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ABSTRACT

In this paper we generalize and extend to any Riemannian manifold maximum principles for

Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.
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1 INTRODUCTION

In this paper we generalize and extend to any Riemannian manifold maximum principles for

hypersurfaces of the Euclidean space with vanishing curvature function, obtained by Hounie-Leite

(1995 and 1999). In order to state our results, we need to introduce some notations and consider

some facts. Given an hypersurfaceMn of a Riemannian manifoldNn+1, denote byk1(p), . . . , kn(p)

the principal curvatures ofMn atp with respect to a unitary vector that is normal toMn atp. We

always assume thatk1(p) ≤ k2(p) ≤ · · · ≤ kn(p). Therth mean curvature Hr(p) of Mn atp is

defined by

Hr(p) = 1(
n

r

)σr(k1(p), . . . , kn(p)), (1)

whereσr : R
n → R is the rth elementary symmetric function. It is easy to see thatσr is positive on

the positive coneOn = {(x1, . . . , xn) ∈ R
n : xi > 0,∀i}. Denote by�r the connected component
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of {σr > 0} that contains the vector(1, . . . ,1) ∈ R
n. It was proved in Gårding (1959) that�r is an

open convex cone and that

�1 ⊃ �2 ⊃ · · · ⊃ �n. (2)

Moreover on�r, 1 ≤ r ≤ n, it holds that (see Caffarelli et al. 1985, Proposition 1.1)

∂σr

∂xi
> 0, 1 ≤ i ≤ n. (3)

As it was observed in Hounie-Leite (1995), the subset{σr = 0} can be decomposed as the union of

r continuous leavesZ1, . . . , Zr , beingZ1 the boundary∂�r of the cone�r . Furthermore each leaf

Zj may be identified with the graph of a continuous function defined in the planex1+· · ·+xn = 0.

Following Hounie-Leite(1995), we say that a pointx = (x1, . . . , xn) ∈ R
n has rankr if exactly r

components ofx do not vanish.

As in Fontenele-Silva (2001), givenp ∈ Mn and a unitary vectorηo that is normal toMn atp,

we can parameterize a neighborhood ofMn containingp and contained in a normal ball ofNn+1

as

ϕ(x) = expp(x + µ(x)ηo), (4)

where the vectorx varies in a neighborhoodW of zero inTpM andµ : W → R satisfiesµ(0) = 0

and∇µ(0) = 0, being∇ the gradient operator in the Euclidean spaceTpM. Choosing a local

orientationη : W → T ⊥
ϕ(W)M of Mn with η(0) = ηo, we denote byHr(x) the rth mean curvature

of Mn atϕ(x) with respect toη(x).

Given hypersurfacesM andM ′ of Nn+1 that are tangent atp and a unitary vectorηo that

is normal toM at p, we parameterizeM andM ′ as in (4), obtaining correspondent functions

µ : W → R andµ′ : W → R, defined in a neighborhoodW of zero inTpM = TpM
′. As in

Fontenele-Silva (2001), we say thatM remains aboveM ′ in a neighborhood ofp with respect to

ηo if µ(x) ≥ µ′(x) for all x in a neighborhood of zero. We say thatM remains on one side of

M ′ in a neighborhood ofp if eitherM is aboveM ′ or M ′ is aboveM in a neighborhood ofp.

Finally, denote by
−→
k (p) = (k1(p), . . . , kn(p)) and by

−→
k′ (p) = (k′

1(p), . . . , k
′
n(p)) the principal

curvature vectors atp of respectivelyM andM ′.
We can now state our results:

Theorem 1.a. LetM andM ′ be hypersurfaces ofNn+1 that are tangent at p, with normal vectors

pointing in the same direction. Suppose thatM remains on one side ofM ′ and thatHr(x) = H ′
r (x)

in a neighborhood of zero in TpM , for some r, 1 ≤ r < n. If r ≥ 2, suppose further that
−→
k (p)

and
−→
k′ (p) belong to same leaf of {σr = 0} and the rank of either

−→
k (p) or

−→
k′ (p) is at least r .

Then, M and M ′ must coincide in a neighborhood of p.

Theorem 1.b. LetM andM ′ be hypersurfaces ofNn+1 with boundaries ∂M and ∂M ′, respectively,

and assume that M and M ′, as well as ∂M and ∂M ′, are tangent at p ∈ ∂M ∩ ∂M ′, with normal
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vectors pointing in the same direction. Suppose that M remains on one side of M ′ and that

Hr(x) = H ′
r (x) in a neighborhood of zero in TpM , for some r, 1 ≤ r < n. If r ≥ 2, suppose

further that
−→
k (p) and

−→
k′ (p) belong to same leaf of {σr = 0} and the rank of either

−→
k (p) or−→

k′ (p) is at least r . Then, M and M ′ must coincide in a neighborhood of p.

