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in entropy models: the case of the 
open-channel velocity field
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Abstract: In this research, the trade-off between the number of restrictions and 
the robustness of the primary formulation of entropy models was evaluated. The 
performance of six hydrodynamic models in open channels was assessed based on 
1730 Laser-Doppler anemometry data. It was investigated whether it is better to use 
an entropy-based model with more restrictions and a weak primary formulation or a 
model with fewer restrictions, but with a strong formulation. In addition, it was also 
investigated whether the model performance improves with the insertion of restrictions. 
Three of the investigated models have a weak formulation (open-channel velocity field 
represented by Cartesian coordinates); while the other three models have a strong 
formulation, according to which isovels are represented by curvilinear coordinates. The 
results indicated that models with two restrictions performed better than those with one 
restriction, since the additional restriction includes information relevant to the system. 
Models with three restrictions perform worse than those with two restrictions, because 
the information lost due to the use of a numerical solution was more substantial than the 
information gained by the third restriction. In conclusion, a strong primary formulation 
brought more information to the system than the inclusion of a third constraint.

Key words: Hydrodynamic model, Information theory, Laser-Doppler anemometry, Shan-
non entropy.

INTRODUCTION

Models are designed to explain physical 
processes, to which one may assign a probability 
of event occurrence, considering that each 
system state has a level of uncertainty. Well-
designed probabilistic models tend to enhance 
their capacity of representing reality because 
they consider the intrinsic uncertainties of the 
processes, which arise from several sources 
such as natural randomness, inaccuracy in 
data measurement, model structure imperfect 
parameterization, and others Gupta & 
Govindaraju (2019). Many water-related problems 
demand a probabilistic approach due to the 

considerable amount of uncertainty involved 
Mishra (2009), Cobo et al. (2017), e.g., rainfall 
occurrence, magnitude and intensity Mélèse et 
al. (2018), basin flow and sediment Shrestha et 
al. (2016), and hydraulics Tapoglou et al. (2019). 
Shannon (1948) investigated the information 
content and its relation to uncertainty measures 
while proposing uncertainty quantification, 
the so-called Shannon informational entropy, 
or simply Shannon entropy. Jaynes (1957a, 
b) physically formulated the informational 
principle of maximum entropy (PME) using 
Shannon entropy, which maximizes uncertainty 
under the given constraints and, thus, avoids 
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the use of unproven assumptions. As a result, 
the probability density function associated 
to a researched process can be obtained by 
maximizing the constrained entropy function 
and using the variational calculus and the 
Lagrange multipliers method.

Therefore, the informational principle 
of maximum entropy Shannon (1948), Jaynes 
(1957a, b), Shore & Johnson (1980) provides an 
adequate approach for introducing probability 
into complex hydrodynamic problems such as 
modeling the velocity field in open channels. It 
has been successfully applied to several fields 
of Hydraulic and Environmental Engineering 
Harmancioglu & Singh (1998), Singh (2013), 
(2014), Ardiclioglu et al (2005). Other researches 
based on PME yielded encouraging results 
in areas such as water resources Cheng et al. 
(2019), drought assessment Zuo et al. (2017), 
climate change Jin et al. (2016), ecology Banavar 
et al. (2010), assessment of river discharges 
Chiu et al. (2005), Alvisi et al. (2014), Farina et al. 
(2014), sediment yield Chiu & Hsiung (1981), de 
Araújo (2007), Furbish et al. (2016), pipe-network 
hydraulic Waldrip et al. (2016) soil moisture 
Al-Hamdan & Cruise (2010), river morphology 
Moramarco et al. (2013), and open-channel 
hydrodynamics Chiu (1987), (1988), (1989), (1991), 
Chiu et al. (2005), Barbé et al. (1991), de Araújo & 
Chaudhry (1998), Luo & Singh (2011), Fontana et 
al. (2013), Singh et al. (2013), Jiang & Chen (2016), 
Greco & Martino (2018), Mirauda & Russo (2019), 
to name but a few.

