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ABSTRACT
Syringa oblata is an important garden plant whose leaf colour turns from green to red in autumn when air temperature 
and daylength decrease. This study explored the reasons for leaf reddening by detecting phenotypic characteristics and 
pigment types and contents. With leaf reddening, luminance L* increased and chrominance a* decreased significantly. 
Chlorophyll and carotenoid contents significantly decreased in accordance with the distribution change of green pigment 
in leaf cells. Conversely, the red pigment distribution increased and the total polyphenol, total flavonoid and total 
anthocyanin contents evidently increased. Anthocyanin accumulation was the important reason for leaf reddening. Of 
the anthocyanins detected in leaves, cyanidin and delphinidin-3-O-rutinoside contents gradually increased with leaf 
reddening and were negatively correlated with L*. They were considered key anthocyanins influencing leaf colour. Apigenin 
and syringic acid were correlated with delphinidin-3-O-rutinoside and cyanidin, and they could be the anthocyanin co-
pigments. Cyanidin-3-O-arabinoside and taxifolin were more abundant polyphenols in leaves. In summary, anthocyanin 
accumulation and chlorophyll degradation occurred along with leaf reddening. Temperature, light, and other co-pigments 
influenced the anthocyanin and chlorophyll contents. This study provides evidence for applications of S. oblata as a 
coloured-leaf plant in gardens and as a source of active ingredients in the commercial market.
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Introduction
Syringa oblata Lindl., belonging to the family Oleaceae, 

is widely cultivated as an ecological and ornamental tree, 
spanning subtropical, warm temperate, temperate and the 
edge of cold temperate zones (Ma et al. 2022). The major 
ornamental traits of S. oblata depend on its flowers, which 

are bright blue-purple in colour and have a fine fragrance 
in spring. The leaves of S. oblata change colour from green 
to red in autumn, suggesting that S. oblata is a coloured-
leaf plant. The diversity of colouration patterns during 
autumn senescence has important ecological significance 
(Feild et al. 2001), however, few studies have reported on 
S. oblata leaf colour.
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Anthocyanins, chlorophylls, and carotenoids are the 
main pigments in plant leaves, and their contents and 
distributions determine leaf colour (Tang et al. 2020; Li W 
et al. 2022). Chlorophylls, mainly chlorophylls a and b in 
higher plants, are the key photosynthetic pigments making 
leaves green (Shi et al. 2021). Carotenoids help to protect 
the photosynthetic apparatus from photo-oxidation and 
make plants appear yellow, orange, or red (Shen et al. 2019; 
Liu et al. 2021). Anthocyanins are phenolic compounds and 
their different types confer the red, orange, purple, and 
yellow colour to plant leaves (Khusnutdinov et al. 2021). 
Anthocyanin accumulation and chlorophyll degradation 
contribute to the leaf colouration of Quercus dentata during 
autumn (Wang et al. 2023). Environmental factors also 
affect leaf colour by influencing anthocyanin and chlorophyll 
metabolism (Xu et al. 2015; Lu et al. 2016; Song et al. 2019; 
Lee et al. 2023). 

Some studies have reported on pigment substances 
of the genus Syringa. Zhang et al. (2022) found that 
phenylpropanoids are phylogenetically conserved in Syringa 
plants, enhancing their ability to adapt to the environment. 
Additionally, leaves from S. oblata var. alba. were found to 
contain high levels of total polyphenol (Nenadis et al. 2007). 
Sun and Guo (2013) studied the extraction process of total 
flavonoid from S. oblata. Total flavonoid contents of S. 
wolfii branches at different harvest stages were significantly 
different (Han et al. 2011). Notably, during the spring leaf-
expansion stage of S. oblata, the quantity of anthocyanin 
decreased while that of chlorophyll increased (Tian et al. 
2014). While flavonoids, including kaempferol-3-O-ɑ-L-
rhamnosyl-β-D-glucoside, quercetin, rutin, quercetin-3-O-β-
D-glucoside, and naringenin, have been identified in S. oblata 
leaves (Tai et al. 2022), the specific types of anthocyanin 
remain unclear at present.

