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ABSTRACT
Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being
ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat

on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-«, plasminogen activator

inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the

high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant
effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated

fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and

inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary
fatty acids affect white adipose tissue metabolism and secretory functions.

Key words: adipokines, high fat diets, metabolism, white adipose tissue.

INTRODUCTION

White adipose tissue (WAT) plays a role in energy stor-
age and insulation from environmental temperature and
trauma. Paleontological evidence indicates that the rapid
brain evolution, observed with the emergence of Homo
erectus at approximately 1.6—1.8 million years ago, was
likely associated with increased body fatness as well as
diet quality (Leonard et al. 2003). In the long run, white
fat mass reflects the net balance between energy expen-
diture and energy intake. Fat storage occurs both by
the direct uptake of circulating lipoprotein triacylglyc-
erols, which are hydrolyzed by lipoprotein lipase to non-
esterified free fatty acids, and also by local lipogenic
pathways, i.e. the de novo synthesis from glucose and
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other precursors (Pénicaud et al. 2000). On the other
hand, this tissue can release both free fatty acids and
glycerol, providing circulating substrates for other tis-
sues, according to their energy needs.

Currently, it has been recognized that white adipose
tissue acts also as an endocrine organ. This tissue se-
cretes pro and anti-inflammatory protein factors, known
as adipokines. These adipokines include hormones im-
plicated in energy balance (e.g., leptin, adiponectin), glu-
cose tolerance and insulin sensitivity (adiponectin, re-
sistin), classical cytokines (e.g., TNF-«, interleukin-6),
and proteins involved in lipid metabolism (e.g., lipopro-
tein lipase, retinol binding protein), vascular haemosta-
sis (e.g., plasminogen activator inhibitor-1 and angio-
tensinogen) and in inflammation and stress responses
(such as haptoglobin and metallothionein) (Trayhurn
and Beattie 2001, Mohamed-Ali et al. 1998, Friihbeck
etal. 2001).
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This review analyses the impact of dietary fatty
acid composition on adipose metabolism and secretory
function.

METABOLISM OF WHITE ADIPOSE TISSUE

LIPOPROTEIN LIPASE AND
TRIACYLGLYCEROL METABOLISM

Lipoprotein lipase (LPL) has its physiological site of ac-
tion at the luminal surface of capillary endothelial cells,
where the enzyme hydrolyses the triacylglycerol (TAG)
component of circulating lipoprotein particles, chylomi-
crons and very low density lipoproteins to provide free
fatty acids and 2-monoacylglycerol for tissue utilization.
LPL is distributed in wide range of tissues (Cryer 1981).

Most of the plasma triacylglycerols are provided
by dietary lipids, secreted from the intestine in the
form of chylomicron or from the liver in the form of
VLDL. Released into circulation as non-esterified fatty
acids by lipoprotein lipase, those are taken up by WAT
via specific plasma fatty acid transporters (CD36, FATP,
FABPpm) and used for triacylglycerol synthesis (Large
et al. 2004).

LPL activity can be altered in a tissue-specific man-
ner, which is physiologically important because it di-
rects fatty acid utilization, according to the metabolic
demands, of individual tissues, so that the degradation of
triacylglycerol-rich lipoproteins can be targeted to spe-
cific sites. For example, we observed a dramatic increase
in mammary gland LPL activity with a corresponding
decrease in WAT LPL activity during lactation to pro-
vide lipid for milk synthesis (Oller do Nascimento and
Williamson 1986). On the other hand, after the removal
of the pups, the activity of LPL in WAT is increased
considerably compared with lactating mammary gland,
which play a role in the replenishment of adipose tissue
stores.

Starvation and malnutrition decreased LPL activity
in mammary gland and WAT and increased it in muscle
(Oller do Nascimento and Williamson 1988, do Carmo
et al. 1996, Doolittle et al. 1990, Braun and Sever-
son 1992). On the other hand, in the fed state, the LPL
activity is increased in WAT and decreased in muscle.
The physiological results are a preferential deposition of
lipid in the adipose tissue after a meal, and supply energy
to skeletal muscle during food deprivation.
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The plasma insulin concentration seems to be more
important than prolactin in controlling LPL activity and
lipid deposition in WAT during lactation and after wean-
ing (Oller do Nascimento et al. 1989).

