Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold

FRANCISCO X. FONTENELE ${ }^{1}$ and SÉRGIO L. SILVA ${ }^{2}$
${ }^{1}$ Universidade Federal Fluminense, Instituto de Matemática, Departamento de Geometria, rua Mario Santos Braga s/no., 24020-140 Niterói, RJ, Brazil
${ }^{2}$ Universidade Estadual do Rio de Janeiro-UERJ, Departamento de Estruturas Matemáticas-IME 20550-013 RJ, Brazil

Manuscript received on October 30, 2001; accepted for publication on December 16, 2001; presented by Manfredo do Carmo

Abstract

In this paper we generalize and extend to any Riemannian manifold maximum principles for Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.

Key words: maximum principle, hypersurface, rth mean curvature.

1 INTRODUCTION

In this paper we generalize and extend to any Riemannian manifold maximum principles for hypersurfaces of the Euclidean space with vanishing curvature function, obtained by Hounie-Leite (1995 and 1999). In order to state our results, we need to introduce some notations and consider some facts. Given an hypersurface M^{n} of a Riemannian manifold N^{n+1}, denote by $k_{1}(p), \ldots, k_{n}(p)$ the principal curvatures of M^{n} at p with respect to a unitary vector that is normal to M^{n} at p. We always assume that $k_{1}(p) \leq k_{2}(p) \leq \cdots \leq k_{n}(p)$. The rth mean curvature $H_{r}(p)$ of M^{n} at p is defined by

$$
\begin{equation*}
H_{r}(p)=\frac{1}{\binom{n}{r}} \sigma_{r}\left(k_{1}(p), \ldots, k_{n}(p)\right), \tag{1}
\end{equation*}
$$

where $\sigma_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the rth elementary symmetric function. It is easy to see that σ_{r} is positive on the positive cone $\mathcal{O}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, \forall i\right\}$. Denote by Γ_{r} the connected component

[^0]of $\left\{\sigma_{r}>0\right\}$ that contains the vector $(1, \ldots, 1) \in \mathbb{R}^{n}$. It was proved in Gårding (1959) that Γ_{r} is an open convex cone and that
\[

$$
\begin{equation*}
\Gamma_{1} \supset \Gamma_{2} \supset \cdots \supset \Gamma_{n} . \tag{2}
\end{equation*}
$$

\]

Moreover on $\Gamma_{r}, 1 \leq r \leq n$, it holds that (see Caffarelli et al. 1985, Proposition 1.1)

$$
\begin{equation*}
\frac{\partial \sigma_{r}}{\partial x_{i}}>0, \quad 1 \leq i \leq n \tag{3}
\end{equation*}
$$

As it was observed in Hounie-Leite (1995), the subset $\left\{\sigma_{r}=0\right\}$ can be decomposed as the union of r continuous leaves Z_{1}, \ldots, Z_{r}, being Z_{1} the boundary $\partial \Gamma_{r}$ of the cone Γ_{r}. Furthermore each leaf Z_{j} may be identified with the graph of a continuous function defined in the plane $x_{1}+\cdots+x_{n}=0$. Following Hounie-Leite(1995), we say that a point $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ has rank r if exactly r components of x do not vanish.

As in Fontenele-Silva (2001), given $p \in M^{n}$ and a unitary vector η_{o} that is normal to M^{n} at p, we can parameterize a neighborhood of M^{n} containing p and contained in a normal ball of N^{n+1} as

$$
\begin{equation*}
\varphi(x)=\exp _{p}\left(x+\mu(x) \eta_{o}\right) \tag{4}
\end{equation*}
$$

where the vector x varies in a neighborhood W of zero in $T_{p} M$ and $\mu: W \rightarrow \mathbb{R}$ satisfies $\mu(0)=0$ and $\nabla \mu(0)=0$, being ∇ the gradient operator in the Euclidean space $T_{p} M$. Choosing a local orientation $\eta: W \rightarrow T_{\varphi(W)}^{\perp} M$ of M^{n} with $\eta(0)=\eta_{o}$, we denote by $H_{r}(x)$ the rth mean curvature of M^{n} at $\varphi(x)$ with respect to $\eta(x)$.