Some trees, such as Liquidambar formosana, Populus 
deltoides, Ginkgo Biloba, and Acer pseudosieboldianum, have 
been examined only as foliage plants to explore the leaf 
colouring mechanism in autumn (Wen et al. 2015; Li et 
al. 2018; Zhang et al. 2019; Li X et al. 2022). S. oblata is an 
important flower plant in spring, and its leaves turn red 
with the cool temperatures in autumn, which prolongs 
its ornamental periods. Therefore, exploring the leaf 
reddening mechanism in S. oblata in autumn will provide 
the theoretical basis for similar leaf colour change in other 
species of plants during autumn.

This research aims to explore the reason for leaf 
reddening in S. oblata by analyzing the relationships 
among phenotypic characteristics, environmental factors, 
and pigment contents, as well as determining the key 
anthocyanins influencing leaf colour change. Thus, S. oblata 
leaves at seven stages were collected in autumn and had 
their phenotypic characteristics evaluated and the contents 
of total polyphenol, total flavonoid, total anthocyanin, 
chlorophyll, and carotenoid determined. Phenolic content 
and composition were also analyzed. These data were 
then used to evaluate our hypothesis that: (1) the content 

and proportional changes of chlorophyll, anthocyanin 
and carotenoid influence the leaf colour of S. oblata; (2) 
there may be one or several anthocyanins whose contents 
significantly correlate with the change in leaf phenotype; (3) 
and chlorophyll degradation and anthocyanin accumulation 
should be related to changes in air temperature, light, and 
some phenolic compounds during leaf senescence process.

Materials and methods

Plant materials and environment factors
Syringa oblata Lindl. leaves were collected in October 

2022, at Shanxi Agricultural University, Taigu, Shanxi, 
China (37o43’N, 112o59’E). The study objects comprised 
three sturdy and eight-year-old trees. S. oblata leaves were 
divided into seven stages according to colour changes by 
observation, namely Stage 1 (S1), leaf is all-green; S2, central 
vein of leaves presents light red locally; S3, 50%–75% of 
leaf surface changes orange-red; S4, most of leaf surface 
is red; S5, leaf completely turn red; S6, leaf colour further 
deepens to purple-red hue and leaf thickness increases; 
S7, leaf shows a purplish reddish hue, and leaf is about to 
fall. At least ten intact leaves in the different parts of the 
trees at each stage were picked. A part of leaves was cut 
into diamond-shaped pieces, weighted at 0.1 g, and then 
frozen at -20 ℃ for subsequent experiments.

Daylength data were obtained from a website (https://
sunrise.supfree.net/), and air temperature data were 
obtained from China Meteorological Data Network (http://
data.cma.cn). 

Colour values, pigment distribution in cells, and leaf 
pH determination

Pictures of S. oblata leaves at different stages were 
photographed by cellphone camera in the same indoor 
environment. The camera parameters were photo-sensibility 
800 in the white balance model. The colour parameters of 
the pictures were captured by Adobe Photoshop 2021, and 
L*, a*, b*, H* and S* values were recorded. Luminance (L*) 
ranges from 0 to 100 where 0 is black and 100 is white. 
Hue angle (H*) and saturation (S*) were also taken into 
account. Chrominance a* reflects the amount of redness 
(positive) to greenness (negative), while chrominance b* 
indicates the amount of blueness (negative) to yellowness 
(positive). The colour bars were generated by paint bucket 
tool of Adobe Photoshop 2021 using the aforementioned 
colour pararmeters.

Fresh leaves of S. oblata were washed and soaked in 
distilled water to moisten and set aside. The tissue was 
cut parallel along the cut of leaf with a double-sided blade. 
Subsequently, the slide was gently removed by a glass slide. 
It was observed and photographed pictures for recording 
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under the optical microscope (Olympus, CX33RTFS2). The 
magnification was 40 × 10 times.