Insulin increases LPL gene expression and activity
in WAT via activation of phosphatidylinositol 3-kinase
(PI3K) pathway (Kraemer et al. 1998). Glucocorticoids
also increased LPL mRNA and LPL activity. Taking to-
gether, these hormones have a synergistic effect at the
level of LPL gene expression, as well as posttranslation-
ally (Fried et al. 1993).

In the monosodium glutamate model of obesity
(MSG-obese), it has been demonstrated hyperinsuli-
nemia (Sartin et al. 1985) and hypercorticosteronemia
(Ribeiro et al. 1997, Dolnikoff et al. 1988) accompa-
nied by an increase in WAT LPL activity (Nascimento
Curi et al. 1991).

LIPOGENESIS de novo

The lipogenesis de novo is an important pathway to
convert the excess of carbohydrate ingested to triacyl-
glycerol to be stored into the WAT. Physiological fac-
tors such as dieting/fasting regulate this metabolic path-
way, which is also modified in pathological conditions
e.g. obesity. Several tissues (e.g. white and brown adi-
pose tissue, liver, mammary gland) possess the comple-
ment of enzymes necessary for the active synthesis of
triacylglycerol.

In humans, the liver is responsible for the conver-
sion of excess dietary carbohydrates into fatty acids,
through lipogenesis de novo (Denechaud et al. 2008a).
A small part of triacylglycerols is synthesized into adi-
pocytes from carbohydrates, but its regulation is still
debated in humans. On the other hand, in rodents, the
WAT lipogenesis de novo is higher than in humans and
also could be regulated by nutritional and hormonal
conditions. Iritani et al. (1996) demonstrated that the
mRNA concentrations of acetyl-CoA carboxylase, fatty
acid synthase (FAS) and ATP citrate-lyase increased
after the refeeding in WAT and liver in rats.

MSG-obese rats have a high WAT and liver lipoge-
nesis de novo rate as compared to lean ones (Nascimento
Curi etal. 1991). In this obese model, partial removal of
retroperitoneal and epididymal WAT caused an increase
in the lipogenesis de novo in the carcass, epididymal
and retroperitoneal WAT, which could have contributed
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for observed fat mass replenishment and new adipocytes
differentiation (Bueno et al. 2005).

The effect of glucocorticoid on the lipogenesis de
novo is controversial. A previous study showed that, in
vivo, this hormone causes a decrease in lipogenic en-
zymes activity in white adipose tissue (Volpe and Marasa
1975); conversely, dexamethasone increased the action
of insulin on acetil-CoA carboxilase gene expression in
adipocytes (Travers and Barber 1999). It is well known
that insulin is the most important lipogenic hormone.
Insulin increases FAS expression and activity in humans
and in rodent adipocytes in primary culture (Moustaid
et al. 1996, Claycombe et al 1998). Evidences suggest
that the regulation of lipogenic genes expression by in-
sulin is mediated by sterol responsive element binding
protein 1¢ (SREBP-1c¢) (Denechaud et al. 2008b).

LIPOLYSIS AND TRIACYLGLYCEROL
FATTY ACID CYCLING

Adipose tissue is considered as the body’s largest stor-
age organ for energy in the form of triacylglycerols,
which are mobilized through lipolysis pathway to pro-
vide fuel to other organs. Release of non-esterified fatty
acids (NEFA) is a specific function for the adipose tissue;
in fact, no other tissue in the mammalian body is known
to mobilize NEFA and release them to the circulation to
be taken up by other tissues.

The first evidence of a lipolytic enzyme sensitive to
hormone, in adipose tissue with different characteristic
of LPL, was observed in the 1960’s decade. It was ver-
ified that this enzyme was stimulated by adrenalin and
adrenocorticotrophic hormone and inhibited by insulin
(Hollenberg et al. 1961, Bjorntorp and Furman 1962,
Rodbell and Jones 1966, Goodridge and Ball 1965).
Vaughan et al. (1964) denominated this enzyme as a
hormone-sensitive lipase (HSL).

The HSL exists in two forms: an active phosphory-
lated form and an inactive (or less active) non-phospho-
rylated form, and this interconversion is regulated by
hormonal action (Strélfors and Honnor 1989). Phospho-
rylation of HSL results in increased hydrolytic activity,
translocation of HSL from cytosol to the lipid droplet
surface, and enhanced TAG breakdown in the cell. The
hydrolytic action of HSL is regulated by perilipin A,
a lipid droplet-associated protein. Phosphorylation of

perilipin by cAMP-dependent protein kinase (PKA) fa-
cilitate the translocation of HSL to the lipid droplet
(Carmen and Victor 2006).

