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ABSTRACT. Development of mathematical models and its numerical implementations are essential tools
in epidemiological modeling. Susceptible-Infected-Recovered (SIR) compartmental model, proposed by
Kermack and McKendrick in 1927, is a widely used deterministic model which serves as a basis for more
involved mathematical models. In this work, we consider two stochastic versions of the SIR model for
analysing a measles outbreak in Ilha Grande, Rio de Janeiro, in 1976; Continuous Time Markov Chain
and Stochastic Differential Equations. The SIR Continuous Time Markov Chain model is used to extract
specific information from the measles outbreak. The outbreak probability, final size distribution and ex-
pected duration of the epidemic were computed, obtaining results in excellent agreement with the reported
epidemic values. Numerical simulations are performed in Python.

Keywords: stochastic epidemiological models, SIR model, measles outbreak.

1 INTRODUCTION

Measles virus, Measles morbillivirus, have affected human populations since many centuries ago,
even before the Common Era [8]. Measles is an airborne, highly contagious disease, which may
cause mortality, mainly on childhood and in developing countries. In reference [16], a detailed
study is carried out, reporting on incidence of measles in global level, vaccine coverage, and risk
factors from 1990 to 2019. Vaccination has been a fundamental strategy for measles control. Even
so, in 2018, there were more than 140.000 deaths worldwide, mainly children under 5 years [19].
Since that time, Brazil has faced some outbreaks, losing its certification of measles eradication,
previoulsy obtained in 2016 [13]. A careful epidemiological surveillance is maintained by the
Brazilian Health Ministry and its associated institutions.

For studying infectious diseases and keeping an epidemiological controlled situation, mathemati-
cal modeling appears as a major importance tool. Among several models, compartmental models
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460 STOCHASTIC MODELING OF MEASLES

have been extensively used [2, 5]. In the compartmental modeling, population is divided into
compartments and some relations among these compartments are assumed. SIR model is one
of the basics compartmental models, useful for studying diseases that confer inmunity. It has
been widely applied to chilhood diseases [1], as it is measles. Its name refers to the considered
compartments: susceptible, infected and recovered (or removed) classes. Use of compartmen-
tal models for studying disease transmission was primarily done by W.O. Kermack and A.G.
McKendrick, in early 20th century [11]. The SIR compartmental model is used as a basis for
the construction of several more complex models. In addition to the compartmental SIR model
for analyzing measles outbreaks [7], there are also more complex models and approaches that
use, for example, birth and death rates, vaccination rates, probabilistic cellular automata based
models, among others [4,9,15,20]. For the purposes of this study, it is enough to consider a basic
SIR model. Simulation results will be compared with an outbreak results in Brazil, in an isolated
island and with a poor vaccination coverage.

It is commonly considered a deterministic dynamics for basic compartmental models, built upon
differential equations. In this case, the evolution of the system is completely determined for
given initial conditions. On the other hand, stochastic models [1] can be taken into account by
using probabilistic concepts. In contrast with a deterministic approach, stochastic models allow
obtaining a distribution of possible populations behaviours, included the possibility of having
an asymptotic convergence to a limit state different from its deterministic counterpart expected
result. Stochastic epidemic models own other properties that are unique for this approach, like
computing the probability of an outbreak, the expected duration of the epidemic and its final size
distribution.

In this work, we consider two stochastic versions of the SIR model for analysing a measles out-
break in Ilha Grande, Rio de Janeiro, in 1976 [3]. We use a Continuous Time Markov Chain [2],
which allows a detailed follow-up of the epidemic dynamics. Deterministic SIR model and its
stochastic differential equation version were also applied for comparison purposes. We are inter-
ested in computing specific properties from stochastic modeling for this particular outbreak, as
its expected duration and final size distribution. Through numerical simulations implemented in
Python, we compute all the specific properties of stochastic modeling and it was possible to esti-
mate a rate of spread for the epidemic outbreak in Ilha Grande. All the computed values through
SIR CTMC model for this specific measles outbreak, were in good agreement with the reported
results [3], showing a better behaviour than the deterministic SIR model. From the simulation,
it was possible to estimate a rate of spread for the epidemic outbreak, in good agreement with
the expected value for measles disease. All the specific properties of stochastic modeling were
computed. Numerical simulations were implemented in Python.