As a consequence of Theorems 1.a and 1.b, we obtain the following corollaries, that extend

Theorem 0.1 in Hounie-Leite (1995) to any Riemannian manifold.

Corollary 1.a. Let M and M ′ be hypersurfaces of Nn+1 that are tangent at p, with normal

vectors pointing in the same direction and with both having r-mean curvature equal to zero for

some r, 1 ≤ r < n. For r ≥ 2, suppose further that
−→
k (p) and

−→
k′ (p) belong to same leaf of

{σr = 0} and the rank of either
−→
k (p) or

−→
k′ (p) is at least r . Under these conditions, ifM remains

on one side of M ′, then M and M ′ must coincide in a neighborhood of p.

Corollary 1.b. Let M and M ′ be hypersurfaces of Nn+1 with boundaries ∂M and ∂M ′, respec-

tively, so that M and M ′, as well as ∂M and ∂M ′, are tangent at p ∈ ∂M ∩ ∂M ′, with normal

vectors pointing in the same direction. Assume that M and M ′ have r-mean curvature equal to

zero for some r, 1 ≤ r < n. For r ≥ 2, suppose further that
−→
k (p) and

−→
k′ (p) belong to same

leaf of {σr = 0} and the rank of either
−→
k (p) or

−→
k′ (p) is at least r . Under these conditions, if M

remains on one side of M ′, then M and M ′ must coincide in a neighborhood of p.

The extension of Theorem 1.3 in Hounie-Leite (1999) is given in the following theorems.

Theorem 2.a. LetM andM ′ be hypersurfaces ofNn+1 that are tangent at p, with normal vectors

pointing in the same direction. Suppose that M remains above M ′ and that H ′
r ≥ 0 ≥ Hr , for

some r, 2 ≤ r < n. Suppose further that H ′
j (p) ≥ 0, 1 ≤ j ≤ r − 1, and either Hr+1(p) �= 0 or

H ′
r+1(p) �= 0. Then, M and M ′ must coincide in a neighborhood of p.

Theorem 2.b. LetM andM ′ be hypersurfaces ofNn+1 with boundaries ∂M and ∂M ′, respectively,

and assume that M and M ′, as well as ∂M and ∂M ′, are tangent at p ∈ ∂M ∩ ∂M ′ with normal

vectors pointing in the same direction. Suppose that M remains above M ′ and that H ′
r ≥ 0 ≥ Hr ,

for some r, 2 ≤ r < n. Suppose further thatH ′
j (p) ≥ 0, 1 ≤ j ≤ r − 1, and eitherHr+1(p) �= 0

or H ′
r+1(p) �= 0. Then M and M ′ must coincide in a neighborhood of p.

It will be clear from the proofs that in Theorems 2.a and 2.b we only need to requireH ′
r (x) ≥

Hr(x), in a neighborhood of zero inTpM, andH ′
r (p) ≥ 0 ≥ Hr(p) instead ofH ′

r ≥ 0 ≥ Hr

everywhere. Forr = 1, it must be observed that, in Theorems 2.a and 2.b, we can assume only that

H ′
r (x) ≥ Hr(x) and thatM remains aboveM ′ in a neighborhood of zero inTpM (see Theorems

1.1 and 1.2 in Fontenele-Silva (2001)).

2 PRELIMINARIES

In this section we will present the necessary material for our proofs.

Following Hounie-Leite (1995), we say thatx ∈ R
n is an elliptic root ofσr if σr(x) = 0 and

either ∂σr
∂xj
(x) > 0, j = 1, . . . , n, or ∂σr

∂xj
(x) < 0, j = 1, . . . , n. It is easy to see that any root of
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σ1 = 0 is elliptic. For 2≤ r < n, we have the following criterion of ellipticity (see Corollary 2.3

in Hounie-Leite (1995) and Lemma 1.1 in Hounie-Leite (1999)):

Lemma 1. Let x ∈ R
n and assume that σr(x) = 0 for some 2 ≤ r < n. Then, the following

conditions are equivalent

(i) x is elliptic.

(ii) the rank of x is at least r .

(iii) σr+1(x) �= 0.

For the proofs of our results, we will also need of the following lemmas:

Lemma 2. If y,w belong to a leaf Zj of σr = 0, w− y belongs to the closure On of On and either

y or w is an elliptic root, then y = w.

Lemma 3. For 1 ≤ r ≤ n, if x ∈ R
n satisfies σj (x) ≥ 0,1 ≤ j ≤ r , then x ∈ �r .

Lemma 2 is a particular case of Lemma 1.3 in Hounie-Leite (1995) and Lemma 3 follows from

the proof of Lemma 1.2 in Hounie-Leite (1999).