Given hypersurfaces M and M^{\prime} of N^{n+1} that are tangent at p and a unitary vector η_{o} that is normal to M at p, we parameterize M and M^{\prime} as in (4), obtaining correspondent functions $\mu: W \rightarrow \mathbb{R}$ and $\mu^{\prime}: W \rightarrow \mathbb{R}$, defined in a neighborhood W of zero in $T_{p} M=T_{p} M^{\prime}$. As in Fontenele-Silva (2001), we say that M remains above M^{\prime} in a neighborhood of p with respect to η_{o} if $\mu(x) \geq \mu^{\prime}(x)$ for all x in a neighborhood of zero. We say that M remains on one side of M^{\prime} in a neighborhood of p if either M is above M^{\prime} or M^{\prime} is above M in a neighborhood of p. Finally, denote by $\vec{k}(p)=\left(k_{1}(p), \ldots, k_{n}(p)\right)$ and by $\overrightarrow{k^{\prime}}(p)=\left(k_{1}^{\prime}(p), \ldots, k_{n}^{\prime}(p)\right)$ the principal curvature vectors at p of respectively M and M^{\prime}.

We can now state our results:
Theorem 1.a. Let M and M^{\prime} be hypersurfaces of N^{n+1} that are tangent at p, with normal vectors pointing in the same direction. Suppose that M remains on one side of M^{\prime} and that $H_{r}(x)=H_{r}^{\prime}(x)$ in a neighborhood of zero in $T_{p} M$, for some $r, 1 \leq r<n$. If $r \geq 2$, suppose further that $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ belong to same leaf of $\left\{\sigma_{r}=0\right\}$ and the rank of either $\vec{k}(p)$ or $\overrightarrow{k^{\prime}}(p)$ is at least r. Then, M and M^{\prime} must coincide in a neighborhood of p.
THEOREM 1.b. Let M and M^{\prime} be hypersurfaces of N^{n+1} with boundaries ∂M and ∂M^{\prime}, respectively, and assume that M and M^{\prime}, as well as ∂M and ∂M^{\prime}, are tangent at $p \in \partial M \cap \partial M^{\prime}$, with normal
vectors pointing in the same direction. Suppose that M remains on one side of M^{\prime} and that $H_{r}(x)=H_{r}^{\prime}(x)$ in a neighborhood of zero in $T_{p} M$, for some $r, 1 \leq r<n$. If $r \geq 2$, suppose further that $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ belong to same leaf of $\left\{\sigma_{r}=0\right\}$ and the rank of either $\vec{k}(p)$ or $\overrightarrow{k^{\prime}}(p)$ is at least r. Then, M and M^{\prime} must coincide in a neighborhood of p.

As a consequence of Theorems 1.a and 1.b, we obtain the following corollaries, that extend Theorem 0.1 in Hounie-Leite (1995) to any Riemannian manifold.

Corollary 1.a. Let M and M^{\prime} be hypersurfaces of N^{n+1} that are tangent at p, with normal vectors pointing in the same direction and with both having r-mean curvature equal to zero for some $r, 1 \leq r<n$. For $r \geq 2$, suppose further that $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ belong to same leaf of $\left\{\sigma_{r}=0\right\}$ and the rank of either $\vec{k}(p)$ or $\overrightarrow{k^{\prime}}(p)$ is at least r. Under these conditions, if M remains on one side of M^{\prime}, then M and M^{\prime} must coincide in a neighborhood of p.
Corollary 1.b. Let M and M^{\prime} be hypersurfaces of N^{n+1} with boundaries ∂M and ∂M^{\prime}, respectively, so that M and M^{\prime}, as well as ∂M and ∂M^{\prime}, are tangent at $p \in \partial M \cap \partial M^{\prime}$, with normal vectors pointing in the same direction. Assume that M and M^{\prime} have r-mean curvature equal to zero for some $r, 1 \leq r<n$. For $r \geq 2$, suppose further that $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ belong to same leaf of $\left\{\sigma_{r}=0\right\}$ and the rank of either $\vec{k}(p)$ or $\overrightarrow{k^{\prime}}(p)$ is at least r. Under these conditions, if M remains on one side of M^{\prime}, then M and M^{\prime} must coincide in a neighborhood of p.

The extension of Theorem 1.3 in Hounie-Leite (1999) is given in the following theorems.
Theorem 2.a. Let M and M^{\prime} be hypersurfaces of N^{n+1} that are tangent at p, with normal vectors pointing in the same direction. Suppose that M remains above M^{\prime} and that $H_{r}^{\prime} \geq 0 \geq H_{r}$, for some $r, 2 \leq r<n$. Suppose further that $H_{j}^{\prime}(p) \geq 0,1 \leq j \leq r-1$, and either $H_{r+1}(p) \neq 0$ or $H_{r+1}^{\prime}(p) \neq 0$. Then, M and M^{\prime} must coincide in a neighborhood of p.