Opposing regulation of lipolysis in WAT by cate-
cholamines and insulin has been well documented. Dur-
ing fasting or exercise, catecholamines are the major hor-
mones to stimulate lipolysis. Hormone binding to adren-
ergic receptors (S-adrenergic) and stimulating adenylate
cyclase activity leads to an increase in intracellular cAMP
concentrations activating PKA. In the fed state, insulin
inhibits lipolysis by dephosphorylation of HSL and ac-
tivation of phosphodiesterase that reduces cAMP levels
(Jaworski et al. 2007).

Along with insulin and catecholamines, lipolysis
is stimulated, under tight regulation, by catecholami-
nes, glucagon, adrenocorticotrophic hormone (ACTH),
growth hormone, testosterone, atrial natriuretic peptide
and leptin (Slavin et al. 1994, Steinberg et al. 2002,
Sengenes et al. 2002). Autocrine/paracrine factors may
also participate in the precise regulation of lipolysis in
adipocytes to meet the physiologic and metabolic
changes.

NEFA can also be oxidized or used for reesterifi-
cation in adipocytes to produce TAG. High rates of FA
re-esterification in TAG have been shown to occur in
WAT during fasting, both in rats and humans (Reshef
et al. 2003). Esterification of FAs requires glycerol 3-
phosphate formation which, under lipolytic situations,
does not arise from glycolysis since glucose utilization
is strongly reduced under such circumstances.

In 1967, Ballard et al. firstly demonstrated the ac-
tivity of phosphoenolpyruvate carboxykinase (PEPCK)
and the glycerol 3-phosphate synthesis from pyruvate in
white adipose tissue. In 1969, this pathway was named
glyceroneogenesis by Gorin et al., Olswang et al. (2002)
reported that a selective ablation of PEPCK expression
in WAT of homozygous mutant mice caused a reduction
on triglyceride deposition, with 25% of the animals dis-
playing lipodystrophy. These results demonstrated the
physiological role of glyceroneogenesis to maintain fat
homeostasis in adipose tissue. Aminoacids, lactate and
pyruvate could be utilized as a substrate to de novo glyc-
erol 3-phosphate synthesis. It has been shown that rats
treated with hyperproteic carbohydrate free diet have an
increase in the white adipose tissue glyceroneogenesis
(Botion et al. 1995).
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EFFECT OF DIETARY FAT
ON WHITE ADIPOSE TISSUE METABOLISM

The prevalence of obesity is increasing worldwide, and
data from the literature indicate that environmental and
behavioral aspects play an important causal role. Among
the environmental influences, the percentage of fat en-
ergy in the everyday diet and the lack of physical activity
are two important factors (Jéquier 2002).

Obesity is often accompanied by abnormalities in
carbohydrate and lipid metabolism and in insulin and
leptin secretion and action (Buettner et al. 2000, Zhou
et al. 1998). Exposure to high-fat diets for prolonged
periods results in positive energy balance and obesity
in certain rodent models that can be considered an ad-
equate model of human obesity (Gaiva et al. 2001, Lin
et al. 2000a). The hyperlipidic diet induced a more pro-
nounced body weight gain accompanied by an increase
in the adiposity, carcass lipogenesis rate and serum tria-
cylglycerols, regardless of the regimen of administra-
tion, i.e., either continuous or cycled with chow (Esta-
della et al. 2004).

It has been shown that dietetic manipulations,
hormones, and cytokines induce distinct metabolic re-
sponses at different fat depots (Pond 1999). High-fat
diets reduced the activity of lipogenic enzymes and li-
pogenesis rate in retroperitoneal and inguinal fat depots
(Gaiva et al. 2001, Rothwell et al. 1983), but increased
lipoprotein lipase activity in visceral fat (Roberts et
al. 2002).

The type of dietary fat has been shown to influence
hepatic and WAT metabolism. Although it is well docu-
mented that the consumption of high-fat diets can induce
obesity, the impact of dietary fatty acid composition on
adipose tissue lipid metabolism has been examined by
some authors, with conflicting results.