In the next section, deterministic SIR model is introduced, as well as the considered stochastic
versions. In Section 3, results of simulations are discussed and, finally, conclusions are presented
in Section 4.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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M. LAU and Z. G. ARENAS 461

2 THE SIR MODEL

As it was introduced above, SIR model is used for modeling diseases which have no re-infection
of the individuals who were infected. In consequence, the passage of individuals among the
compartments is a flux, from the susceptible class S, passing through the infected class I, to
the removed compartment R. In the basic SIR model, the total number of individuals in the
population is assumed to be constant, say N, which means that there are no births or deaths
during the evolution period of the disease. It will also be considered that there is no latent period,
a period in which those infected do not yet transmit the disease.

S I R
infection rate recovery rate

Figure 1: SIR epidemic model diagram.

Figure 1 represents the diagram of the model’s operation. The susceptible individuals class
communicates with the infected individuals class through an infection rate and the infected
individuals class communicates with the recovered individuals through a recovery rate.

The concept of the basic reproduction number, R0, plays a fundamental role in epidemiological
modeling. It is used to measure the transmission potential of the disease and represents the av-
erage number of secondary cases that an infectious individual can produce, considering a fully
susceptible population. It is defined as

R0 =
infection rate
recovery rate

and allows to estimate when an epidemic will occur, being a parameter of high social value. If
R0 > 1, then there is an outbreak of the disease in the population; if R0 < 1, the spread of the
disease is controlled and there is no epidemic; finally, for R0 = 1, the disease is endemic, that is,
there is an endemic equilibrium.

2.1 Deterministic SIR Model

The deterministic SIR epidemic model [11] can be stated through the following differential
equations,

dS
dt

=−β

N
SI

dI
dt

=
β

N
SI − γI

dR
dt

= γI,

(2.1)

with initial values S(0), I(0) > 0,R(0) ≥ 0, such that S(0)+ I(0)+R(0) = N. The parameter β

is defined as the contact or infection rate and γ , as the recovery rate of an infected individual.

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A5-1670” — 2023/6/22 — 18:35 — page 462 — #4 i
i

i
i

i
i

462 STOCHASTIC MODELING OF MEASLES

Combining the first two equations in the system (2.1) and assuming a single infected individual
and no recovered ones at the beginning, initial conditions are I(0)= 1,S(0)=N−1 and R(0)= 0,
and the following solution for the class of infected individuals at time t is obtained [12],

I(t) =−S(t)+N +
γN
β

ln
(

S(t)
N −1

)
. (2.2)

As time evolves, it is known that the number of infected individuals will decrease and so the
epidemic will end. Consequently, for t → ∞, I(∞) = 0 and from equation (2.2), it is obtained

S(∞) = N +
γN
β

ln
(

S(∞)

N −1

)
. (2.3)

Equation (2.3) gives a long-term generic solution for the class of susceptible individuals. A de-
tailed deduction of this equation can be found in reference [6]. Similar expressions in literature
can be seen in [17]. The final size of the epidemic is given by R(∞) = N−S(∞), which represents
all individuals who became infected and recovered (or eventually died).

2.2 Stochastic Modeling

There were considered two different stochastic versions of the SIR model, Continuous Time
Markov Chain (CTMC) and Stochastic Differential Equations (SDE). We will refer to CTMC
SIR and SDE SIR model in what follows. For stochastic modeling, compartments are considered
as stochastic processes.

2.2.1 CTMC SIR Model

For implementing the CTMC SIR model [1], we consider the compartments S, I and R as be-
ing discrete random variables, S(t), I(t) and R(t), called states, for any time instant t in a given
interval (continuous time process). The chain term indicates that the random variables are dis-
crete. We will refer to the states of the system as pairs (S, I), indicating the number of indi-
viduals in compartment S and in compartment I, for each state. Summarizing, for this model,
S(t), I(t),R(t) = {0,1,2, . . . ,N} and S(t)+ I(t)+R(t) = N, for each t ∈ [0,∞). Assuming that at
the onset of the epidemic period there is no recovered individual, the initial distribution of the
model is defined as (S(0), I(0)) = (s0, i0), where i0 > 0 and s0 + i0 = N .