Theorem 2.b. Let M and M^{\prime} be hypersurfaces of N^{n+1} with boundaries ∂M and ∂M^{\prime}, respectively, and assume that M and M^{\prime}, as well as ∂M and ∂M^{\prime}, are tangent at $p \in \partial M \cap \partial M^{\prime}$ with normal vectors pointing in the same direction. Suppose that M remains above M^{\prime} and that $H_{r}^{\prime} \geq 0 \geq H_{r}$, for some $r, 2 \leq r<n$. Suppose further that $H_{j}^{\prime}(p) \geq 0,1 \leq j \leq r-1$, and either $H_{r+1}(p) \neq 0$ or $H_{r+1}^{\prime}(p) \neq 0$. Then M and M^{\prime} must coincide in a neighborhood of p.

It will be clear from the proofs that in Theorems 2.a and 2.b we only need to require $H_{r}^{\prime}(x) \geq$ $H_{r}(x)$, in a neighborhood of zero in $T_{p} M$, and $H_{r}^{\prime}(p) \geq 0 \geq H_{r}(p)$ instead of $H_{r}^{\prime} \geq 0 \geq H_{r}$ everywhere. For $r=1$, it must be observed that, in Theorems 2.a and 2.b, we can assume only that $H_{r}^{\prime}(x) \geq H_{r}(x)$ and that M remains above M^{\prime} in a neighborhood of zero in $T_{p} M$ (see Theorems 1.1 and 1.2 in Fontenele-Silva (2001)).

2 PRELIMINARIES

In this section we will present the necessary material for our proofs.
Following Hounie-Leite (1995), we say that $x \in \mathbb{R}^{n}$ is an elliptic root of σ_{r} if $\sigma_{r}(x)=0$ and either $\frac{\partial \sigma_{r}}{\partial x_{j}}(x)>0, j=1, \ldots, n$, or $\frac{\partial \sigma_{r}}{\partial x_{j}}(x)<0, j=1, \ldots, n$. It is easy to see that any root of
$\sigma_{1}=0$ is elliptic. For $2 \leq r<n$, we have the following criterion of ellipticity (see Corollary 2.3 in Hounie-Leite (1995) and Lemma 1.1 in Hounie-Leite (1999)):

Lemma 1. Let $x \in \mathbb{R}^{n}$ and assume that $\sigma_{r}(x)=0$ for some $2 \leq r<n$. Then, the following conditions are equivalent
(i) x is elliptic.
(ii) the rank of x is at least r.
(iii) $\sigma_{r+1}(x) \neq 0$.

For the proofs of our results, we will also need of the following lemmas:
Lemma 2. If y, w belong to a leaf Z_{j} of $\sigma_{r}=0, w-y$ belongs to the closure $\overline{\mathcal{O}^{n}}$ of \mathcal{O}^{n} and either y or w is an elliptic root, then $y=w$.
Lemma 3. For $1 \leq r \leq n$, if $x \in \mathbb{R}^{n}$ satisfies $\sigma_{j}(x) \geq 0,1 \leq j \leq r$, then $x \in \overline{\Gamma_{r}}$.
Lemma 2 is a particular case of Lemma 1.3 in Hounie-Leite (1995) and Lemma 3 follows from the proof of Lemma 1.2 in Hounie-Leite (1999).

For $d=(n(n+1) / 2)+2 n+1$, write an arbitrary point p at \mathbb{R}^{d} as

$$
p=\left(r_{11}, \ldots, r_{1 n}, r_{22}, \ldots r_{2 n}, \ldots, r_{(n-1) n}, r_{n n}, r_{1}, \ldots, r_{n}, z, x_{1}, \ldots, x_{n}\right)
$$

or, in short, as $p=\left(r_{i j}, r_{i}, z, x\right)$ with $1 \leq i \leq j \leq n$, and $x=\left(x_{1}, \ldots, x_{n}\right)$. A C^{1}-function $\Phi: \Gamma \rightarrow \mathbb{R}$ defined in an open set Γ of \mathbb{R}^{d} is said to be elliptic in $p \in \Gamma$ if

$$
\begin{equation*}
\sum_{i \leq j=1}^{n} \frac{\partial \Phi}{\partial r_{i j}}(p) \xi_{i} \xi_{j}>0 \quad \text { for all nonzero } \quad\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