We have previously shown that feeding young rats
for 8 weeks on diets containing either n-6 polyunsat-
urated fatty acid (PUFA) or long-chain saturated fatty
acids, as 33% of total energy, produced similar eleva-
tions in body-weight gain and carcass fat content (da
Silva et al. 1996). Similar results were obtained by
Awad et al. (1990). In contrast, Shimomura et al. (1990)
reported that a safflower oil diet produced a lower body-
fat gain in young rats than a tallow diet, both at 45% of
total energy. However, rats that were fed with a maize oil
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diet for 9 months were heavier and fatter than those that
received a lard diet (Hill et al. 1993). The n-3 PUFA
found in fish oils have received considerable interest,
since they have been shown to exert beneficial health ef-
fects (Calder 1998). Tsuboyama-Kasaoka et al. (1999)
have demonstrated that mice receiving 60% of dietary
energy as n-3 fatty acids, during 5 months, did not de-
velop obesity. Contrarily, a fish oil diet elevated body fat
and lowered body protein content, compared with a saf-
flower oil diet (Dulloo et al. 1995), while no difference in
body-weight gain was observed between rats which were
fed with lard or an n-3 fatty acid-supplemented lard diet
(Rustan et al. 1993).

No effect on lipolysis and lipogenesis rates was re-
ported by Awad et al. (1990) when comparing n-6 PUFA,
n-3 PUFA and saturated diets, while Fickova et al. (1998)
found higher noradrenaline-stimulated lipolysis in rats
which were fed with n-3 PUFA than in those with n-6
PUFA. On the other hand, we have shown that rats that
were fed with n-3 PUFA or n-3 plus n-6 PUFA diets
had a lower WAT lipolysis rate as compared to control
diet (Gaiva et al. 2001). The reduction of WAT lipoly-
sis rate by n-3 PUFA has been shown by others (Singer
et al. 1990, Dagnelie et al. 1994). This observation is
consistent with the reported fish oil-induced reduction
in plasma free fatty acids (Otto et al. 1992) and eleva-
tion of insulin sensitivity (Hill et al. 1993).

Diets enriched with n-6 PUFA have been shown to
decrease FAS mRNA in liver and WAT and, thus, lipoge-
nesis capacity in rats (Tsuboyama-Kasaoka et al. 1999).

Fernandez-Quintela et al. (2007) postulated that
suppression of lipogenic enzyme gene expression in-
duced by PUFA is related to changes in the expres-
sion and nuclear localization of the transcription factor,
sterol-regulatory element-binding protein-1 (SREBP-1),
rather than to a direct effect on peroxisome prolifera-
tor-activated receptors PPARs, a family of transcription
factors that regulate energy balance by promoting either
energy deposition or energy dissipation.

Regional differences in the sensitivity of WAT de-
pots to dietary manipulations have been found (Belzung
et al. 1993). We also observed some differences be-
tween retroperitoneal and epididymal WAT metabolic re-
sponses to the fatty diets. Diet enriched with soyabean
oil (rich in PUFA n-6) significantly increased retroperi-
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toneal WAT weight and '#C-labelled lipid accumulation,
while the same variables were affected in epididymal
WAT by diet enriched with fish oil (rich in PUFA n-3
and saturated fatty acid). All PUFA-rich diets increased
the lipogenesis de novo rate (Gaiva et al. 2001). In-
creased retroperitoneal WAT lipogenesis rate after n-3-
and n-6-rich diets has been reported previously (Raclot
and Groscolas 1994, Fickova et al. 1998).

The consumption of industrialized food has led
to an increased intake of hydrogenated vegetable oils,
which have substantial amounts of saturated and trans-
fatty acids (TFAs) (Allison et al. 1999, Popkin 1998).
Recently, we have shown that the ingestion of TFA
during gestation and lactation increases the carcass lipid
content in 21-day-old and 90-day-old offspring (Pisani
et al. 2008a, b). Similar findings were described by
Takeuchi et al. (1995) in animals treated with a diet
rich in saturated fatty acids. Furthermore, Shillabeer
and Lau (1994) demonstrated that diets rich in saturated
fatty acids promote the replication of adipocytes. It is
possible that this mechanism has contributed to the high
carcass lipid content found in the TFA feeding groups.

Silva et al. (2006), studying the effects of TFA in-
gestion just during lactation, verified increased lipogen-
esis de novo rates and lipid contents in the epididymal
WAT of offspring aged 45 days. The same study ob-
served more monounsaturated and saturated fatty acids
in the WAT of the TFA-exposed offspring. Because
those fatty acids have been shown to be mobilized at a
lower rate than PUFA (Raclot 2003), a decreased lipo-
lysis rate could also be present in the TFA-exposed rats.

