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ABSTRACT: The mapping of sugarcane yield is still not as widely available as it is for grain 
crops. Sugarcane harvesters cut and process the cane in a single or maximum of two rows, facil-
itating the monitoring of cane yield and its behavior on a small scale. This study tested a method 
for sugarcane yield data cleaning, investigating if the data recording frequency influences the 
characterization of yield variations in mapping high-resolution spatial data within a single row. 
Four data sets from yield monitors of single row harvesting were used. A cleaning process with 
global and anisotropic filtering in a single sugarcane row was applied. The local outlier cleaner 
compares the yield value of a point with its nearest neighbors within the same row. Even after 
the elimination of outliers, there is great variation in yield between the rows, and this variation is 
much smaller in a single row. A frequency of 2 Hz was required for identifying and characterizing 
small yield variations within the sugarcane rows whilst other frequencies tried (0.2 and 0.1 Hz) 
resulted in loss of information on yield variability within the row. The difference between the root 
mean square error (RMSE) of ordinary kriging (OK) and inverse distance weighting (IDW) tech-
niques is large enough to suggest the use of an individual yield line. Individual yield lines saved 
information in the data generated by the yield monitor unlike IDW and OK interpolation methods 
which omitted information over short distances within the rows and compromised the quality of 
high-resolution maps.
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Introduction

Sugarcane (Saccharum spp.) has a high production 
cost. Information on yield and production costs is essen-
tial to the management of agricultural fields (Griffin et 
al., 2018). The mapping of sugarcane yields converts es-
timates into quantitative values that can be more easily 
used by decision-makers (Fernandes et al., 2017). These 
maps allow farmers to determine yield variations and in-
vestigate the causes of these variations (Price et al., 2017). 
According to Amaral et al. (2018), sugarcane has high 
biomass variability in adjacent rows. Therefore, a yield 
monitor installed on a sugarcane harvester, which cuts 
and processes the cane harvested along a single or double 
row, might offer a means of producing high-resolution 
yield data and, consequently, high-resolution maps.

Yield spatial information on individual lines can be 
an option for mapping yield variability within sugarcane 
rows, thus offering the potential, for example, to create 
nutrient export maps for site-specific variable rate ap-
plication, row by row. However, the data produced by 
the yield monitors present systematic errors in the data 
set, and post-processing is necessary to eliminate these 
errors before making the maps (Leroux et al., 2018; Drie-
meier et al., 2016; Lyle et al., 2014). Different methods 
that apply sequences of filters, which classify, identify, 
and remove spatial outliers of grains yield data, have 
been developed in the past (Vega et al., 2019; Leroux et 
al., 2018; Spekken et al., 2013; Sudduth and Drummond, 
2007; Menegatti and Molin, 2004; Blackmore and Moore, 
1999). These methods use statistical parameters to clas-
sify a given point in the data set by taking into account 
points on neighboring rows. Thus, yield data processing 

already used for other crops can exclude data with use-
ful information on spatial variability within the sugarcane 
row. Given this possibility, it is necessary to understand 
the real quality of the data and how they express yield 
variability within the field and, in particular, within ev-
ery single row. Furthermore, it is worth investigating if 
data density provided by yield monitors influences the 
characterization of yield variations within the same row. 
Therefore, this study hypothesized that greater resolution 
of data variability within sugarcane rows can reveal infor-
mation that might substantially support farmers in their 
decisions in the field through the use of high-resolution 
yield maps. Thus, the current study aimed to (i) test a 
method for sugarcane yield data cleaning; (ii) investigate 
if data recording frequency influences characterization of 
yield variations within the same row; and (iii) create high-
resolution yield line maps.

Materials and Methods

Four yield data sets from sugarcane fields in the 
central-western region of the state of São Paulo, Brazil 
(21o21’ S, 48o40’ W; 523 m altitude) were used. Scale 
yield monitors installed on the harvester elevator gener-
ated the data, measuring the amount of sugarcane that 
passes through the conveyor before being dumped into 
the infield wagon (Mailander et al., 2010; Jensen et al., 
2013). Due to the use of two monitors, each from differ-
ent manufacturers, data sets were recorded with differ-
ent frequencies (Table 1). The two yield monitors were 
set up to record data at the highest frequency allowed by 
the equipment. The harvesting was carried out in fields 
with 1.5 m spacing between rows.
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Each yield monitor data set was subjected to a se-
quential data screening in order to detect and remove 
points with erroneous values. This process was imple-
mented in three stages. 