We say that Φ is elliptic in Γ if Φ is elliptic in p for all $p \in \Gamma$. Given a function $f: U \rightarrow \mathbb{R}$ of class C^{2}, defined in an open set $U \subset \mathbb{R}^{n}$, and $x \in U$, we associate a point $\Lambda(f)(x)$ in \mathbb{R}^{d} setting

$$
\begin{equation*}
\Lambda(f)(x)=\left(f_{i j}(x), f_{i}(x), f(x), x\right) \tag{6}
\end{equation*}
$$

where $f_{i j}(x)$ and $f_{i}(x)$ stand for $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)$ and $\frac{\partial f}{\partial x_{i}}(x)$, respectively. Saying that the function Φ is elliptic with respect to f means that $\Lambda(f)(x)$ belongs to Γ and Φ is elliptic in $\Lambda(f)(x)$ for all $x \in U$. For elliptic functions it holds the following maximum principle(see Alexandrov 1962):

Maximum Principle. Let $f, g: U \rightarrow \mathbb{R}$ be C^{2}-functions defined in an open set U of \mathbb{R}^{n} and let $\Phi: \Gamma \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function of class C^{1}. Suppose that Φ is elliptic with respect to the functions $(1-t) f+t g, t \in[0,1]$. Assume also that

$$
\begin{equation*}
\Phi(\Lambda(f)(x)) \geq \Phi(\Lambda(g)(x)) \quad, \forall x \in U \tag{7}
\end{equation*}
$$

and that $f \leq g$ on U. Then, $f<g$ on U unless f and g coincide in a neighborhood of any point $x_{o} \in U$ such that $f\left(x_{o}\right)=g\left(x_{o}\right)$.

Consider now a hypersurface $M^{n} \subset N^{n+1}$, a point $p \in M$ and a unitary vector η_{o} that is normal to M^{n} at p. Fix an orthonormal basis e_{1}, \ldots, e_{n} in $T_{p} M$ and introduce coordinates in $T_{p} M$ by setting $x=\sum_{i=1}^{n} x_{i} e_{i}$ for all $x \in T_{p} M$. Parameterize a neighborhood of p in M as in (4), obtaining a function $\mu: W \subset T_{p} M \rightarrow \mathbb{R}$. Recall that $\mu(0)=0$ and $\frac{\partial \mu}{\partial x_{i}}(0)=0$, for all $i, 1 \leq i \leq n$. Choose a local orientation $\eta: W \rightarrow T_{\varphi(W)}^{\perp} M$ of M^{n} with $\eta(0)=\eta_{o}$ and denote by $A_{\eta(x)}$ the second fundamental form of M^{n} in the direction $\eta(x)$. Denote by $\varphi_{i}(x)$ the vector $\frac{\partial \varphi}{\partial x_{i}}(x)$ and by $A(x)=\left(a_{i j}(x)\right)$ the matrix of $A_{\eta(x)}$ in the basis $\varphi_{i}(x)$. In Fontenele-Silva (2001), it is proved the existence of an $n \times n$-matrix valued function \tilde{A} defined in an open set $\mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N} \subset \mathbb{R}^{d}$, being \mathcal{N} an open set of \mathbb{R}^{n+1}, containing the origin of \mathbb{R}^{d} such that

$$
\begin{equation*}
\tilde{A}(\Lambda(\mu)(x))=A(x), \quad x \in W \tag{8}
\end{equation*}
$$

Moreover, we have $\tilde{A}\left(r_{i j}, r_{i}, z, x\right)$ diagonalizable for all $\left(r_{i j}, r_{i}, z, x\right) \in \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$. Consider the function $\Phi_{r}: \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Phi_{r}=\frac{1}{\binom{n}{r}} \sigma_{r} \circ \lambda \circ \tilde{A}, \tag{9}
\end{equation*}
$$

where $\lambda(\tilde{A}(w))=\left(\lambda_{1}(\tilde{A}(w)), \ldots, \lambda_{n}(\tilde{A}(w))\right.$ for all $w \in \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N}$. Here $\lambda_{1}(\tilde{A}(w)) \leq$ $\cdots \leq \lambda_{n}(\tilde{A}(w))$ are the eigenvalues of $\tilde{A}(w)$. It follows from (1), (8) and (9) that

$$
\begin{equation*}
H_{r}(x)=\Phi_{r}(\Lambda(\mu)(x)), \quad x \in W \tag{10}
\end{equation*}
$$