SECRETORY FUNCTION OF WHITE ADIPOSE TISSUE

Obesity is associated with a chronic low grade inflam-
mation, and it has been suggested that inflammation may
be the link between obesity, type 2 diabetes and cardio-
vascular disease (Bullo et al. 2003). In this regard, it has
recently been demonstrated that diabetes is associated
with raised inflammation-sensitive plasma protein levels
in overweight and obese men, but not in men of normal
weight (Engstrom et al. 2003).

Cardiovascular and metabolic diseases are associ-
ated with obesity and with alterations in the production
of adipokynes, e.g., leptin, resistin, adiponectin, TNF-
«, plasminogen activator inhibitor- 1 (PAI-1) and hap-

toglobin (Trayhurn and Beattie 2001, Friedrichs et al.
1995, Nascimento et al. 2004).

As stated before, this review focuses on hapto-
globin, TNF-¢, plasminogen activator inhibitor-1 and
adiponectin.

The liver is regarded as the main site of the syn-
thesis of haptoglobin, as of other acute phase proteins.
Hepatic expression of the haptoglobin gene is regulated
by IL-1, IL-6, glucocorticoids and TNF-« in the case of
rodents, but mainly by IL-6 and dexamethasone in hu-
mans (Baumann et al. 1990, Mackiewicz et al. 1991).
IL-6 is, however, the common inflammatory cytokine
mediator for haptoglobin gene regulation in the liver of
all studied species (Pajovic et al. 1994).

The identification of haptoglobin, in particular, as
a putative secreted factor from WAT (Friedrichs et al.
1995, Kratchmarova et al. 2002, Chiellini et al. 2002)
is consistent with the concept that obesity and diabetes
are states of chronic mild inflammation. Expression of
the haptoglobin gene in epididymal WAT was first re-
ported in normal mice, with increases in expression be-
ing observed following induction of an inflammatory re-
sponse with lipopolysaccharide (Friedrichs et al. 1995).
The level of haptoglobin mRNA has been shown to be
elevated in WAT of several obese models, including
ob/ob and db/db mice (Chiellini et al. 2002).

We have demonstrated that the gene encoding the
acute phase reactant haptoglobin is higher in epididy-
mal WAT from obese (ob/ob) mice relative to their lean
siblings, and also haptoglobin is expressed in each of
the main WAT depots of mice, both internal and subcu-
taneous, as well as in interscapular brown adipose tis-
sue. Haptoglobin expression occurs in the adipocytes
themselves rather than in the cells of the stromal-vascular
fraction (Nascimento et al. 2004).

The increased haptoglobin expression in the epi-
didymal WAT of obese animals suggests that WAT could
be a source of the increase in plasma haptoglobin level
observed in obese subjects (Engstrom et al. 2003, Scriba
et al. 1979). Increased production of this acute phase
reactant by WAT in the obese state could contribute to
the mild inflammation that accompanies obesity.

Haptoglobin is a tetrameric glycoprotein which
binds haemoglobin, preventing both iron loss and kid-
ney damage during haemolysis. It has an antioxidant
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function and has been reported to be angiogenic, stimu-
lating endothelial cell differentiation and vascularisation
(Cid et al. 1993). Within adipose tissue, haptoglobin
could play a role as an antioxidant or in angiogenesis.
Alternatively, haptoglobin synthesized in the tissue may
not have a local role but instead may contribute primar-
ily to the circulating pool of the protein and the general
inflammatory response.

In 3T3-L1 adipocytes, haptoglobin mRNA was re-
duced by the PPARy agonist, rosiglitazone. In con-
trast, it was stimulated by dexamethasone, IL-6, TNF-«,
and LPS (Nascimento et al. 2004).
ies, Friedrichs et al. (1995) found that the injection of
LPS in mice resulted in a several fold increase in hap-

In in vivo stud-

toglobin mRNA level in adipose tissue. Since LPS re-
ceptors (Toll-like receptor) are present in white adipose
tissue (Lin et al. 2000b), the effect of the inflamma-
tory agent on haptoglobin expression in the tissue in vivo
may reflect, at least in part, a direct interaction with the
adipocyte. The most powerful effect on haptoglobin gene
expression in our study was with the addition of TNF-«.