Ford = (n(n+ 1)/2)+ 2n+ 1, write an arbitrary pointp atRd as

p = (r11, . . . , r1n, r22, . . . r2n, . . . , r(n−1)n, rnn, r1, . . . , rn, z, x1, . . . , xn)

or, in short, asp = (rij , ri, z, x) with 1 ≤ i ≤ j ≤ n, andx = (x1, . . . , xn). A C1-function

! : � → R defined in an open set� of R
d is said to be elliptic inp ∈ � if

n∑

i≤j=1

∂!

∂rij
(p)ξiξj > 0 for all nonzero (ξ1, ξ2, . . . , ξn) ∈ R

n. (5)

We say that! is elliptic in � if ! is elliptic in p for all p ∈ �. Given a functionf : U → R of

classC2, defined in an open setU ⊂ R
n, andx ∈ U , we associate a point%(f )(x) in R

d setting

%(f )(x) = (fij (x), fi(x), f (x), x), (6)

wherefij (x) andfi(x) stand for
∂2f

∂xi∂xj
(x) and

∂f

∂xi
(x), respectively. Saying that the function!

is elliptic with respect tof means that%(f )(x) belongs to� and! is elliptic in%(f )(x) for all

x ∈ U . For elliptic functions it holds the following maximum principle(see Alexandrov 1962):

Maximum Principle. Let f, g : U → R be C2-functions defined in an open set U of R
n and let

! : � ⊂ R
d → R be a function of classC1. Suppose that! is elliptic with respect to the functions

(1 − t)f + tg, t ∈ [0,1]. Assume also that

!(%(f )(x)) ≥ !(%(g)(x)) ,∀x ∈ U, (7)
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and that f ≤ g on U . Then, f < g on U unless f and g coincide in a neighborhood of any point

xo ∈ U such that f (xo) = g(xo).

Consider now a hypersurfaceMn ⊂ Nn+1, a pointp ∈ M and a unitary vectorηo that is normal

to Mn at p. Fix an orthonormal basise1, . . . , en in TpM and introduce coordinates inTpM by

settingx = ∑n
i=1 xiei for all x ∈ TpM. Parameterize a neighborhood ofp inM as in (4), obtaining

a functionµ : W ⊂ TpM → R. Recall thatµ(0) = 0 and
∂ µ

∂ xi
(0) = 0, for all i, 1 ≤ i ≤ n.

Choose a local orientationη : W → T ⊥
ϕ(W)M of Mn with η(0) = ηo and denote byAη(x) the

second fundamental form ofMn in the directionη(x). Denote byϕi(x) the vector
∂ϕ

∂xi
(x) and by

A(x) = (aij (x)) the matrix ofAη(x) in the basisϕi(x). In Fontenele-Silva (2001), it is proved the

existence of ann × n-matrix valued functionÃ defined in an open setR(n(n+1)/2)+n × N ⊂ R
d ,

beingN an open set ofRn+1, containing the origin ofRd such that

Ã(%(µ)(x)) = A(x) , x ∈ W. (8)

Moreover, we havẽA(rij , ri, z, x)diagonalizable for all(rij , ri, z, x) ∈ R
(n(n+1)/2)+n×N. Consider

the function!r : R
(n(n+1)/2)+n × N → R defined by

!r = 1(
n

r

)σr ◦ λ ◦ Ã, (9)

whereλ(Ã(w)) = (λ1(Ã(w)), . . . , λn(Ã(w)) for all w ∈ R
(n(n+1)/2)+n × N. Hereλ1(Ã(w)) ≤

· · · ≤ λn(Ã(w)) are the eigenvalues of̃A(w). It follows from (1), (8) and (9) that

Hr(x) = !r(%(µ)(x)) , x ∈ W. (10)

The proof of Proposition 3.4 in Fontenele-Silva (2001) gives

n∑

k≤,=1

∂!r

∂rk,
(rij ,0,0,0) ξkξ, = 1(

n

r

)
n∑

k,,=1

∂(σr ◦ λ)
∂Ak,

(Ã((rij ,0,0,0))) ξkξ,, (11)

for all (rij ,0,0,0) ∈ R
d .

We also make use of the following lemma

Lemma 4. If Ao ∈ Mn(R) is symmetric and ∂σr
∂λi
(λ(Ao)) > 0 (< 0) for all 1 ≤ i ≤ n, then

n∑

i,j=1

∂(σr ◦ λ)
∂Aij

(Ao) ξiξj > 0 (< 0) , ∀ ξ = (ξ1, . . . , ξn) �= 0. (12)

The proof of Lemma 4 follows from the proof of Lemma 3.3 in Fontenele-Silva (2001).