First, 0.1 grams of fresh leaves were ground with a little 
liquid nitrogen. Then 5 mL of deionized water was added 
to form a solution. Leaf pH was determined by a thunder 
magnetic portable multi-parameter magnetometer (DZB-
712F).

Pigment extraction
Fresh leaves were divided into 0.1 g aliquot and ground 

into a powder with liquid nitrogen. Then, 5.0 mL of methanol 
solution was added and left in the dark for 48 h at 4 ℃ for 
phenolic extraction. 0.1 g fresh leaves were ground into 
powder with liquid nitrogen, and 10 mL 96% ethanol was 
added. The mixture was stored at 4 ℃ in the dark for 30 
h for chlorophyll and carotenoid extraction. During this 
time, the mixture was shaken and blended every 8 h to 
ensure adequate pigment extraction. After that, the extract 
was then centrifuged at 4000 rpm at 4 ℃ for 10 min, and 
the supernatant was collected and transferred to 15.0 mL 
centrifuge tube and stored at 4 ℃ for analysis.

Chlorophyll and carotenoid content determination
Ethanol extract with a 2.0 mL volume was used to 

determine the absorbance at the wavelengths of 470 nm, 
645 nm, and 663 nm. 96% ethanol was used as the blank 
control. The chlorophyll and carotenoid contents were 
determined using reported methods (Walibai et al. 2017). 
The calculation formulas are as follows:

Ca=13.95D663 – 6.88D645 (1)
Cb=24.96D645  – 7.32D663 (2)
Ca+b=Ca+Cb=6.63D663 + 18.08D645 (3)
Cx=(1000D470  –  2.05Ca  –  114Cb)/245 (4)
Chloroplast content (mg·g-1 FW)=C*V*/M/1000 (5)
(Note: D470, D645 and D660 are the absorbance of ethanol 

extract at 470 nm, 645 nm and 663 nm, respectively; Ca, Cb, 
Ca+b, and Cx are respectively the concentrations of chlorophyll 
a, chlorophyll b, total chlorophyll and carotenoid (mg·L-1); 
V is the constant volume of chloroplast pigment extract 
(mL), M is the weight of the sample (g).).

Polyphenol content determination
The total polyphenol content was determined by the 

Folin-Ciocalteu reagent method (Wolfe et al. 2003) with 
some modifications. Specifically, 0.5 mL sterilized primary 
water and 0.125 mL extract were added into a 10 mL 
centrifuge tube, and then 0.125 mL Folin-Ciocalteu reagent 
was added. After mixing the solution well and reacting at 
room temperature for 6 min, 1.25 mL 7% Na2CO3 solution 
and 3.0 mL sterilized primary water were added to the above 
mixture, which was mixed well and reacted again at room 
temperature for 90 min away from light. The absorbance 
of the mixture at 760 nm was measured and recorded. 

Meanwhile, the standard curve was made using gallic acid 
and the results were represented as (mg GAE·g -1 FW).

The total flavonoid content was determined by 
aluminum chloride (Li et al. 2014). First, 1.25 mL sterilized 
primary water and 0.125 mL extract were added into a 
10 mL centrifuge tube, followed by 0.075 mL 5% NaNO2 
solution and 0.15 mL 10% AlCl3 solution, which were 
thoroughly mixed and reacted at room temperature for 
6 min. Subsequently, 0.5 mL of NaOH solution (1 M) and 
0.275 mL of sterilized primary water were added. Finally, 
the absorbance of the reaction solution at 510 nm was 
measured and recorded. Meanwhile, rutin solution was 
used to make the standard curve and the unit of calculation 
was (mg RE·g-1 FW).

The total anthocyanin content was determined by 
the methanol-HCl method (Li et al. 2012) with minor 
modifications. 1.6 mL of extract solution was taken and 
added with 25.0 μL HCl (12 mmol·L-1). The reaction solution 
was mixed and then reacted at room temperature for 15 
min away from light. Finally, the absorption values of the 
reaction solution at 530 nm, 620 nm and 650 nm were 
measured by ultraviolet spectrophotometer and recorded. 
The standard curve was made using cyanidin-3-O-glucoside 
and the results were represented as (mg CGE·g -1 FW).