Step 1- Global filter
Data were screened by filtering zero yield val-

ues and global outliers (Vega et al., 2019; Sudduth and 
Drummond, 2007). The global filtering method for iden-
tifying outliers is the Interquartile Range (IQR) (Tukey, 
1977). The IQR is the range between the first and the 
third quartiles. Tukey (1977) therefore considered any 
data point that fell outside 1.5 times the IQR below the 
first quartile or 1.5 times the IQR above the third quar-
tile to be outliers (Figure 1).

Step 2 – Identify rows
Based on the assumption that sugarcane harvest-

ers run through sites in an alternating round trip (Jin and 

Tang, 2010), row separation was obtained by the method 
described by Lyle et al. (2014). The direction of the har-
vester was determined, and every change in direction 
was considered the beginning of a new row. 

Step 3 – Local anisotropic filter
In addition to the data remaining after global fil-

tering, two parameters had to be provided as inputs for 
the model. Local filtering allows the user to identify and 
eliminate points that cause yield variation within a set of 
neighboring points and preserve points with consistent 
yield values (Vega et al., 2019; Leroux et al., 2018; Spe-
kken et al., 2013).

The local filtering method proposes detecting all 
points located in a radius range (Ri) around a point (Pi) 
within a single sugarcane row (red polygon Figure 1). 
For the four data sets, points located at a Ri ≤ 21 m were 
used. This was the smallest range of spatial data depen-
dence found among the four data sets. The model as-
sumes that the defined radius range does not exceed the 
spatial data dependency. However, due to the speed of 
the harvester and the frequency of the data logger, the 
distance between collected points will vary, and there-
fore, users can set this radius range according to the data 
set they want to filter. In the sequence, the median of 
these points is calculated. If the yield value in Pi is above 
the upper limit (Eq. 1) or below the lower limit (Eq. 2), it 
is considered an outlier and is filtered out.

Table 1 – Data set characterization.
Data Area Frequency N° points Density Distance Average yield

ha Hz points ha–1 m Mg ha–1

Field 1 15.7 0.2 26877 1711.9 2.8 137.4
Field 2 9.8 0.2 13255 1352.6 3.1 105.8
Field 3 3.6 1.0 17237 4788.1 1.2 243.6
Field 4 8.7 1.0 62426 7175.3 1.0 250.6

Figure 1 – Steps for cleaning data set and procedure for yield line maps. 
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UL = Med + Med x var	  (1)

LL = Med – Med x var	  (2)

where: UL is the upper limit, LL the lower limit, Med, 
the median of all points located in Ri, and var, the maxi-
mum variation accepted for the median. By default, the 
maximum variation acceptable for the four data sets 
was 20 %. The process is repeated for each point in the 
data set. All related functions of identifying and remov-
ing discrepant data were programmed using the Python 
programming language. The python script was run in 
a multi-purpose open source geographic information 
system (QGIS Geographic Information System, v. 2.18, 
QGIS, 2018).

A geostatistical analysis was carried out to char-
acterize the spatial variability of the sugarcane yield in 
order to verify differences in spatial dependence across 
and within the rows. An anisotropic analysis was per-
formed using both all values of the data set and those 
for each row individually taking into account only data 
within a single row. Semivariograms were individually 
modeled, testing the spherical, exponential and gauss-
ian models, to ultimately choose the one with the lower 
root mean square error (RMSE, Eq. 3) of cross-validation 
results (Isaaks and Srivastava, 1989). The spatial depen-
dence was evaluated based on the nugget effect percent-
age on the sill variance, and it was classified as strong (< 
25 %), moderate (between 25 and 75 %), or weak (> 75 
%) (Cambardella et al., 1994). The semivariograms were 
modeled using the R 3.3.3 program (R Core Team, 2017) 
and the geoR package version 1.7-5.1 (Ribeiro Júnior 
and Diggle, 2001).

RMSE
n

Z xi Z xi
i

n
= ( ) − ( )}{=∑1 2

1
ˆ 	  (3)

where ˆ( )Z xi  is the predicted value; Z(xi), the observed 
(known) value; and n, the number of values in the data 
set (Robinson and Metternicht, 2006).