Literature presents several robust, 
physically-based hydrodynamic models, such 
as Shiono-Knight Shiono & Knight (1991), 
Knight (2013), MIKE-11 DHI (1992), (2017), River2D 
Steffler & Blackburn (2002), Beakes et al. 
(2014), CE-QUAL-W2 Cole & Wells (2006), and 
Environmental Fluid Dynamics Code Tetra Tech 
(2007), among others. These models use complex 
spatially-distributed systems of equations that 

encompass the principles of mass, energy, and 
momentum conservation; as well as the effects 
of turbulence. Hydrodynamic models, such as the 
aforementioned ones, are able to solve complex 
problems Beakes et al. (2014), Knight (2013), 
Torres-Bejarano et al. (2015), Thanh et al. (2020), 
but demand a large number of parameters, 
which are often unavailable. When not based on 
measured data, the parameterization process 
may introduce uncertainty to such an extent 
that simple few-parameter models yield better 
results than the complex ones, especially in 
ungauged basins. Despite the fact that entropy 
equations tend to demand few parameters, 
they often out-perform equations based on 
different approaches, due to the robustness of 
the principle Chiu (1987), (1988), (1991), de Araújo 
& Chaudhry (1998), Ardiclioglu et al. (2005), 
Fontana et al. (2013), Singh (2014), Alvisi et al. 
(2014), Mirauda & Russo (2019).

The entropy-equation optimization is 
subject to the given constraints, which represent 
information about the problem to be solved. 
Therefore, the greater the number of constraints, 
the more information there is about the system 
Jaynes (1957a). More information implies 
less uncertainty and more accurate models. 
Nevertheless, the density functions obtained by 
PME can be solved analytically only if a maximum 
of two constraints are used. If the optimization 
uses three or more constraints, it demands a 
numerical solution, which simultaneously 
lowers the model accuracy and increases the 
computational effort. This ambiguity – more than 
two constraints generate more information, but 
also weaken the computational solution – yields 
a non-trivial non-linear problem, which has not 
(to our best knowledge) been straightforward 
tackled in the Literature, especially by researches 
based on an accurate robust datasets. Therefore, 
the objective of this work was to assess the 
trade-off between number of constraints and 
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strength of the primary statement on the 
performance of hydrodynamic entropy-based 
models using accurate laboratory data for 
validation. For this purpose, the following quests 
were analyzed: (i) is there an improvement in 
model performance when two constraints are 
used instead of one? (ii) is there an improvement 
in model performance when a third constraint 
is introduced, considering that its solution is 
not analytical? (iii) is it better to use a three-
constraint model with a weak primary statement, 
or a two-constraint model with a strong primary 
statement?

Abbreviations
D : Flow depth at the channel
F(u) Probability of the longitudinal velocity being 
less or equal to u
H : Entropy function
M : Entropy parameter.
NSE : Nash& Sutcliffe 
p(u) : Probability density function 
PME : Principle of maximum entropy 
RMSE : Root mean square error
SRP : Steffler, Rajaratnam and Peterson (1985)
u : Longitudinal velocity
uav : average velocity.
Umax : Maximum velocity in the cross section
U1y : Model with one constraint and Cartesian 
coordinates.
U2y : Model with two constraints and Cartesian 
coordinates.
U3y : Model with three constraint and Cartesian 
coordinates.
U1ξ : Model with one constraint and curvilinear 
coordinates.
U2ξ : Model with two constraints and curvilinear 
coordinates.
U3ξ : Model with three constraints and curvilinear 
coordinates.
y : The vertical distance of a any point located in 
the flow from the channel bed

z : The horizontal distance of a any point located 
in the flow from the nearest wall.
β : Boussinesq coefficient.
λi : Lagrange parameters, i = 1,2,…,12.
ξ : isovel
δy, δi, βi, ε: shape parameters