TNF-« also stimulates the production of other adi-
pokines, such as leptin. Earlier studies have shown that
TNF-« increases both leptin gene expression and leptin
secretion in WAT and in 3T3-L1 adipocytes, while leptin
mRNA levels have been reported to be lower in TNF-
o deficient mice (Kirchgessner et al. 1997, Faggioni et
al. 1998, Langhans and Hrupka 1999). Moreover, WAT
expression of TNF-« also appears to be related to the
circulating level of other inflammatory markers, such as
C-reactive protein, fibrinogen, alkaline phosphatase and
albumin.

TNF-o has been associated with obesity-related
type 2 diabetes. This was first demonstrated by Hotamis-
ligil et al. (1996). They showed that TNF-« is elevated
in WAT from obese diabetic rodents and it is a mediator
of obesity-related insulin resistance and type 2 diabetes.

Evidences from literature clearly established a cor-
relation between TNF-¢ and insulin resistance in rodents
(Ventre et al. 1997, Uysal et al. 1997). However, there
are disagreements about the role of TNF-« in insulin
resistance in humans; some researchers do not find as-
sociation among them (Rush et al. 2007, Zavaroni et al.
2003), while others do (Behre et al. 2005, Hivert et al.
2008).
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Initially, adipocytes were considered the predom-
inant source of adipose tissue TNF-a. However, re-
cent studies have demonstrated that preadipocytes, en-
dothelial cells, smooth muscle cells, fibroblasts, leuko-
cytes and macrophages, which are present in WAT as a
stromavascular fraction, can produce substantially more
TNF-« than adipocytes (Fain et al. 2004, Weisberg et al.
2003). It is well known that obesity is associated with an
increased infiltration of macrophages into WAT (Coenen
et al. 2007, Cawthorn and Sethi 2008), especially in vis-
ceral fat pad, which may participate in the inflammatory
reaction that links central adiposity to insulin resistance
(Curat et al. 20006).

The molecular mechanism for TNF-«-induced in-
sulin resistance involves excessive phosphorylation of
extracellular signal-regulated kinase-1/2 (ERK-1/2) and
c-Jun NH;-terminal kinase (JNK), concomitant with in-
creased serine and reduced tyrosine phosphorylation of
insulin receptor substrate-1 (IRS-1), and also TNF-«-
induced transcription factor, NF-kf (Cawthorn and
Sethi 2008).

TNF-« upregulates PAI-1 expression in adipocytes
and WAT, which is likely to contribute to obesity as-
sociated with cardiovascular complications of metabolic
syndrome. Plasminogen activator inhibitor-1 (PAI-1) has
traditionally been linked to the pathogenesis of atheros-
clerosis, although evidence suggests that it is also in-
volved in the development of obesity and insulin resis-
tance (Ma et al. 2004).

Plasma PAI-1 is derived from several sources, in-
cluding the vascular endothelium, WAT and liver (De
Taeye et al. 2005). Even though, WAT is a site of abun-
dant PAI-1 synthesis (Allessi et al. 1997, Sawdey and
Loskutoff 1991).

PAI-1 is a procoagulative agent and fibrinolysis in-
hibitor. Therefore, high circulating plasma PAI-1 con-
centration is a strong risk factor of thrombotic disease
and independent predictor of coronary artery disease
(Segarra et al. 2001). Several studies showed that adi-
pose visceral tissue mass in humans was positively cor-
related with plasma PAI-1 concentration (Cigolini et al.
1996, Rega et al. 2005).

Recently, Sakamoto et al. (2008) showed that in-
sulin and triacylglycerols, in combination with high
concentration of insulin, enhanced PAI-1 production but
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decreased adiponectin production by adipocytes. These
two adipokines have opposing effects on the pathogene-
sis of coronary artery disease.

Adiponectin is the transcriptional product of the
apM1 gene and is the most abundantly secreted pro-
tein from adipose tissue in humans (Maeda et al. 1996,
Arita et al. 1999). Transcriptional regulation of the adi-
ponectin gene involves a number of transcription fac-
tors. The adiponectin promoters contain binding sites
for sterol regulatory elements (SREs), peroxisome pro-
liferator-activated receptor (PPAR)-response elements,
C/EBP sites, and E-boxes (Seo et al. 2004). Recently, it
has been shown that 1d3, the inhibitor of differentiation
of the family of proteins, inhibits SREBP-1c-mediated
adiponectin promoter activation (Doran et al. 2008).