From the system of equations (2.1), we have that only two of the random variables in the stochas-
tic model are independent. Considering S(t) and I(t) as independent variables, we have a bivariate
process {(S(t), I(t))}∞

t=0 and we will use its joint probability function, p(s,i)(t) = Prob{S(t) =
s, I(t) = i}, to determine the transition probability from one state to another. In this way, the
model is defined through the transition probabilities indicated in Table 1. Each equation models
the variation of only one individual in each compartment. The first equation illustrates the instant
in which a susceptible individual becomes infected and the second one models the passage of an
infected individual to the recovered compartment. The last equation ensures the normalization of

Trends Comput. Appl. Math., 24, N. 3 (2023)
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the transition probability. In the Table 1, ∆S = S(t +∆t)−S(t) and ∆I = I(t +∆t)− I(t) are the
state variation for a small time ∆t.

As previously mentioned, by means of the stochastic modeling, particular and important prop-
erties can be obtained for analyzing the spread of the disease. One of these properties is the
probability of occurrence of a disease outbreak in the population, computed at the start of the
epidemic, for a small value I(0) = i. It can be computed [18] as

outbreak probability =


0 ,R0 ≤ 1

1−
(

1
R0

)i

,R0 > 1
(2.4)

where R0 is the basic reproduction number.

As another particular property, stochastic modeling provides a distribution for the final size of
the epidemic. The final size represents the strength of the epidemic, that is, how many individuals
were infected in total. For obtaining this distribution, it will be necessary to consider the transition
probabilities between all the possible states (s, i). To this end, all possible states will be ordered
as follows:

(N,0),(N −1,0),(N −2,0), . . . ,(0,0),(N −1,1),(N −2,1), . . . ,(0,1), . . . ,(0,N).

So, there are (N+1)(N+2)/2 possible states. The vector of the probabilities for each state of the
system can be defined by p(t) = (p(N,0), p(N−1,0), . . . , p(0,N))

T and the transition rates between
states can be determined.

Considering (S(t), I(t)) = (s, i), the transition matrix elements of the Embedded Markov Chain
PY [10] are determined from the transition probabilities between states. When the transition from
state (s, i) to state (s, i−1) occurs, an infected individual is recovered and its probability is

p̃s =
γi

γi+(β/N)si
=

γ

γ +(β/N)s
.

Table 1: Transition probabilities between states for the SIR CTMC model.

(∆S,∆I) Probability

(−1,1)
β

N
S(t)I(t)∆t +o(∆t)

(0,−1) γI(t)∆t +o(∆(t)

(0,0) 1−
[

β

N
S(t)I(t)+ γI(t)

]
∆t +o(∆t)

Trends Comput. Appl. Math., 24, N. 3 (2023)
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464 STOCHASTIC MODELING OF MEASLES

On the other hand, when the transition is from the state (s, i) to the state (s−1, i+1), a susceptible
individual has been infected and its probability is

1− p̃s = 1− γ

γ +(β/N)s
=

(β/N)s
γ +(β/N)s

.

The transition matrix PY is very useful for calculating the final size of the epidemic. The epidemic
ends when the infected compartment becomes empty, i.e., I(t) = 0. In general, for any population
of size N, starting with an infected individual, which means p(N−1,1)(0) = 1, the maximum num-
ber of transitions until there are no more infected individuals, is 2N −1. The situation of having
no infected individuals is known as absorption. Once the system reachs an absorving state, it is
no more possible to leave it.

Assuming that initially the number of infected individuals is 1 and there are no recovered indi-
viduals, that is, S(0) = N − 1, I(0) = 1 and R(0) = 0, the probability associated with the final
size of the epidemic can be obtained by calculating the absorption probabilities,

lim
t→∞

N−1

∑
s=0

p(s,0)(t) = 1.

If there are s susceptible individuals when the number of infected individuals reaches zero, the
final size of the epidemic is N − s. Therefore, it is possible to find the absorption probabilities
using the transition matrix PY . In particular, limt→∞ p(t) = p(2N −1) = (PY )

2N−1 p(0).