MATERIALS AND METHODS

We investigated the performance of six entropy 
models designed to simulate open-channel 
velocity fields. The simulated velocities were 
compared with accurately-measured laboratory 
data. Three of the investigated models have a 
weak primary statement, i.e., they assume that 
isovels could be well represented by Cartesian 
coordinates; whereas the remaining three models 
have a strong statement according to which 
isovels are better represented by curvilinear 
coordinates. In this work, data were extracted 
from the experiments made by Steffler et al. 
(1985): run 1 (hereafter called SRP1), run 2 (SRP2), 
and run 3 (SRP3). The experiments (see the main 
characteristics in Table I) were performed at the 
Thomas Blench Laboratory flume located at the 
University of Alberta, Canada. The velocities 
were accurately measured using a Laser-
Doppler anemometer. The models performance 
was assessed with the Nash-Sutcliffe coefficient 
(NSE) and the root mean square error (RMSE).

Models with weak primary statement
Two primary statements were assumed and 
models with one, two or three constraints used, 
respectively, in order to maximize the entropy 
function H (Equation 1), in which u means 
the longitudinal velocity; p(u) the respective 
probability density function; and Umax the 
maximum velocity in the cross section. The six 
entropy models are divided into two groups: 
three models admit the Cartesian coordinate 
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system (weak primary statement, Equation 2), 
whereas the three others admit the curvilinear 
coordinate system, as described in (Chiu 1988) 
(Figure 1).

( ) ( ) ( ). .
0

 =  ∫
UmaxH u p u Ln p u du  

(1)

Model U1y (one constraint and Cartesian 
coordinates) is based on Chiu (1987), who 
proposes the primary statement (Equation 2), 
according to which F(u) is the probability of the 
longitudinal velocity being less or equal to u at 
a point located at distance y from the channel 
bed. In Equation 2, D is the flow depth at the 
channel.

( )F u y / D=  (2)

The first constraint is presented in Equation 
3. It means that the integral of the probability 
density function p(u) over the whole dominium 
equals unity. We maximize the entropy function 
(H, Equation 1) subjected to one constraint 
(Equation 3) and further apply the result at 
Equation 2, yielding the velocity-distribution 
Equation 4, where λ1 is the Lagrange parameter, 
calculated by Equation 5.

( )p u du 1 
0

=∫
Umax  (3)

( ) ( )11-
max.  .   = =   

   

y yu y e u
D D

λ  (4)

1
max

11
 

= +  
 

Ln
U

λ
 

(5)

Model U2y (two constraints and Cartesian 
coordinates) uses the same weak premise as 
model U1y (Equation 2). The entropy function 
(Equation 1) was maximized by Chiu (1987), using 
two constraints: Equations 3 and 6. The latter 
represents the mass conservation principle 
and indicates that the left-hand integral equals 
average velocity (uav). As a result, the method 
yields the velocity-distribution Equation 7 with 
parameters λ2, λ3 and M that can be estimated 
using the maximum and average velocities by 
equations 8 and 9: Chiu (1987).
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M = λ3.Umax (9)

Model U3y (three constraints and Cartesian 
coordinates), derived by Barbé et al. (1991), 
assumes the same premise as in the previous 

Table I. Parameters of the experiments: run 1 (SRP1), run 2 (SRP2), and run 3 (SRP3). 

Experiment n n.vert Q (m³/s) D (m)
B

(m)
B/D
(-)

A (m²) uav  
(m/s)

Umax 
(m/s)

ξ
(m)