This adipokine increases insulin sensitivity and
has anti-inflammatory and antiatherogenic effects (Diez
and Iglesias 2003). Decreased serum adiponectin levels
have been observed in subjects with insulin resistance,
obesity, type 2 diabetes and heart disease (Diez and Igle-
sias 2003, Hotta et al. 2000). Serum adiponectin levels
are inversely correlated with body mass index, central
adiposity, blood pressure, fasting glycemia, insulin re-
sistance, serum insulin levels and uric acid levels (Ya-
mamoto et al. 2002).
adiponectin reduces hepatic production of glucose and

It has been demonstrated that

the concentration of triacylglycerols in the muscles, thus
ameliorating insulin sensitivity (Prins 2002).

Salmenniemi et al. (2005) verified that hypoadi-
ponectinemia is related to several features of metabolic
syndrome (increased fasting glycemia, triglyceridemia,
central obesity and decreased HDL cholesterol) and to
high levels of inflammatory cytokines (IL-6, IL-1, and
C-reactive protein).

EFFECT OF DIETARY FAT ON WHITE ADIPOSE TISSUE
SECRETORY FUNCTION

Over the past few decades, epidemiological and clinical
studies have indicated many relations between nutrition
and health. In the last decade, studies have established
that dietary signals could influence gene and protein ex-
pression, which further modulates markers of inflamma-
tion by producing both positive and negative effects de-
pending on the net changes in gene expression.

Studies have proved that the incidence of insulin

resistance and heart disease is positively related to the
ingestion of saturated fatty acids, and negatively related
to the ingestion of PUFA (Hu 2003, Sacks and Katan
2002).

High-fat diets reportedly impair glucose metabol-
ism, stimulate abnormal glucose production, cause hy-
perinsulinemia and insulin resistance (Reaven 1988).
Recently, Tsukumo et al. (2007) showed that C3H/HeJ
mice, which have a loss-of-function mutation in Toll-like
receptor 4 (TLR4), are protected against the develop-
ment of obesity and insulin resistance induced by high
fatty diet accompanied by a less pronounced increase in
adipocyte size than the wild mice.

TLR2 and TLR4 are expressed in adipose tissue
and other tissues (e.g. macrophages, and muscle), and
play a critical role in inducing innate immune responses
in mammals. TLR4 is activated by lipopolysaccharide
and saturated fatty acids, which are inducers of insulin
resistance. Since that, Tsukumo et al. (2007) suggested
that TLR4 may be a candidate for participation in insulin
resistance induced by saturated fatty acid rich diet.

It has been observed that saturated fatty acids can
directly interact with the immune modulation and in-
flammation response through the activation of TLRs in
macrophages (Lee et al. 2001). TLR is also expressed
in 3T3-L1 cells, mouse cultured adipocytes and mouse
and human WAT (Shi et al. 2006, Creely et al. 2007).
This reinforces the findings in which inflammation and
the composition of fatty acids in the diet, particularly di-
ets rich in saturated fat, are closely related to metabolic
disorders.

We have shown that lard enriched diet ingestion,
for 2 or 60 days, increased haptoglobin gene expression
in mice WAT. It was also found that 3T3-L1 adipocyte
responds to palmitic acid in a dose dependent manner,
in which the haptoglobin gene expression is increased in
doses higher than 100uM (Oyama et al. 2005).

Treatment with palmitate induces the NF-kS and
the expression of IL-6 and TNF-« mRNA in 3T3-L1
adipocytes (Ajuwon and Spurlock 2005). In vivo study
showed that WAT TNF-«a gene expression was signifi-
cantly increased by the cafeteria diet, rich in saturated
fatty acid, while eicosapentaenoic acid (EPA) treatment
was able to prevent the rise in this inflammatory cytokine
(Pérez-Matute et al. 2007).
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Ibrahim et al. (2005) demonstrated that treatment
with TFA has a much greater effect in decreasing adipo-
cyte insulin sensitivity than treatment with saturated
fatty acids.