The calculation formulas of polyphenol contents are 
as follows:

Cp = 0.4144*OD760 + 0.0358, R2 =0.9999 (1)
Cf = 2.7888*OD510 – 0.1861, R2 = 0.9999 (2)
ODa = (OD530 – OD620)-0.1*(OD650 – OD620) (3)
Ca = 0.0345*ODa – 0.0028, R2 = 0.9992 (4)
The content =C*V*/M (5) 
(Note: D760, OD510, OD530, OD620, OD650 is the absorbance 

at 760, 510, 530, 620, and 650 nm, respectively. ODa is the 
anthocyanin absorbance calculated by removing chloroplast 
absorbance. C, namely, Cp, Cf, or Ca, is the concentrations 
of the total polyphenol, total flavonoid, total anthocyanin 
(mg·mL-1), respectively; V is the constant volume of pigment 
extract (mL), M is the weight of the sample (g).)

Analysis of phenolic metabolites
High Performance Liquid Chromatography coupled with 

a diode array detector (HPLC-DAD) was utilized to examine 
the types and quantities of phenolic metabolites within 
S. oblata leaves. The above-mentioned methanol extract 
was filtered through a 0.45 μm filter. HPLC-DAD analysis 
was performed using an LC-2030C Liquid Chromatograph 
(Shimadzu, Kyoto, Japan) equipped with an Inertsil C-18 
column (5.0 μm particle size, 4.6 mm inner diameter × 250 
mm length). HPLC-DAD separation was conducted by using 
a linear gradient of A (0.04% formic acid dissolved in water) 
and B (100% acetonitrile) solutions at 40 ℃ with a flow rate 
of 0.5 mL·min-1. The solvent gradient used was as follows: 
0 min, 5% B; 40 min, 40% B; 45 min, 100% B; then hold 
for 15 min. The post-run time was 10 min, as previously 
described by Han et al. (2022). The phenolic compounds 
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were determined by comparing their retention times and 
UV spectral data with those of the known standards. The 
phenolic metabolite contents were calculated using the 
corresponding standard calibration curves (Table S1).

Statistical analysis
Three biological replicates and three technical replicates 

were performed for all experiments, and the results were 
expressed as mean ± standard deviation (SD). IBM SPSS 
Statistics 26 was used to perform a One-Way Analysis of 
Variance (ANOVA). Origin 2021 was used to conduct the 
correlation analysis including Pearson’s correlation analysis 
and principal component analysis (PCA). Office Excel 2016 
was used to perform basic data analysis.

Results

Phenotypic characteristic changes in S. oblata leaves
The phenotypic changes of S. oblata leaves were observed 

in October 2022, when the air temperature declined and the 
daylength was shortened (Fig. 1A). From S1 to S7, there was 
a change in leaf colour from green to purple-red, as depicted 

in Fig. 1B. Specifically, the leaves were all green at S1, turned 
red from S2, and changed to all red at S5. After, the leaf 
colour was deepened and the leaf hardness was enhanced, 
showing features of leaf senescence (Fig. 2B). The abaxial 
leaf surface was green at all times (Fig. 2D).

The colour values of leaves were captured, and colour 
bars were plotted by software (Fig. 2A). Colour bars changed 
from green to purple-red from S1 to S7, which was consistent 
with the observed change in leaf colour. It is noteworthy 
that L* and b* values gradually decreased from 65 to 44 and 
from 44 to -1, respectively, whereas a* values increased from 
-25 to 31 during leaf colouration (Table 1). The leaf pH was 
stable from 6.06 to 6.60 during leaf senescence (Table 1).