SRP1 526 10 0.126 0.146 1.143 7.83 0.167 0.755 0.844 0.00

SRP2 663 16 0.126 0.225 1.143 5.08 0.257 0.490 0.530 0.00

SRP3 541 16 0.032 0.093 1.143 12.29 0.106 0.301 0.372 0.00

All 1730 42 (-) (-) (-) (-) (-) (-) (-) (-)
The symbols mean: n = number of measured points; n.vert = number of measured vertical profiles; Q = discharge; D = flow depth; 
B = flume width; A = wetted area; uav = average velocity, given by Q/A; Umax = maximum measured velocity; ε = maximum-velocity 
dip. Data source : Steffler et al. (1983).
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models (Equation 2) and three constraints: 
Equations 3, 6, and 10. The third constraint 
represents the momentum conservation 
principle (Equation 10), in which β is the 
Boussinesq coefficient (Equation 11) and ρ 
is water density. The system generated by 
maximizing the entropy function (Equation 1) 
for the three constraints was solved using a 
numerical approach (MacLaurin series with the 
first two terms), which yields the approximate 
velocity field (Equations 13 and 14). The 
parameters λ4, λ5, and λ6 can be obtained using 
the Boussinesq coefficient, maximum velocity 
and average flow velocity, as stated in Barbé et 
al. (1991).

( )2 2max . .  .
0

=∫ av
U u p u du uβ  (10)

2 
. .

=
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M
D u

β
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M = λ5.Umax  (12)
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Models with a strong primary statement
The strong statement admits that the 
longitudinal velocity is directly associated 
with the curvilinear, rather than with Cartesian 
coordinates Chiu & Chiou (1986); and that isovels 
can be represented by ξ coordinates (Equations 
15-17), as proposed by Chiu (1986). The isovel (ξ) 
shape parameters (δy, ε) and variables (y, z) are 
defined in Figure 1. Parameter βi characterizes 
the velocity distribution of the primary flow.

( ) ( ). 1 . 1 . − += − i i Z YY Z eβ βξ  (15)

+
=

+ +
y

y

y
Y

D
δ

δ ε
 (16)

Figure 1. Curvilinear 
coordinate system based on 
Chiu and Chiou (1986).
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Model U1ξ (one constraint and curvilinear 
coordinates) is based on Chiu (1988), who 
proposes the strong primary premise (Equation 
18), according to which F(u) is directly associated 
with the isovel (ξ) spatial distribution, with the 
key parameters ξmax and ξ0, respectively, the 
maximum and minimum ξ values of the open-
channel flow. The entropy function H (Equation 1) 
was maximized and subjected to one constraint 
(Equation 3), the same as in model U1y. The 
result was applied to Equation 18, yielding the 
velocity-distribution (Equation 19), where λ7 is 
the Lagrange parameter, estimated by Equation 
20.
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( )7 max1= − Ln Uλ  (20)

Model U2ξ (two constraints and curvilinear 
coordinates), developed by Chiu (1988), uses 
curvilinear coordinates (Equation 15), Equation 
18 as primary statement, and two constraints: 
Equations 3 and 6, the same of model U2y, 
resulting in Equation 21. The parameters λ8 
and λ9 are estimated in an analogous way as in 
model U2y, as shown in Chiu (1988).
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In the present study, Model U3ξ (three 
constraints and curvilinear coordinates) used 
curvilinear coordinates (Equation 15), the strong 
statement (Equation 18) and three constraints, 

(Equations 3, 6 and 10 as in model U3y: Barbé et 
al. (1991), but substituting ratio y/D by 0

0

 −
 − max

ξ ξ
ξ ξ . 

The U3ξ model for the velocity field in open 
channels consists in solving Equations 22 and 
23. The system parameters λ10, λ11, and λ12 are 
estimated analogously as in model U3y, using 
the Boussinesq coefficient, maximum velocity 
and average flow velocity, as demonstrated by 
Barbé et al. (1991).
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RESULTS AND DISCUSSION