Finally, another specific property which stochastic modeling allows accessing is the expected
duration of an epidemic. In the model, the duration of an epidemic corresponds to the time it
takes to reach absorption, that is, the time T such that I(T ) = 0. For the SIR CTMC model, it
can be calculated using the first passage time method. Time to absorption may be too short or too
long depending on the modeling conditions, as the size of the population N and the value of R0,
and the initial number of infected i [1]. Denoting by τs,i the expected duration of the epidemic
with initial condition (s, i), this value is calculated from the system of equations

(γi+(β/N)si)
(

p̃sτ(s,i−1)− τ(s,i)+(1− p̃s)τ(s−1,i+1)
)
=−1. (2.5)

To perform stochastic simulations in a CTMC, we need to know the time distribution between
successive events. That is, the time it takes to go from one state to another. This time is called the
time between events, denoted by TE , and it is defined as a random variable. In the SIR CTMC
model, it can be calculated as

TE =− lnU
β

N S(t)I(t)+ γI(t)
,

where U is a uniform random variable defined in the range [0,1].

2.2.2 SDE SIR Model

For the SIR SDE epidemic model [2], S(t) and I(t) denote again continuous random variables
for susceptible and infected compartments and let denote X = (S, I)T , ∆X = (∆S,∆I)T , in vector

Trends Comput. Appl. Math., 24, N. 3 (2023)
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notation. As it was seen in Section 2.1, infected individuals recover at a rate γI and susceptible in-
dividuals get infected at a rate βSI/N. Table 2 lists the probabilities for the two possible changes
in the SIR epidemic model for a small time interval ∆t. These changes refer to the possibility of a
susceptible individual gets infected, (∆S =−1,∆I = 1) or an infected individual gets recovered,
(∆S = 0,∆I =−1).

Table 2: Probabilities associated with changes between states for the SIR SDE model.

i (∆X)i Probability (pi)

1 (−1,1)
β

N
S(t)I(t)∆t

2 (0,−1) γI(t)∆t

The expectation E(∆X) and covariance Cov(∆X) for the change in the two populations are
computed from the probabilities defined in Table 2. The expectation can be expressed as

E(∆X) = ∆X ·probability

=

(
−1 0

1 −1

)(
βSI/N

γI

)
∆t

=

(
−βSI/N

βSI/N + γI

)
∆t

The lines of matrix ∆X represent the transitions that may occur in each compartment. The first
line represents transitions that occur in the susceptible compartment and the second line, transi-
tions that occur in the infected compartment. In addition, the covariance matrix associated with
these changes is a 2×2 matrix such that

Cov(∆X) = E

[
(∆S)2 (∆S)(∆I)

(∆S)(∆I) (∆I)2

]

=

(
βSI/N −βSI/N
−βSI/N βSI/N + γI

)
∆t

Diffusion matrix for standard Itô SDE equations involve the computation of the square root of the
covariance matrix. Instead of this, another matrix B is shown to have the property that BBT ∆t =
Cov(∆X) and can be used for defining an equivalent Itô SDE model for the SIR epidemic process
as dX = µdt +BdW ∗, where W ∗ = (W ∗

1 ,W
∗
2 ) is a vector of two independent Wiener processes.

Let denote the i-th change in Table 2 (∆X)i, for i= 1,2, as (∆1i,∆2i)
T . Each component represents

the amount and direction (sign) of change in the variables ∆1i and ∆2i. The (i, j) entry in matrix
B is defined as

Bi j = ∆i j

√
p j/∆t. (2.6)

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A5-1670” — 2023/6/22 — 18:35 — page 466 — #8 i
i

i
i

i
i
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Now, the 2× 2 matrix B can be computed from the entries in Table 2 and the equation (2.6),
obtaining

B =

(
−
√

βSI/N 0√
βSI/N −

√
γI

)
.

Therefore, the explicit form for the SDE epidemic model, in this case, is

dS =−β

N
SIdt −

√
βSI/NdW ∗

1 ,

dI =
(

β

N
SI − γI

)
dt +

√
βSI/NdW ∗

1 −
√

γIdW ∗
2 .

(2.7)

3 NUMERICAL RESULTS

The parameters values used for performing numerical simulations were taken from a report on
an epidemic measles outbreak in a fishing village in the Ilha Grande region, in the state of Rio de
Janeiro, Brazil, in 1976 [3]. The total population of residents in the village was 453 individuals.
The disease spreads from one infected person who traveled to the location. Thus, we consider
I(0) = 1 as the initial condition.

Table 3: Incidence of measles according to age. Information extracted from [3].