The proof of Proposition 3.4 in Fontenele-Silva (2001) gives

$$
\begin{equation*}
\sum_{k \leq \ell=1}^{n} \frac{\partial \Phi_{r}}{\partial r_{k \ell}}\left(r_{i j}, 0,0,0\right) \xi_{k} \xi_{\ell}=\frac{1}{\binom{n}{r}} \sum_{k, \ell=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{k \ell}}\left(\tilde{A}\left(\left(r_{i j}, 0,0,0\right)\right)\right) \xi_{k} \xi_{\ell} \tag{11}
\end{equation*}
$$

for all $\left(r_{i j}, 0,0,0\right) \in \mathbb{R}^{d}$.
We also make use of the following lemma
Lemma 4. If $A_{o} \in \mathcal{M}^{n}(\mathbb{R})$ is symmetric and $\frac{\partial \sigma_{r}}{\partial \lambda_{i}}\left(\lambda\left(A_{o}\right)\right)>0(<0)$ for all $1 \leq i \leq n$, then

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial\left(\sigma_{r} \circ \lambda\right)}{\partial A_{i j}}\left(A_{o}\right) \xi_{i} \xi_{j}>0(<0), \quad \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \neq 0 \tag{12}
\end{equation*}
$$

The proof of Lemma 4 follows from the proof of Lemma 3.3 in Fontenele-Silva (2001).

3 PROOFS OF OUR RESULTS

We will prove only Theorems 1.a and 2.a, since the proofs of Theorems 1.b and 2.b are analogous.

Proof of Theorem 1.a. If $r=1$, the theorem follows from Theorem 1.1 in Fontenele-Silva (2001). Thus, we assume that $2 \leq r<n$. The assumption $H_{r}(x)=H_{r}^{\prime}(x)$ in a neighborhood W of zero in $T_{p} M$ and (10) imply that

$$
\begin{equation*}
\Phi_{r}(\Lambda(\mu)(x))=\Phi_{r}\left(\Lambda\left(\mu^{\prime}\right)(x)\right), \quad x \in W \tag{13}
\end{equation*}
$$

On the other hand, $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ are both roots of $\sigma_{r}=0$ and one of them is elliptic by our hypothesis and Lemma 1. The fact that M remains on one side of M^{\prime} implies that either $\vec{k}(p)-\overrightarrow{k^{\prime}}(p)$ or $\overrightarrow{k^{\prime}}(p)-\vec{k}(p)$ belongs to $\overline{\mathcal{O}^{n}}$. Since $\vec{k}(p)$ and $\overrightarrow{k^{\prime}}(p)$ belong to same leaf of $\left\{\sigma_{r}=0\right\}$ by assumption, it follows from Lemma 2 that

$$
\begin{equation*}
\vec{k}(p)=\overrightarrow{k^{\prime}}(p) \tag{14}
\end{equation*}
$$

For each $t \in[0,1]$, if we consider the hypersurface M_{t} parameterized by

$$
\begin{equation*}
\varphi(x)=\exp _{p}\left(x+\left((1-t) \mu+t \mu^{\prime}\right)(x) \eta_{o}\right), \quad x \in W \tag{15}
\end{equation*}
$$

we have that M_{t} is tangent to both M and M^{\prime} in p and that M_{t} is between M and M^{\prime} in a neighborhood of p. Using (14), we conclude that the principal curvature vector of M_{t} at p is equal to $\vec{k}(p)=\overrightarrow{k^{\prime}}(p)$, for all $t \in[0,1]$. This implies, by (8), that

$$
\begin{equation*}
\lambda \circ \tilde{A}\left((1-t) \Lambda(\mu)(0)+t \Lambda\left(\mu^{\prime}\right)(0)\right)=\vec{k}(p)=\overrightarrow{k^{\prime}}(p) \tag{16}
\end{equation*}
$$

for all $t \in[0,1]$. Since $\vec{k}(p)=\overrightarrow{k^{\prime}}(p)$ is elliptic, it follows from (11) and Lemma 4 that either Φ_{r} or $-\Phi_{r}$ is elliptic along the line segment $(1-t) \Lambda(\mu)(0)+t \Lambda\left(\mu^{\prime}\right)(0) \subset \mathbb{R}^{(n(n+1) / 2)+n} \times \mathcal{N} \subset \mathbb{R}^{d}$. Since ellipticity is an open condition, restricting W if necessary, we conclude by continuity and by the compactness of $[0,1]$ that either Φ_{r} or $-\Phi_{r}$ is elliptic in $(1-t) \Lambda(\mu)(x)+t \Lambda\left(\mu^{\prime}\right)(x)$, for all $t \in[0,1]$ and $x \in W$. Consequently either Φ_{r} or $-\Phi_{r}$ is elliptic with respect to the functions ($1-t$) $\mu+t \mu^{\prime}, t \in[0,1]$. So, by (13), we can apply the maximum principle to conclude that μ and μ^{\prime} coincide in a neighborhood of zero. Therefore, M and M^{\prime} coincide in a neighborhood of p.