Pigment distributions in leaf cells were observed under 
a microscope (Fig. 2C). Pigments mainly accumulated in 
the cells of upper epidermal and palisade tissue cells. At 
S1, chlorophyll was observed in palisade tissue and spongy 
tissue cells. Anthocyanin appeared in the palisade tissue 
cells at S2 when chlorophyll degradation was evident, and 
accumulated the most at S5. Besides palisade tissue cells, 
the anthocyanin was distributed in the upper epidermal cells 
from S5 to S7. However, the red colour of palisade tissue 
cells faded visibly at S6 and S7. Spongy tissue cells were 
green all the time and the lower epidermal cells showed no 
colour, which was consistent with leaf phenotypes.

Figure 1. The changes in environment factors and tree forms of Syringa oblata. (A) The daylength and air temperature in October in 
the study area. (B) The tree forms of Syringa oblata at different senescence stages. 
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Figure 2. The phenotypic characteristics of Syringa oblata leaves at different senescence stages. (A) The colour bars obtained from leaf 
pictures by Adobe Photoshop 2021. (B) The colour change process of upper leaf surface from S1 to S7. (C) The pigment distributions 
in leaf cell, and the magnification is 40 × 10 times. (D) The colour change process of lower leaf surface from S1 to S7.

Table 1. The colour values and cell pH of Syringa oblata leaves.

Stage L* a* b* H* S* pH
S1 65 -25 44 83 57 6.60±0.12
S2 62 16 19 19 36 6.37±0.08
S3 57 30 -1 339 37 6.22±0.05
S4 51 30 1 342 40 6.19±0.03
S5 51 27 1 343 37 6.09±0.04
S6 48 31 7 350 44 6.06±0.03
S7 44 29 5 347 44 6.17±0.04

Chlorophyll and carotenoid contents of S. oblata leaves
The contents of chlorophyll a and b decreased gradually 

with leaf reddening in autumn. Consistently, the total 
chlorophyll contents dropped from the maximum value 
of 0.88 mg·g-1 FW at S1 to the minimum value of 0.07 mg·g-1  
FW at S7 (Fig. 3A). Thus, the decline of the chlorophyll 
content was the major reason for the loss of green colour 
during leaf senescence.

Similarly, the carotenoid contents gradually decreased 
from S1 to S7, with a maximum value of 0.23 mg·g-1 FW to 
the minimum value of 0.024 mg·g-1 FW (Fig. 3B).

Polyphenol contents of S. oblata leaves
The total polyphenol and total flavonoid contents in S. 

oblata leaves were maintained at a high-level during leaf 
senescence (Fig. 3CD). Specifically, the total polyphenol 
contents first increased from S1 to S5 and then declined 
after S5. The highest content of 29.75 mg GAE·g-1 FW was 
found at S5, and the lowest content of 19.62 mg GAE·g-1 FW 
was detected at S1 (Fig. 3C). The total flavonoid content of 
leaves was unstable from S1 to S3 and declined gradually 
from S4 to S7. The highest level was detected at S4, reaching 
the value of 112.33 mg RE·g-1 FW (Fig. 3D).

https://creativecommons.org/licenses/by/4.0/deed.en
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Figure 3. The change trends of pigment contents in Syringa oblata leaves. (A) Total chlorophyll, chlorophyll a and b contents. (B) 
Carotenoid contents. (C) Total polyphenol contents. (D) Total flavonoid contents. (E) Total anthocyanin contents. All values are the 
mean±SE, and different letters represent significant differences (P < 0.05) at different senescence stages. (E) Pigment ratios of total 
anthocyanin, total chlorophyll, and carotenoid in leaves.

Total anthocyanin contents changed significantly during 
leaf senescence (Fig. 3E), evidently increasing from S2 to 
S5 (with the highest content of 0.55 mg CGE·g-1 FW), and 
falling at S6 and S7. These changes were in keeping with the 
pigment distribution pattern in leaf cells. Thus, anthocyanin 
accumulation might be the main factor accelerating leaf 
reddening.

Further, analysis of the ratios of different pigments in 
leaves (Fig. 3F) found that total chlorophyll content had 
the highest proportion in leaves at S1 and S2. However, 
total anthocyanin rapidly achieved the highest proportion 
from S3 to S7. Carotenoid ratios were the lowest compared 
with chlorophyll and anthocyanin ratios, indicating that 
this pigment might not contribute to the leaf colouration.