Age group Total cases Resident population
< 1 - 11
1 a 5 16 66
6 a 10 20 60

11 a 15 11 53
16 a 19 3 41
> 19 - 222

In Table 3, the values of the population size by age group are listed. It can also be observed that
the incidence of the disease affects more individuals between 1 and 19 years, that is, children
and teenagers. In the analysis of a measles outbreak, there are some age groups that do not get
infected. It is the situation for individuals over 19 years, who have been previously vaccinated or
are considered to have natural immunity, given that a measles outbreak have occurred five years
earlier, and also for children under 1 year, who are supposed to have maternal immunity [3].
Consequently, population group aged between 1 and 19 years was defined as the susceptible
population, comprising 220 individuals. Summarizing, at the initial moment, total population
was divided as S(0) = 220, I(0) = 1 and R(0) = 233. The measles epidemic in this location
lasted 60 days and reached a total of 50 individuals, with no deaths occurring.

Despite measles is a highly contagious disease, conditions for contagion and spread depend on
several factors, such as population density, age group, vaccination policies, and others [14]. Due
to this setting, there exist a range of values for the basic reproduction number R0, which is not a

Trends Comput. Appl. Math., 24, N. 3 (2023)
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universal constant. Finding this value for a particular epidemic case is tricky and very important
for modeling. With no previous information on R0 or the contagion and recovering rates, these
parameters can be computed through several analytical or numerical techniques, including least
square principle [7], Next Generation Matrix, graph theory and others (see reference [4] and
references therein). In this study, it is used the basic reproduction number R0 = 6.92 as it was
defined in the reported case study, reference [3].

The average duration of infection was 9.5 days, which is the mean time an individual takes to
recover. This value is used to estimate the recovery rate, so γ = 2/19. Consequently, the infection
rate was set to β = R0γ ≈ 0.7284.

(a) (b)

(c)

Figure 2: Diversity of possible scenarios obtained from CTMC SIR model (solid line) versus the
unique evolution of deterministic SIR model (dashed line) given the same initial condition in
both models for all the simulations. While in Figure 2a, results from both models differ, the
outcomes in Figure 2c are very similar. At the same time, in each case, epidemic occurs at
different moments in time. In Figure 2b, CTMC SIR evolves for a non-epidemic condition.

Numerical simulations were performed in Python. Some of the possible scenarios obtained from
numerical simulation for the evolution of measles are shown in Figure 2. In each sub-figure, a
single simulation of the disease dynamics is depicted, comparing the outcome of the stochastic

Trends Comput. Appl. Math., 24, N. 3 (2023)
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CTMC SIR model (solid line) with the result of the deterministic SIR model (dashed line). All
these simulations were performed for the same initial condition.

Figure 2 illustrates the fact that, while the deterministic model offers a unique dynamics for the
evolution of the epidemic outbreak given a specific initial condition, for the stochastic modeling a
diversity of possible situations may be obtained. Besides the fact of having different results from
both models in Figure 2a, as well as highly similar outcomes in Figure 2c, stochastic modeling
brings the scenario of having the epidemic situation with different periods of time. This infor-
mation could be useful for evaluating control strategies. On the other hand, a dynamics which
does not evolve to an epidemic phase, also generated by the stochastic model, was illustrated in
Figure 2b. For this reason, for stochastic modeling, it is necessary to perform a high number of
simulations and analise them statistically. It is worth noting that, changing the initial condition,
the deterministic model will offer a different solution. Analysing a unique solution is not the
purpose of the epidemiological modeling.

Numerical simulations for SDE SIR model defined by equations (2.7) were also performed.
It was used Euler-Maruyama scheme for integrating the SDE equations. As expected from a
stochastic model, several different scenarios were obtained for its dynamics, as depicted in Fig-
ure 3. Conditions like non-epidemic evolution (Figure 3b), visible different (Figure 3a) or highly
similar (Figure 3c) to deterministic SIR evolutions are once again illustrated. Once again, as it
was the case in Figure 2, epidemic may occur in different time periods for the SDE modeling. It
can be see in Figures 3a and 3c and could help to evaluate possible control strategies.

Although through stochastic differential equations models, it is also possible to compute many
specific properties for epidemic evolution, this work focused on computing these properties by
using CTMC SIR model.

From equation (2.4), it is possible to determine the probability of occurrence of the disease
outbreak in the population. With the previously defined value of R0, we obtain a result of 0.85
for this property, that is, the probability of the disease spreading in the population is of 85%.

In stochastic modeling, all possible scenarios have a certain probability of occurrence, including
that of non epidemic condition depicted in Figure 2b. Thus, to obtain valid results using the
stochastic model, a large set of simulations must be performed. In order to carry out a valid
statistical analysis of the results, we performed 1.000 simulations of the CTMC SIR model.