3 PROOFS OF OUR RESULTS

We will prove only Theorems 1.a and 2.a, since the proofs of Theorems 1.b and 2.b are analogous.
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Proof of Theorem 1.a. If r = 1, the theorem follows from Theorem 1.1 in Fontenele-Silva

(2001). Thus, we assume that 2≤ r < n. The assumptionHr(x) = H ′
r (x) in a neighborhoodW

of zero inTpM and (10) imply that

!r(%(µ)(x)) = !r(%(µ
′)(x)) , x ∈ W. (13)

On the other hand,
−→
k (p) and

−→
k′ (p) are both roots ofσr = 0 and one of them is elliptic by

our hypothesis and Lemma 1. The fact thatM remains on one side ofM ′ implies that either−→
k (p)− −→

k′ (p) or
−→
k′ (p)− −→

k (p) belongs toOn. Since
−→
k (p) and

−→
k′ (p) belong to same leaf of

{σr = 0} by assumption, it follows from Lemma 2 that

−→
k (p) = −→

k′ (p). (14)

For eacht ∈ [0,1], if we consider the hypersurfaceMt parameterized by

ϕ(x) = expp(x + ((1 − t)µ+ tµ′)(x)ηo) , x ∈ W, (15)

we have thatMt is tangent to bothM andM ′ in p and thatMt is betweenM andM ′ in a

neighborhood ofp. Using (14), we conclude that the principal curvature vector ofMt atp is equal

to
−→
k (p) = −→

k′ (p), for all t ∈ [0,1]. This implies, by (8), that

λ ◦ Ã((1 − t)%(µ)(0)+ t%(µ′)(0)) = −→
k (p) = −→

k′ (p) , (16)

for all t ∈ [0,1]. Since
−→
k (p) = −→

k′ (p) is elliptic, it follows from (11) and Lemma 4 that either!r

or −!r is elliptic along the line segment(1− t)%(µ)(0)+ t%(µ′)(0) ⊂ R
(n(n+1)/2)+n × N ⊂ R

d .

Since ellipticity is an open condition, restrictingW if necessary, we conclude by continuity and

by the compactness of [0,1] that either!r or −!r is elliptic in (1 − t)%(µ)(x) + t%(µ′)(x), for

all t ∈ [0,1] andx ∈ W . Consequently either!r or −!r is elliptic with respect to the functions

(1 − t)µ + tµ′, t ∈ [0,1]. So, by (13), we can apply the maximum principle to conclude that

µ andµ′ coincide in a neighborhood of zero. Therefore,M andM ′ coincide in a neighborhood

of p. �

Proof of Theorem 2.a. By our assumptions it holds thatH ′
r (x) ≥ Hr(x) for x ∈ W . This and

(10) imply that

!r(%(µ
′)(x))−!r(%(µ)(x)) ≥ 0 , x ∈ W. (17)

SinceM remains aboveM ′, we have
−→
k (p) − −→

k′ (p) ∈ On. It follows from our assumptions

and Lemma 3 that
−→
k′ (p) ∈ �r . We claim that

−→
k′ (p) ∈ ∂ �r . Otherwise, by Lemma 4.1 in

Fontenele-Silva (2001), we would have that
−→
k (p) ∈ �r , which is a contradiction sinceHr(p) ≤ 0.

So
−→
k′ (p) ∈ Z1 = ∂ �r . We can use Lemma 4.1 in Fontenele-Silva (2001) to conclude that−→

k (p) ∈ Z1 = ∂ �r . As in the proof of Theorem 1.a, we can use Lemmas 1 and 2 to obtain that
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−→
k (p) = −→

k′ (p). Since
∂σr

∂xi
> 0 on�r, 1 ≤ i ≤ n,

−→
k (p) = −→

k′ (p) is an elliptic root ofσr = 0

and
−→
k (p) = −→

k′ (p) ∈ ∂�r , we deduce that

∂σr

∂xi
(
−→
k (p)) > 0 , ∀i = 1, . . . , n. (18)

Now, proceeding as in the proof of Theorem 1.a, we conclude that!r is elliptic with respect to the

functions(1 − t)µ+ tµ′, t ∈ [0,1]. It follows from (17) and the maximum principle thatµ and

µ′ coincide in a neighborhood of zero. Therefore,M andM ′ coincide in a neighborhood ofp. �
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RESUMO

Neste trabalho nós generalizamos e estendemos para uma variedade Riemanniana arbitrária princípios do

máximo para hipersuperfícies comr-ésima curvatura média zero no espaço Euclidiano, obtidos por Hounie-

Leite.

Palavras-chave: princípio do máximo, hipersuperfície,r-ésima curvatura média.
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