A simulation with the recording frequency was 
conducted to determine if it influences the identification 
of small yield variation within the row using the filtered 
data of field 3, with common frequencies for yield moni-
tors, as follows: each point (1 Hz as reference), dropping 
out one of every two points (0.5 Hz), dropping out four 
of every five points (0.2 Hz) and adding one point in the 
middle of two points (2 Hz). The influence of frequen-
cy on the data collected was quantified by evaluating 
the changes of semivariogram parameters between the 
reference (1 Hz) and simulated frequencies. The semi-
variograms were fitted, and the prediction quality after 
applying the simulated frequencies assessed using cross-
validation (James et al., 2014).

In order to generate information similar to that 
in the original data, individual yield lines were created 
with georeferenced yield values for each crop row us-
ing the ‘Points2One’ QGIS tool to extract the line (har-
vester path) from the layer of points generated by the 

yield monitor. The harvester runs through the field in 
parallel rows. Thus, the ‘Editspline’ tool from AutoCAD 
software 2017 (California, United States) was used to 
smooth out the lines generated, and the ‘Offset’ tool was 
used to make them parallel in order to remove the minor 
deviations in the harvester path, due to Global Naviga-
tion Satellite System (GNSS) errors. The lines generated 
were broken at nodes every 0.5 m, which represents a 
maximum distance without plants but greater than that 
may be considered as a gap (Stolf, 1986).

To estimate yield values in the lines, the ‘Voronoi 
Polygons’ tool from QGIS software was used. This al-
gorithm divides the area into smaller polygons, each 
corresponding to the coverage area of each point in the 
processed data set. Finally, the values of the polygons in 
the line layer were joined using the ‘Intersection’ tool 
from QGIS. This tool makes layer overlays (line and Vo-
ronoi polygon) for the output file (line) to record values 
where both layers intersect. To verify the impact of the 
proposed line map protocol, a comparison of line maps 
with surface maps generated by OK and the IDW inter-
polation methods was made. To compare different inter-
polation techniques, the difference between the known 
data and the predicted data using the RMSE (Eq. 3) was 
examined. The RMSE is a measure of the average magni-
tude of the estimated errors, always has a positive value 
and, being closer to zero, suggests a higher quality of the 
measured or estimated values.

Results and Discussion

Sugarcane harvesters carried out the cutting, frac-
tioning, partial cleaning, and loaded the stalks directly 
into the infield wagon, whose driving was synchronized 
with the harvester. Maneuvering time of the harvester 
was shorter than that of the wagon and in certain situa-
tions, the harvesting started before synchronization with 
the wagon. Thus, the conveyor belt remains off (time off 
- TO) for a period, and there is cane stalk accumulation 
in the elevator basket, causing the yield monitor to re-
cord zero values (Figure 2A). High yield data is recorded 
by activating the conveyor belt.

In the data sets studied, the average flow stabili-
zation time (ST) in the conveyor belt was 7.0 s and ST 
varied according to TO; a greater amount of cane har-
vested with the conveyor belt off resulted in greater ST. 
This error also occurred with wagon replacement in the 
middle of the field (Figure 2B). Positioning errors and 
data logging errors during machine maneuvers can be 
observed at the end of the path in Figure 2A. The yield 
monitor recorded a large quantity of data with both posi-
tion and zero yield values during maneuvers (red points 
in Figure 2A).

The harvesting width was fixed; however, high 
variance in yield values in small distances within the 
row could be observed indicating the presence of dis-
crepant data. The median values deviate from values 
of the mean, and the minimum and maximum values 



4

Maldaner et al. Sugarcane yield mapping

Sci. Agric. v.77, n.5, e20180391 2020

reinforce high data variability. These present high val-
ues of the coefficient of variation (Table 2), which may be 
considered as the first indicator of data set heterogeneity.

