	 0.4174

SARIMA: seasonal autoregressive integrated moving average, AIC: Akaike 
information criterion.

FIGURE 1 - (a) Monthly number of cases of dengue from 1998 to 2009 in 
Campinas, southeast Brazil (Source: http://2009.campinas.sp.gov.br/
saude/). Autocorrelation (b) and partial autocorrelation (c) functions 
calculated using the log-transformed number of cases of dengue from 1998 
to 2008 in Campinas. The dashed horizontal lines are 95% confidence limits 
assuming a white noise input.
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the autoregressive parameters φ1 and φ2were estimated to be 1.62 
(standard error, SE, 0.01) and -0.99 (SE 0.02), respectively, and 
the moving-average parameters θ1 and θ2were estimated to be -1.66 
(SE 0.04) and 1.00 (SE 0.04), respectively. The seasonal components 
φ12,1 and θ12,1were estimated to be-0.05 (SE 0.15) and -0.86 (SE 0.22), 
respectively. 
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After estimating the parameters of this model, we assessed 
their adequacy by analyzing their residuals. Figure 2 shows the 
standardized residuals, their histogram, the respective ACF graph and 
p-values for the Ljung-Box statistic. Panel (a) of Figure 2 suggests 
that the standardized residuals estimated from this model should 
behave as an independent and identically distributed sequence with 
a mean of zero and a constant variance. The histogram in panel (b) of  
Figure 2 shows that the standardized residuals for the model 
approximated a normal distribution. In addition, the Kolmogorov-
Smirnov test gives no reason to reject the assumption that the 
distribution of residuals is normal (p-value 0.21). The ACF of the 
residuals showed in Panel  (c) suggests that the autocorrelations are 

close to zero. This result means that the residuals did not deviate 
significantly from a zero mean white noise process . Panel (d) 
shows p-values for the Ljung-Box statistic. Given the high p-values 
associated with the statistics, we cannot reject the null hypothesis 
of independence in this residual series. Thus, we can say that the 
SARIMA (2,1,2)(1,1,1)12 model fits the data well. 

Out-of-sample predicted values for 2009 considering the 
SARIMA (2,1,2)(1,1,1)12 model are shown in Table 3, where we 
compare these values with the observed number of dengue cases. 
The predicted values are relatively close to the observed values; this 
result indicates that the model provides an acceptable fit to predict 
the number of dengue cases.
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FIGURE 2 - Graphical diagnostics for assessing the SARIMA (2,1,2)(1,1,1)12 model fit: (a) the standardized residuals, (b) histogram of the standardized residuals, 
(c) the respective ACF graph and (d) p-values for the Ljung-Box statistic. SARIMA: seasonal autoregressive integrated moving average, ACF: autocorrelation functions.

TABLE 3 -Observed number of dengue cases in 2009 in Campinas, and the respective out-of-sample predicted values obtained 
from the SARIMA (2,1,2)(1,1,1)12 model.

					     Months	

Year	 Jan	 Feb	 Mar	 Apr	 May	 June	 July	 Aug	 Sep	 Oct	 Nov	 Dec	 Total

Observed	 17	 29	 53	 40	 25	 16	 2	 3	 2	 3	 3	 7	 200

Predicted	 36.1	 47.1	 77.6	 74.3	 33.1	 12.1	 7.0	 6.5	 5.8	 6.4	 5.2	 9.8	 320.9

Martinez EZ et al - Forecasting the number of cases of dengue in Campinas
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DISCUSSION

In this study, the SARIMA (2,1,2)(1,1,1)12 model well reflected 
the trend in the incidence of dengue in Campinas. We showed that 
the number of dengue cases in a given month can be estimated by the 
number of dengue cases occurring 1, 2 (p = 2) and 12 (S = 12 and 
p = 1) months prior, and we found that a moving-average component of 
order q equal to 2 is adequate for the data. The highest peaks from the 
time series observed in Figure 1, panel (a), can be a direct consequence 
of the introduction or reintroduction of different serotypes, but we 
noted that the SARIMA model produced good estimates for each 
month, even though the time series contains periods with relatively 
large numbers of dengue cases. This result suggests that the model fits 
the data adequately, despite the introduction and reintroduction of 
different viral serotypes within the studied period.

When we used this model to produce out-of-sample predictions 
of the number of dengue cases in Campinas, we observed that the 
SARIMA model was capable of representing the number of cases in 
a subsequent year with relative precision. However, these predictions 
may not be credible for forecasting the number of dengue cases in 
epidemic years, when the observed monthly incidence is significantly 
higher than the expected number of new cases for that period. This 
large number of cases may be a consequence of the lack of  immunity 
in the population, because many people in these circumstances are 
exposed to a dengue viral serotype for the first time.

These results indicate that statistical time series models should 
lead to a better understanding of the disease mechanismand that they 
can assist in the planning of public health programs and interventions. 
In addition, considering the potential impacts of climate changes on 
dengue transmission, more accurate predictions could be made by 
introducing meteorological variables such as temperature, pressure, 
humidity and rainfall into the model, and these variables should be 
taken into account in a future study. These variables are known to be 
associated with an increase in the number of available breeding places 
for Aedes aegypti, and with that, the risks for transmission for dengue.
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