As several scenarios may result from the CTMC SIR model, averages of some quantities of in-
terest were computed from the results of the 1.000 simulations carried out. It was found that the
peak of the epidemic would happen, on average, with the infection of 56 individuals around the
twentieth day, a reasonable number for the description of the reported measles outbreak, consid-
ering that 50 individuals were infected in total during the timeframe. In contrast, the deterministic
SIR model provided an estimate of 75 infected individuals on the peak day, appearing as the 25th
day. These results are shown in Figures 4a and 4.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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(a) (b)

(c)

Figure 3: Diversity of possible scenarios obtained from SDE SIR model (solid line) versus the
unique evolution of deterministic SIR model (dashed line) given the same initial condition in both
models for all the simulations. While in Figure 3a, results from both models differ, the outcomes
in Figure 3c are similar. At the same time, in each case, epidemic occurs at different moments in
time. In Figure 3b, SDE SIR evolves for a non-epidemic condition.

(a) (b)

Figure 4: Average values computed from 1.000 CTMC SIR simulations carried out. 4a) Mean
(red dashed line) of epidemic peaks for measles outbreak. 4b) Average day (red dashed line) for
the ocurrence of the epidemic peak.

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Another important advantage of stochastic modeling is the possibility of generating a probability
distribution for the final size of the epidemic. This distribution, in the case under study, is shown
in Figure 5a. Analyzing this probability distribution, an initial peak can be observed, which
represents the probability of not having an epidemic outbreak in the population. The probability
of having an outbreak is distributed for all possible final size values of the epidemic, with the
highest probability associated with the final size of approximately 221 contagions. This last value
is related to the original susceptible population and follows from the SIR model dynamics. These
results are illustrated in Figures 5a and 5b.

(a) (b)

Figure 5: 5a) Probability distribution of final size of the epidemic. 5b) Average (red dashed line)
for the final size.

Finally, stochastic modeling offers the possibility of estimating the expected duration of the
epidemic. From a theoretical approach, the value for the expected duration, computed from
equation (2.5) with (s, i) = (220,1) as the initial state, is approximately 57.56 days.

It is also possible to compute the average duration of the epidemic based on the results of the
performed simulations. Computed from the simulations, the obtained result was 59.84 days, in
accordance with the theoretical result. This value is depicted as a red dashed line in Figure 6.
Both theoretical and experimental results obtained for the expected duration of the epidemic are
very close to the real value of the duration of the measles outbreak, that was of 60 days, as
reported in [3].

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Figure 6: Mean value for the epidemic duration (red dashed line), 59.84 days.

4 CONCLUSIONS

Considering the incidence of measles in Brazil in recent years and the broad use of mathematical
modeling for improving social and public policies, developing and adjusting stochastic models
is of major importance. In this work, we have studied and implemented stochastic versions of the
deterministic compartmental SIR model, using Continuous Time Markov Chain and Stochastic
Differential Equations. We modeled a measles outbreak that took place in Ilha Grande, Rio de
Janeiro, in 1976. Computer programming was done in Python, allowing code reusability.

By comparing the evolution of all the considered models, deterministic SIR, CTMC SIR and SDE
SIR models, it was possible to validate their dynamics. The SIR CTMC model was used to extract
specific information related to the possible evolution of an epidemic, which is not accessible
through deterministic models. These properties are, basically, the probability of occurrence of
the disease outbreak, the probability distribution for the final size and the expected duration of
the epidemic. We carried out 1.000 simulations of the CTMC SIR model and averages values for
those quantities of interest were computed. Through the stochastic modeling, we obtained results
in excelent agreement with those values reported from the measles outbreak in Ilha Grande. In
this way, advantages from stochastic modeling in relation to deterministic modeling became
evident.

As future work, SDE SIR model will be used for computing averages values for the studied prop-
erties and the computational cost will be compared to that of the CTMC SIR model used in this
work. Afterwards, it will be useful to extend the simulation to other epidemic outbreaks, adding
effects of some measures (pharmacological or not) used to control the spread of the disease or
even the population characteristics. Finally, studying seasonality of measles outbreaks to predict
the strength of possible outbreaks will also be a future topic to be explored, from a stochastic
modeling perspective.
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