The proposed methodology identified 25 and 15 % 
of the data as outliers for fields 1 and 2, and 31 and 40 
% for fields 3 and 4, respectively, thus excluding them 
(Table 2). The quantity of data removed was larger than 
what is normal on cleaning done in grain yield data (Vega 
et al., 2019). The quantity of data with errors of TO and 
ST is proportional to the number of harvester paths in 
the harvested field. Generally, the sugarcane harvester 
has a smaller harvest width than grain harvesters; con-
sequently, there is more path. This may be the reason 
for the greater exclusion of outliers in the cleaning pro-
cess in sugarcane yield data. The larger number of points 
eliminated in fields 3 and 4 compared to fields 1 and 2 is 
related to a higher frequency of points collected during 
harvesting. The global filter removed points with yield 
values both below 15.3, 18.2, 2.3, and 4.9 Mg ha–1 and 
above 300.4, 250.1, 571.5, and 578.0 Mg ha–1 for fields 
1, 2, 3, and 4, respectively. The removal of site-specific 

points and global outliers substantially altered the sum-
mary statistics of the yield data sets, decreasing values 
of standard deviation and yield mean by almost 5 % in 
fields 1-2 and 12 and 20 % in fields 3-4. This is because 
of the high values of the points with ST influence far in 
excess of the zero values of the TO unlike grain yield data 
filtering where most errors in yield values are below aver-
age or close to zero (Vega et al., 2019; Leroux et al., 2018; 
Spekken et al., 2013; Sudduth and Drummond, 2007; 
Menegatti and Molin, 2004). The skewness and kurtosis 
coefficient values (Table 2) suggest that yield distribution 
of the original data was not normal, indicating that aver-
age yield values of the original data were influenced by 
extreme values. The filtering methodology induced the 
data to have a normal distribution, due to the removal of 
data with very low and very high yield values (Figure 3).

The elimination of a large number of points may 
affect information quality. However, the density of points 
is significantly high, even after the removal of local out-
lier points, and this was done in order for the variations 
in lower and higher yield over short distances within 

Table 2 – Yield descriptive statistics of original and processed data sets.
Field Type n n excluded Min Mean Median Max SD CV sk ku

----------------------------------------------------------- Mg ha–1 ------------------------------------------------------------ %

1
Or 26877 –42.8 137.4 130.8 1172.0 67.5 49.1 1.6 9.8

Proc 21096 5781 (22 %) 20.4 131.8 128.5 297.2 45.3 34.4 0.4 –0.1

2
Or 13255 –11.8 105.8 96.0 1366.8 58.0 54.8 4.0 39.2

Proc 11142 2113 (16 %) 29.5 94.7 91.6 217.3 30.2 31.9 0.5 –0.2

3
Or 17237 0.0 243.6 201.5 35587.0 1251.3 513.7 21.8 524.4

Proc 11968 5269 (31 %) 103.8 216.1 211.8 349.3 31.4 14.5 0.7 1.3

4
Or 62425 0.0 250.6 184.9 28092.6 1135.3 453.0 15.8 281.3

Proc 37675 24750 (40 %) 100.0 208.4 207.1 380.0 45.8 22.0 0.3 0.1
Or = original data; Proc = processed data; SD = standard deviation; CV = variation coefficient; sk = skewness; ku = kurtosis.

Figure 2 – Error in yield data at the beginning of a new row (A) and during wagon replacement in the middle of the field (B). Black arrows represent 
the direction of the harvester path. YV = yield variation; TO = elevator time off; ST = sugarcane flow stabilization time.
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According to Amaral et al. (2018), skips are related to ra-
toon damages, diseases, pests, and climate conditions.

Yield in the sugarcane fields presents weak spatial 
dependence, even after removing the local outliers (Table 
3), while field 4 data presented moderate spatial depen-
dence (Cambardella et al., 1994). A study by Amaral et 
al. (2018) using canopy sensors in every single sugarcane 
row showed moderate spatial dependence of crop-vigor 
spatial variability. Higher nugget/sill ratio was related to 
smaller spatial dependence, which means greater spatial 
randomness. Weak spatial dependence occurs because of 
yield randomness between neighboring rows. As this data 
is densely collected, a low nugget effect would be expect-
ed (Amaral et al., 2018) and with less data randomness, 
stronger spatial dependence would also be expected (Vie-
ira et al., 1983). The semivariograms modeling for each 
sugarcane row showed that there is less yield variation 
within rows. It means variation in yield values within the 
same row was much lower than the yield variation across 
the rows. This can be best observed in Figure 4, where 
the nugget effect values of the semivariograms fitted for 
each row were much lower than the nugget effect value 
of the global semivariogram (dashed line). This reduc-
tion in yield variation within-row can be attributed to the 
elimination of local outliers by the local cleaning process, 
smoothing out the yield variation within-row.