Recently, we have shown that maternal ingestion
of hydrogenated vegetable fat rich in TFAs, during ges-
tation and lactation, altered the blood lipid profiles and
decreased serum adiponectin level, together with a de-
crease in adiponectin mRNA and an increase in TNF-«
and PAI-1 mRNA levels in the WAT of their 21-day-old
offspring (Pisani et al. 2008b). We also have found an
increased levels of insulin, adiponectin, body fat and epi-
didymal WAT PAI-1 mRNA in 90-day-old offspring of
rats which were fed with a diet containing TFA during
gestation and lactation (Pisani et al. 2008a). These re-
sults suggested that early exposure to TFA caused an
increase in WAT PAI-1 gene expression and that this
alteration became programmed.

Long-term diet-fed rats or short-term diet-fed rats
(2 days) with fat-enriched, glucose-enriched diet showed
lower adiponectin mRNA in epididymal WAT and
plasma concentration, accompanied by an increase in
plasma triacyglycerol and NEFA levels (Naderali et al.
2003).

We have shown that adiponectin gene expression
was lower in retroperitoneal WAT after acute treatment
(2 days) with diets enriched with soybean, coconut and
fish oils, or lard. The same reduction in levels of adipo-
nectin gene expression was observed in epididymal
WAT of animals chronically (60 days) fed only with soy-
bean and coconut diets and in 3T3-L1 adipocytes treated
with palmitic, linoleic, EPA acids. Moreover, in the
present study, adiponectin gene expression in subcuta-
neous WAT was less affected by the high-fat diet than in
the retroperitoneal and epididymal depots. Acute treat-
ment with high-fat diets decreased the serum adiponectin
levels in all groups, although fish oil diet did not affect
serum adiponectin concentration, in contrast to the other
high-fat diet chronic treatments (Bueno et al. 2008).

It has previously been described that EPA increased
serum adiponectin levels but did not alter adiponectin
gene expression, either in subcutaneous, dorsolumbar,
or epididymal fat pads, in mice treated with high-fat diet
(Flachs et al. 2006). In another study, db/db mice treated
with n-6 and n-3 PUFA-enriched diet had similar serum
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adiponectin levels and gonadal WAT adiponectin gene
expression, as compared to animals treated with a low-fat
diet (Todoric et al. 2006). Recently, it was reported that
mice treated with a fish oil-enriched diet had increased
serum adiponectin levels and raised adiponectin gene
expression in retroperitoneal but not in epididymal WAT,
compared to animals which were fed with the control
diet or sunflower oil (rich in n-6 PUFA) diet (Neschen et
al. 2006). The differences among these results may be
partly explained by the duration of treatment and the diet
composition, suggesting that the amount of n-3 PUFA
in the diet might be an important factor for the stimula-
tion of adiponectin gene expression.

CONCLUSION

The present review showed that, depending on the out-
come being analyzed, the duration of the exposure to the
high-fat feeding, amount of fatty acid present in the diet
and the type of fatty acid may or may not have a signif-
icant effect on adipose tissue metabolism. However, the
long-term or short-term-high fat diets, especially rich in
saturated fatty acids, stimulated the expression of pro-
inflammatory adipokines and inhibit the expression of
adiponectin, an anti-inflammatory adipokine.
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RESUMO

Aproximadamente 40% do total de energia consumida pela
populagdo ocidental é representada pelos lipidios, a maioria
dela sendo ingerida na forma de triglicerideos e fosfolipidios.
O foco desta revisdo foi analisar o efeito dos tipos de gordura
da dieta sobre o metabolismo e fungéo secretora do tecido adi-
poso branco, principalmente, sobre a secregio de haptoglobina,
TNF-«, inibidor do ativador de plasminogénio-1 ¢ adiponec-
tina. Estudos prévios demonstraram que durante a exposi¢@o
de dietas hiperlipidicas, a quantidade e o tipo de acidos graxos

presentes na dieta podem ou nao ter um efeito significante
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sobre o metabolismo do tecido adiposo. Entretanto, o trata-
mento a curto ou longo prazo com dieta hiperlipidica, espe-
cialmente rica em 4cidos graxos saturados, provavelmente por
ativar receptores toll-like, estimula a expressdo de adipocinas
pro-inflamatorias e inibe a expressdo de adiponectina. Estu-
dos adicionais sdo necessarios para investigar os mecanismos
celulares pelos quais os acidos graxos da dieta afetam a fungéo

secretoria e metabdlica do tecido adiposo branco.

Palavras-chave: adipocinas, dietas hiperlipidicas, metabolis-

mo, tecido adiposo branco.
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