Table II and Figures 2 and 3 present the 
performance of the six entropy models applied to 
the three laboratory laser-Doppler experimental 
datasets. The weak primary statement (Equation 
2) is based on the hypothesis that longitudinal 
velocity grows monotonically from zero at the 
bed to a maximum value at the water surface, i.e., 
the velocity dip is assumed as zero in the whole 
dominium, in disagreement with Literature 
Ardiclioglu et al. (2005), Mirauda & Russo (2019). 
Besides, it is also assumed that isovels are 
horizontal, contrasting with laboratory Steffler et 
al. (1985), de Araújo & Chaudhry (1998) and field 
Ahmadi & Maghrebi (2019) measurements. With 
regards to the Cartesian-coordinate entropy 
formulations, it can be said that model U1y 
performed poorly, with negative Nash-Sutcliffe 
coefficients (NSE) for all vertical profiles and 
with errors (RMSE) up to 46%. When the second 
constraint is added, the model (U2y) performs 
much better, with median NSE of +0.51 and RMSE 
of only 6%. The comparative results of U1y and 
U2y (Figures 2a and 2b, respectively) show that 
the addition of the second constraint definitely 
improves the model predictability capacity. 
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Table II. Model performance of the velocity-field simulations for the 42 vertical profiles of three experiments: 
SRP1, SRP2, and SRP3. 

Experiment 
(n.vert)

Nash-Sutcliffe coefficient (NSE) Root mean square error (RMSE)

Min Average Median Max Min Average Median Max

Model U1y: one constraint and Cartesian coordinates

SRP1 (10) -14.96 -9.59 -8.68 -6.85 25% 35% 36% 46%

SRP2 (16) -9.68 -6.43 -6.28 -2.84 17% 25% 26% 31%

SRP3 (16) -7.50 -4.13 -3.80 -2.34 10% 15% 14% 19%

All (42) -14.96 -6.31 -5.99 -2.34 10% 23% 22% 46%

Model U2y: two constraints and Cartesian coordinates

SRP1 (10) -18.37 -3.76 -0.17 0.98 2% 14% 13% 32%

SRP2 (16) -17.37 -1.13 0.82 0.96 2% 7% 4% 22%

SRP3 (16) -24.16 -2.57 0.48 0.97 1% 7% 5% 18%

All (42) -24.16 -2.31 0.51 0.98 1% 9% 6% 32%

Model U3y: three constraints and Cartesian coordinates

SRP1 (10) -21.72 -4.88 -0.73 0.90 4% 17% 15% 34%

SRP2 (16) -29.12 -3.20 0.05 0.68 6% 12% 10% 28%

SRP3 (16) -16.76 -1.29 0.79 0.94 2% 6% 3% 15%

All (42) -29.12 -2.87 0.32 0.94 4% 11% 9% 34%

Model U1ξ: one constraint and curvilinear coordinates

SRP1 (10) -29.14 -15.93 -15.80 -6.99 34% 43% 45% 51%

SRP2 (16) -14.62 -8.41 -8.59 -3.53 15% 27% 28% 32%

SRP3 (16) -13.45 -6.43 -6.46 -2.79 11% 17% 18% 21%

All (42) -29.14 -9.45 -8.41 -2.79 11% 27% 26% 51%

Model U2ξ: two constraints and curvilinear coordinates

SRP1 (10) -0.86 0.48 0.85 0.95 3% 6% 5% 10%

SRP2 (16) -0.34 0.68 0.83 0.97 2% 4% 4% 6%

SRP3 (16) 0.48 0.75 0.76 0.90 2% 3% 3% 5%

All (42) -0.86 0.66 0.77 0.97 2% 4% 4% 10%

Model U3ξ: three constraints and curvilinear coordinates

SRP1 (10) -1.70 0.14 0.55 0.76 6% 9% 9% 12%

SRP2 (16) -11.51 -1.02 0.18 0.44 7% 10% 9% 18%

SRP3 (16) -0.01 0.65 0.79 0.94 2% 3% 3% 4%

All (42) -11.51 -0.11 0.42 0.94 2% 7% 8% 18%
The term “n.vert” means the number of vertical profiles. Data source: Steffler et al. (1983).
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Figure 2. Correlation between measured (experiments SRP1, SRP2, and SRP3: Steffler et al. 1985) and simulated 
velocities using the weak statement (Cartesian coordinates): (a) model U1y; (b) model U2y; and (c) model U3y. The 
black dots represent points located further than 3% of the channel width from the sidewalls and from the channel 
bed, whereas the plus (+) signs refer to the points located elsewhere (near wall and/or channel bed).