The density of points recorded by the yield moni-
tor interferes with the yield variability characterization 
within rows (Figure 5). The decrease in frequency to 0.2 
Hz smoothed yield variation within the row, rendering it 
incapable of identifying small-scale variability. The fre-
quency decrease to 0.1 Hz (one point every 10 s) led to 
values that were very different from the other scenarios 

the row to be identified. This can be better observed by 
semivariogram parameters, before and after data set fil-
tering (Table 3). Outliers completely compromised the 
spatial structure of yield in the sites studied. Fields 1 and 
2 presented high values for the nugget effect in the origi-
nal data, while fields 3 and 4 did not present any spatial 
dependence. High nugget values were expected, due to, 
firstly, the large density of points collected by the yield 
monitor within the row and, secondly, to the high yield 
variability across the adjacent lines (Amaral et al., 2018). 
After the data cleaning, the exponential model showed 
the best fit for fields 2, 3 and 4. Studies with grain clean 
process showed the same semivariogram adjustments as 
per the clean data (Vega et al., 2019; Leroux et al., 2018). 
On the other hand, the Gaussian model presented the 
best fit for field 1. This result was similar to that of Me-
negatti and Molin (2004) in which the cleaning process 
improved the cross-validation of the adjusted Gaussian 
model, contributing to the characterization of spatial de-
pendence and reducing unexplained variability.

The primary aim of filtering the yield errors is to 
improve the quality of the interpolation and for kriging; 
any improvement in the data quality is indicated by a 
reduction in the nugget variance (Robinson and Metter-
nicht, 2005). However, even after the cleaning process, 
the semivariograms showed very high nugget parameters, 
demonstrating that there is still great variation in yield 
over small distances. Other studies comparing the meth-
ods for cleaning grain yield data show a decrease in the 
nugget values after data cleaning (Vega et al., 2019; Le-
roux et al., 2018; Menegatti and Molin, 2004; Sudduth 
and Drummond, 2007). Sugarcane yield is highly variable 
over short distances and is especially influenced by gaps. 

Figure 3 – Yield variation in the raw data and after the cleaning process. 

Table 3 – Geostatistical analyses of original and processed yield data sets.

Field Type Model C0
a C1

b
Range Cross-Validationc

Spatial dependence
 m a b RMSE

1
Original Exponential 3390.5 4112.5 26.6 1.5  –64.2 57.5 0.78 Weak

Processed Gaussian 1392.4 1805.0 21.7 1.6 –77.6 25.1 0.87 Weak

2
Original Exponential 2462.7 2789.7 26.23 0.7 26.6 49.1 0.88 Weak

Processed Exponential 1722.0 1879.2 43.9 1.2 10.4 32.5 0.92 Weak

3
Original - d - - - - - - - -

Processed Exponential 685.3 842.0 23.8 1.0 –0.2 50.7 0.81 Weak

4
Original - d - - - - - - - -

Processed Exponential 1151.8 2469.3 48.8 1.0 –0.3 21.1 0.47 Moderate
aNugget effect; bsill; cLeave-one-out cross-validation performed by kriging: a = slope; b = intercept; RMSE = Yield root mean square error; dpure nugget effect - did 
not fit any models. 



6

Maldaner et al. Sugarcane yield mapping

Sci. Agric. v.77, n.5, e20180391 2020

and lost details, which is not desirable. Investigations for 
local interventions within the sugarcane row demands 
knowing yield variation over short distances. Informa-
tion, such as the absence of plants (skips) or greater ra-
toon cane development (higher yield) over short distances 
cannot be identified through yield data with low data ac-
quisition resolution by the yield monitor.

Due to high yield variability, the number of data 
collected by the yield monitor highly influenced the 
quality of yield maps (Figure 6). Data with a higher 

acquisition frequency showed more detailed yield 
variability, identifying local values of low and high 
yield at short distances. High-frequency data acqui-
sition can generate information on the amount of 
nutrients exported in detailed resolution within the 
sugarcane row, aiding in the systematization of the 
application of inputs, applying variable rates in the 
function of yield, optimizing the doses, reducing costs 
with improperly applied inputs and minimizing envi-
ronmental impacts.