Phenolic metabolites of S. oblata leaves
Twelve phenolic metabolites in S. oblata leaves were 

detected by HPLC-DAD, including four anthocyanins and 
other polyphenols (Fig. 4A).

The anthocyanins detected in leaves included cyanidin-
3-O-arabinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-

rutinoside, and cyanidin (Fig. 4AB). Notably, delphinidin-3-
O-rutinoside and cyanidin contents increased significantly 
during leaf reddening, with their highest values of 0.99 and 
0.75 mg·g-1 FW, respectively, being at S7. Cyanidin-3-O-
arabinoside was the most abundant polyphenol detected in 
S. oblata leaves, and its contents gradually decreased from S1 
to S7. Cyanidin-3-O-rutinoside content remained constant 
from S1 to S7. As a result, the changes in cyanidin and 
delphinidin-3-O-rutinoside contents were highly correlated 
with the phenotypic changes in leaf colour.

Besides anthocyanins, other phenolic compounds 
were detected in S. oblata leaves, including taxifolin, 
isorhamnetin, apigenin, paeonol, resveratrol, syringic acid, 
p-coumaric acid, and salicylic acid (Fig. 4A). Among these 
polyphenols, taxifolin remained at high and stable levels 
during leaf senescence. Apigenin content increased evidently 
with leaf reddening, from 0.27 to 1.28 mg·g-1 FW. Similarly, 
syringic acid content was observed to increase from S1 
to S7, particularly at S5 and S7. Isorhamnetin, paeonol, 
p-coumaric acid, resveratrol, and salicylic acid maintained 
stable and low levels in leaves at all times.

https://creativecommons.org/licenses/by/4.0/deed.en
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Figure 4. The phenolic metabolites in Syringa oblata leaves. (A) The kinds and contents of phenolic metabolites. Different red colours 
represent compound contents, the darker the red explains the higher the content. (B) The contents of four anthocyanins. Values are 
the mean±SE, and different letters represent significant differences (P < 0.05) at different senescence stages.

Correlation analysis
Pearson’s correlation analysis was performed to reveal 

the relationships among pigments and colour parameters 
(Fig. 5). Values for L* and b* were negatively related to most of 
the phenolic compounds, such as delphinidin-3-O-rutinoside 
and cyanidin, but significantly and positively correlated with 
the total chlorophyll and carotenoid contents. In contrast, 
significant and negative correlations were found between 
a* values and chlorophyll and carotenoid contents, but 
positive correlations with the contents of total polyphenol, 
total anthocyanin, isorhamnetin, resveratrol, and salicylic 
acid. Besides, delphinidin-3-O-rutinoside and cyanidin 
were significantly and evidently correlated with apigenin, 
paeonol, syringic acid and salicylic acid.

A PCA model was established to evaluate pigment 
contributions to leaf colouration (Fig. 6; Table 2). Principal 
components (PCs) 1, 2, and 3 explained 64.73%, 17.11%, 
and 8.76% of the total variance, respectively, which 
contained most statistical data analyzed and could be 
utilized to comprehensively evaluate the pigment contents 
of S. oblata leaves. In PC1, the loading plots of a*, H*, total 
polyphenol, total flavonoid, total anthocyanin, delphinidin-
3-O-rutinoside, cyanidin, apigenin, isorhamnetin, paeonol, 
syringic acid, resveratrol, and salicylic acid were all positive 
and more than one. In contrast, the loading plots of L*, 
b*, S*, total chlorophyll, carotenoid, and cyanidin-3-O-
arabinoside were negative and more than one. These 
two groups were distributed on the left and right of the 
X-axis, respectively, indicating counterinfluence on leaf 
colouration. Consistently, the coefficients between PC1 and 
these indicators identified this result. In addition, PC2 was 

positively correlated with S*, taxifolin, and p-coumaric acid. 
Thus, the PCA results were similar to those of Pearson’s 
correlation analysis.