However, although the three-constraint U3y 
model (Figure 2c) performs better than U1y, it 
is worse than U2y: the median NSE decreases to 
+0.32 and RMSE raises to 9%. This shows that the 
addition of extra information (third constraint) 
improves the model, i.e., U3y performs better 
than the one-constraint model U1y. The use of 
the numerical solution, as in Barbé et al. (1991), 
however, influences negatively this improvement 
and even limits its performance (U3y is worse 
than U2y).

The same pattern can be observed for the 
three curvilinear-coordinate entropy models. 

The one-constraint model U1ξ has negative 
Nash-Sutcliffe coefficients for all vertical profiles 
and errors ranging from 11% to 51%. According to 
the results, this is the worst model (Figure 3a) 
among the researched ones, with median NSE 
below –8. The inclusion of the second constraint 
notably improves model capacity: the median 
NSE is positive for all experiments (greater than 
+0.76) and the median error is as low as 4%. 
Comparison of Figures 3a and 3b also shows an 
improvement of the model when the second 
constraint is considered. The combination of 
two constraints and the curvilinear-coordinate 
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system generates the best entropy model 
(U2ξ) among the investigated options. As in 
the weak primary-statement models, the 
inclusion of a third constraint yields a model 
(U3ξ) with a performance surpassing that of 
the one-constraint model (U1ξ) and raising 
the median Nash-Sutcliffe coefficient from 
–8.41 to +0.42; median error decreases from 
26% to 8%, at the same time. In fact, U3ξ is 
the second best entropy model among the six 
tested formulations. Comparing Figures 3b and 
3c reveals, however, that the U3ξ model does 
not represent the velocity-field data as well 
as the U2ξ model: in the balance between the 
advantage of having more information (third 
constraint) and the disadvantage of using a 
numerical solution, the negative aspect prevails. 
Besides, the numerical solution of the three-
constraint models generated instability during 
the parameterization process (when calculating 
the Lagrange multipliers) which augmented the 
computational effort. This was observed in all 
experiments.

In order to investigate whether it is better to 
use a three-constraint model with a weak primary 
statement, or a two-constraint model with a 
strong statement, the marginal improvement 
of model U2y was compared with models U3y 
and U2ξ, respectively. The results show that the 
third constraint has the drawback of demanding 
a numerical solution, which increases computer 
time demand and worsens result accuracy; 
whereas the combination of an analytical-
solution system (two constraints) with a strong 
statement yields a high-performance model. In 
fact, model U2ξ has a median NSE of +0.77 against 
+0.32 of U3y, whereas the median error of U3y 
(9%) is more than twice that of U2ξ (4%). When 
using the Student t-test (5% significance) to 
compare the NSE between U2y and U3y, it shows 
that both models are statistically equal, i.e., the 
simple addition of the third constraint does not 

upgrade the model capability because the three-
constraint model demands a numerical solution 
of its equations. Contrastingly, when we apply 
the t-test to compare U2y and U2ξ, the results 
indicate that they are statistically different, with 
clear superiority of the latter: NSE improves 
from +0.51 to +0.77 and the average NSE raises 
from –2.31 to +0.66.

Figure 4 provides a synthesis of the 
performance of the models, considering only 
the number of constraints. It is clear that 
models with only one constraint perform much 
worse than those with two or three constraints 
(negative NSE and high RMSE). It is also visible 
that, despite the similarity of the results of the U2 
and U3 models, the performance of U2 models 
is higher. Besides, if one compares the Nash-
Sutcliffe coefficient for the best-fit U2 model 
(U2ξ) with that for the best-fit U3 model (U3ξ) 
using the Student t-test with a 5% significance, it 
shows that the models are statistically different 
and that U2ξ is clearly superior.