Proof of Theorem 2.a. By our assumptions it holds that $H_{r}^{\prime}(x) \geq H_{r}(x)$ for $x \in W$. This and (10) imply that

$$
\begin{equation*}
\Phi_{r}\left(\Lambda\left(\mu^{\prime}\right)(x)\right)-\Phi_{r}(\Lambda(\mu)(x)) \geq 0, \quad x \in W \tag{17}
\end{equation*}
$$

Since M remains above M^{\prime}, we have $\vec{k}(p)-\overrightarrow{k^{\prime}}(p) \in \overline{\mathcal{O}^{n}}$. It follows from our assumptions and Lemma 3 that $\overrightarrow{k^{\prime}}(p) \in \overline{\Gamma_{r}}$. We claim that $\overrightarrow{k^{\prime}}(p) \in \partial \Gamma_{r}$. Otherwise, by Lemma 4.1 in Fontenele-Silva (2001), we would have that $\vec{k}(p) \in \Gamma_{r}$, which is a contradiction since $H_{r}(p) \leq 0$. So $\overrightarrow{k^{\prime}}(p) \in Z_{1}=\partial \Gamma_{r}$. We can use Lemma 4.1 in Fontenele-Silva (2001) to conclude that $\vec{k}(p) \in Z_{1}=\partial \Gamma_{r}$. As in the proof of Theorem 1.a, we can use Lemmas 1 and 2 to obtain that
$\vec{k}(p)=\overrightarrow{k^{\prime}}(p)$. Since $\frac{\partial \sigma_{r}}{\partial x_{i}}>0$ on $\Gamma_{r}, \quad 1 \leq i \leq n, \vec{k}(p)=\overrightarrow{k^{\prime}}(p)$ is an elliptic root of $\sigma_{r}=0$ and $\vec{k}(p)=\overrightarrow{k^{\prime}}(p) \in \partial \Gamma_{r}$, we deduce that

$$
\begin{equation*}
\frac{\partial \sigma_{r}}{\partial x_{i}}(\vec{k}(p))>0 \quad, \quad \forall i=1, \ldots, n \tag{18}
\end{equation*}
$$

Now, proceeding as in the proof of Theorem 1.a, we conclude that Φ_{r} is elliptic with respect to the functions ($1-t) \mu+t \mu^{\prime}, t \in[0,1]$. It follows from (17) and the maximum principle that μ and μ^{\prime} coincide in a neighborhood of zero. Therefore, M and M^{\prime} coincide in a neighborhood of p.

ACKNOWLEDGMENTS

We would like to thank M.P. do Carmo for suggesting us to publish this work.

RESUMO

Neste trabalho nós generalizamos e estendemos para uma variedade Riemanniana arbitrária princípios do máximo para hipersuperfícies com r-ésima curvatura média zero no espaço Euclidiano, obtidos por HounieLeite.

Palavras-chave: princípio do máximo, hipersuperfície, r-ésima curvatura média.

REFERENCES

Alexandrov AD. 1962. Uniqueness theorems for surfaces in the large I. Amer Math Soc Transl, Ser 2, 21: 341-354.

Caffarelli L, Nirenberg L and Spruck J. 1985. The Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the hessian. Acta Math 155: 261-301.

Fontenele F and Silva SL. 2001. A tangency principle and applications. Illinois J Math 45: 213-228.
GÅrding L. 1959. An inequality for hyperbolic polynomials. J Math Mech 8: 957-965.
Hounie J and Leite ML. 1995. The maximum principle for hypersurfaces with vanishing curvature functions. J Differ Geom 41: 247-258.

Hounie J and Leite ML. 1999. Two-ended hypersurfaces with zero scalar curvature. Indiana Univ Math J 48: 817-882.

[^0]: Correspondence to: Francisco X. Fontenele
 E-mail: fontenele@mat.uff.br