Discussion
The leaves of many plants change from green to yellow 

or red in autumn, which plays an increasingly important 
role in response to changes in the external environment and 
ornamental application. The contents and proportions of 
anthocyanins, chlorophylls, and carotenoids can influence 
leaf colour (Li W et al. 2022). Carotenoid contents accounted 
for a lower proportion in S. oblata leaves, and dropped during 
the leaf reddening process, indicating that carotenoid was 
not a major pigment for leaf reddening. Some yellow and 
orange autumn leaves were caused by carotenoid pigments 
unmasked by chlorophyll breakdown, but carotenoid 
concentrations steadily declined in both yellow- and red-
senescing leaves, being replaced by the accumulation of 
anthocyanins (Lee et al. 2003; Nakashima & Yamakita 2023).

A visible sign of leaf senescence is the de-greening 
caused by rapid chlorophyll degradation during chloroplast 
degeneration, and this process is often accompanied by 
the accumulation of anthocyanin pigments in the vacuole 
(Feild et al. 2001; Gao et al. 2016; Sui et al. 2017; Renner & 
Zohner 2019). Leaf colour of S. oblata changed significantly 
from green to red in autumn. The chlorophyll distribution 
gradually diminished, and anthocyanin distribution 
evidently increased in leaf cells from S1 to S7. Concurrently, 
the chlorophyll contents gradually decreased. In contrast, 
the contents of total polyphenol, total flavonoid, and total 
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anthocyanin increased significantly with leaf reddening. The 
changes of the total anthocyanin contents were consistent 
with the phenotypic characteristic, colour value a*, and 
red pigment distribution in leaf cells. The analysis of 
pigment proportions explained the roles of chlorophyll 
and anthocyanin during leaf reddening. Thus, the leaf 
reddening in S. oblata in autumn is largely determined 
by the combined effects of chlorophyll degradation and 
anthocyanin accumulation. Similar results were found in 
the senescent leaves of Pistacia chensisin and Acer pictum 
subsp. mono (Song et al. 2021; Lin et al. 2023).

In the temperate zone, decreasing day length and cooler 
temperatures induce the breakdown of leaf chlorophyll 
during senescence (Sui et al. 2017; Renner & Zohner 2019) 
and low temperature induces anthocyanin biosynthesis 
(Gazula et al. 2005). The air temperature decreased in 

October in the study area, which could induce chlorophyll 
degradation and anthocyanin accumulation during leaf 
senescence process of S. oblata. Though the content 
changes of chlorophyll and anthocyanin are in the opposite 
direction, some reports revealed that the protective role 
of anthocyanins as “sunscreens” on chlorophylls (Grace 
& Logan 2000; Feild et al. 2001; Nakashima & Yamakita 
2023). Given that anthocyanins strongly absorb blue-green 
light, anthocyanin accumulation may reduce the quality and 
quantity of light captured by chlorophylls and carotenoids 
as leaf senescence (Hoch et al. 2001; Moustaka et al. 2018). 
This mechanism may protect degrading chloroplasts from 
photo-inhibition during leaf senescence, give cells the 
opportunity to re-absorb nutrients before leaf abscission, 
and slow down the speed of leaf senescence (Ranjan et al. 
2014; Renner & Zohner 2019).

Figure 5. Pearson’s correlation analysis between colour values and phenolic metabolites of Syringa oblata leaves. Red colour represents 
positively correlation, green colour represents negatively correlation, and the darker the colour explains the stronger the correlation. 
* indicates significant correlation at P < 0.05, ** indicates extremely significant correlation at P < 0.01, and *** indicates extremely 
significant correlation at P < 0.001.
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Table 2. The loading plots and coefficients of PCA analysis. 