Figure 4 – Yield geostatistical analyses of each row for each field. *C0 global - nugget effect value of the global semivariogram (Table 3) fitted 
using all data from the data set.

Figure 5 – Yield variation in different data recording frequencies within a single row.

Figure 6 – Points (top) and surface (bottom) yield maps generated by different data recording frequencies for sugarcane in field 3.
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The individual yield lines generated by the extrac-
tion method of sugarcane lines and yield estimation by the 
Voronoi polygon showed that yield variations over short 
distances were retained (Figure 7). For sugarcane fields, 
line maps provided detail of yield variations within a sug-
arcane row. Thus, cropping operations, such as spraying 
or fertilization, could be carried out with greater accuracy. 
Surface maps created by OK interpolation tend to smooth 
out yield variability (Figure 7). The maps generated by 
OK had higher RMSE values when compared to individ-
ual yield lines. This is because both low and high yield 
variation within the rows frequently disappear when OK 
is carried out, as regions with low or high yield are not 
large enough to influence pixel values. OK is known to be 
a spatial prediction technique that works like a low pass 
filter through its smoothing effect (Robinson and Metter-
nicht, 2005). This smoothing coupled with the fact that 
the nugget was greater than zero due to the high random-
ness of the data, even after excluding outliers, impaired 
the quality of the interpolation. Surface maps created by 
IDW interpolation retained minor yield variations over 
short distances. According to Robinson and Metternicht 
(2005), IDW introduces substantial variability in the map 
by virtue of honoring the more extreme valleys and peaks 
in the harvest data. The IDW interpolator assigns greater 
weight to the closer yield values than to the farther ones. 

This is due to a higher power value where the weightings 
diminish more quickly, return a smaller RMSE in relation 
to OK (Thylén and Murphy, 1996; Robinson and Metter-
nicht, 2005). Thus, the model retained the yield variations 
in the data generated by the yield monitor. RMSE values 
in yield maps generated by IDW and OK demonstrate 
that with such dense data, surface yield maps are not the 
approach preferred by management within the same row 
(Figure 7). Even though the IDW and OK maps show the 
regions of both low and high yield potential, the OK maps 
have RMSE variations in relation to the yield average of 
20, 33, 23 and 8 % and the IDW maps of 15, 11, 10 and 4 
% to fields 1, 2, 3 and 4, respectively. This demonstrates 
that OK and IDW interpolation methods generate unreli-
able sugarcane yield maps, which inhibits the use of this 
site-specific tool in the management of sugarcane unlike 
individual yield lines, which present a low number of 
variation errors (an average of 0.3 %) offering high reli-
ability for use in site-specific management, row by row.

Conclusions

Sugarcane yield data collected along a single or 
double row have the ability to provide substantial in-
formation to the farmer for better field management. 
Unfortunately, during the process of collecting the yield 

Figure 7 – Sugarcane yield maps created by ordinary kriging (OK), inverse distance weighting (IDW) and sugarcane lines from cleaning data sets 
of the four fields. RMSE = root mean square error.
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data, errors occur that are generally associated with 
the equipment used to obtain them and they have to be 
identified and removed. This study showed these data 
can be easily removed by a simple cleaning process of 
global and anisotropic filtering within a single sugar-
cane row. In the geostatistical analysis, it was observed 
that, even after the elimination of data uncertainty, 
there is a great variation in yield between the adjacent 
rows, and that this variation is much smaller within a 
single row. Moreover, frequency data recording influ-
ences the yield variability within the row. In this study, 
the frequency of 2 Hz identified and characterized 
small yield variations within sugarcane rows whereas 
frequencies of 0.2 and 0.1 Hz resulted in loss of infor-
mation on within row yield variability. Therefore, the 
highest possible frequency of data acquisition by the 
monitor is recommended. The accuracy assessment of 
the mapping techniques by the RMSE indicates that the 
difference between the RMSE, given the IDW and OK 
techniques. is large enough to suggest the use of an in-
dividual yield line map. In this study, individual yield 
line mapping saved information in the data generated 
by the yield monitor engendering useful information 
for row site-specific management. On the other hand, 
IDW and OK interpolation methods to generate surface 
maps omitted information over short distances within 
the rows thereby compromising the quality of high-
resolution maps.
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