From Figures 2, 3, and 4 it is noteworthy 
that all models have flaws in representing 
some vertical profiles. Figure 5 indicates that 
mal-represented profiles are those near the 
sidewall, which can be confirmed by Figures 
2 and 3. This flaw occurs even when the best 
models (U2ξ, U3ξ, and U2y) are used. For the 
near-wall verticals, for example, model U2y 
exhibits an NSE coefficient as low as -24 and 
a corresponding error RMSE as high as 32%. It 
still mimics accurately the measured data for 
more centralized verticals with a maximum NSE 
of 0.98 and minimum RMSE of 1% (Table II). This 
fact is directly connected to sidewall proximity, 
as shown in de Araújo & Chaudhry (1998) and 
in Greco (2015). The analyzed entropy models 
perform well for profiles further than 3% of the 
channel width, however, as can be depicted from 
Figure 5. Nonetheless, the use of curvilinear 
coordinates improves model performance for 
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Figure 3. Correlation between measured (experiments SRP1, SRP2, and SRP3: Steffler et al., 1985) and simulated 
velocities using the strong statement (curvilinear coordinates): (a) model U1ξ; (b) model U2ξ; and (c) model U3ξ. 
The black dots represent points located further than 3% of the channel width from the sidewalls and from the 
channel bed, whereas the plus (+) signs refer to the points located elsewhere (near wall and/or channel bed).

one, two, or three constraints, particularly in the 
vicinity of walls. This is most emphasized in the 
routine U2ξ, the best-performance model in the 
context of this research. In fact, Chen & Chiew 
(2004) experimentally observed the significant 
velocity gradient near the channel bed; Patel 
et al. (2016) showed that near-wall gradients 
influence turbulence and quasi-streamwise 
vortices in channel flow; whereas Ninto & Garcia 
(2006) emphasized the influence of the near-
wall flow on sediment re-suspension, which 
was confirmed by Mohan et al. (2019). These 
features have been experimentally observed, 
among others, by Steffler et al. (1985), de Araújo 

& Chaudhry (1998), Chen & Chiew (2004), Ninto 
& Garcia (2006), Birch & Morrison (2010), Howes 
& Sanders (2011), and Patel et al. (2016). The 
curvilinear coordinates, as proposed by Chiu 
(1988), succeed in simultaneously representing 
the effect of both sidewalls and of channel bed, 
which explains why the ‘ξ’ models out-perform 
the Cartesian-coordinate (‘y’) ones.

CONCLUSIONS

From the results, it can be concluded that 
entropy hydrodynamic models with two 
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constraints performs better than those with 
one constraint, and that the second constraint 
includes relevant information for the system. 
Contrastingly, models with three constraints 
perform worse than those with two constraints, 

showing that the loss of information due to the 
use of numerical solutions may surpass the gain 
of information due to the third constraint. The 
best-performance entropy model (that with two 
constraints and curvilinear coordinates – U2ξ) 

Figure 4. Performance of the entropy models according to the number of 
constraints. (a) Nash-Sutcliffe coefficient (NSE). (b) Root mean square error (RMSE). 
U1 encompasses the joint results for both U1y and U1ξ models. The same applies 
to U2 and U3.
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was able to mimic well the accurately-measured 
laboratory data for vertical profiles further than 
3% of channel width. For vertical profiles closer 
than 3% of the width, the studied models do not 
perform well because the specific information 
concerning the prevailing processes is neither 
provided in the primary statement, nor in the 
constraints. In the present case study, the 
replacement of a weak primary-statement (use 
of Cartesian coordinates, Equation 2) by a strong 

one (use of curvilinear coordinates, Equation 18) 
brings more information to the system than the 
inclusion of a third constraint.
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Figure 5. Performance of the 
entropy models as a function of 
the distance to the vertical wall. 
Each point refers to a measured 
vertical profile. The variable DW 
is the horizontal distance to the 
nearest wall and B is channel 
width. Vertical grey lines indicate 
the threshold of the model 
applicability (DW/B > 0.03). (a) 
Nash-Sutcliffe coefficient (NSE). 
(b) Root mean square error 
(RMSE).
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