Extracted eigenvectors
Loading plot Coefficient

PC1 (64.73%) PC2 (17.11%) PC3 (8.76%) PC1 PC2 PC3
L* -1.74 0.53 0.09 -0.24 0.16 0.04
a* 1.73 0.56 -0.27 0.24 0.17 -0.12
b* -1.74 -0.48 0.13 -0.24 -0.15 0.06
h* 1.64 -0.32 0.45 0.23 -0.10 0.19
S* -1.11 -1.14 0.49 -0.16 -0.35 0.21

Total polyphenol 1.73 0.63 0.10 0.24 0.19 0.04
Total flavonoid 1.08 0.63 0.26 0.15 0.19 0.11

Total anthocyanin 1.46 0.44 0.77 0.20 0.13 0.33
Total chlorophyll -1.76 -0.46 0.37 -0.24 -0.17 0.16

Carotenoid -1.73 -0.55 0.36 -0.25 -0.14 0.15
Cyanidin-3-O-arabinoside -1.55 0.73 -0.54 -0.22 0.22 -0.23
Cyanidin-3-O-rutinoside -0.40 0.40 -1.45 -0.06 0.12 -0.63

Delphinidin-3-O-rutinoside 1.48 -0.78 -0.62 0.21 -0.24 -0.27
Cyanidin 1.65 -0.80 -0.10 0.23 -0.24 -0.04
Taxifolin 0.00 1.25 0.85 -1.83E-4 0.38 0.37
Apigenin 1.74 -0.41 0.24 0.24 -0.13 0.10

Isorhamnetin 1.65 0.13 0.01 0.23 0.04 0.00
Paeonol 1.73 -0.50 0.38 0.24 -0.15 0.16

Syringic acid 1.59 -0.78 -0.35 0.22 -0.24 -0.15
p-Coumaric acid 0.04 1.53 0.05 0.01 0.47 0.02

Resveratrol 1.81 0.24 -0.28 0.25 0.07 -0.12
Salicylic acid 1.88 0.05 0.01 0.26 0.01 0.00

Figure 6. Principal component analysis (PCA) 3D plot. PC1, PC2, and PC3 represent principal component 1, 2, and 3, respectively.
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Anthocyanins, belonging to polyphenols, are the major 
pigments helping S. oblata leaf colouration. However, there 
is little research on anthocyanin types in S. oblata leaves. 
Therefore, the anthocyanin types in leaves were evaluated 
to explore which anthocyanin played the key role on leaf 
colouration. Delphinidin-3-O-rutinoside and cyanidin 
contents increased as a whole from S1 to S7 and negatively 
correlated with the L* value. The results indicated that the 
changes of cyanidin and delphinidin-3-O-rutinoside contents 
were highly correlated with the phenotypic change of the leaf 
colour and they are the major anthocyanins contributing 
to the reddening of leaf. Cyanidin-3-O-arabinoside was the 
most abundant anthocyanin detected in S. oblata leaves, and 
its content decreased slowly with leaf senescence, which may 
lead to the decrease of total anthocyanin content at S6 and 
S7. Cyanidin-3-O-rutinoside contents were stable during the 
leaf colouration. Differently, delphinidin-3-O-rutinoside and 
cyanidin-3-O-rutinoside were more important than other 
anthocyanin in purple flowers of S. oblata, and changes in 
their content could influence flower colour change (Ma et 
al. 2022). The ratios of delphinidin glycoside and cyanidin 
glycoside may influence plant tissue colour, and the ratios 
were higher in purple tissues than in red ones (Katsumoto 
et al. 2007). This explains that the specific of anthocyanin 
distributions in different tissues caused the colour difference 
between leaves and flowers of S. oblata.

Anthocyanins are highly water-soluble and are a 
cationic sub-class of flavonoids, with their precise colour 
depending on vacuole pH and co-pigmentation processes 
with other flavonoids, hydroxycinnamic acids or metallic 
cations (Renner & Zohner 2019; Sun et al. 2022; Zhao 
et al. 2022). Among phenolic compounds detected in S. 
oblata leaves, apigenin and syringic acid contents increased 
with leaf reddening and distinctly positively correlated 
with delphinidin-3-O-rutinoside and cyanidin contents. 
Supramolecular pigments composed of cyanidins, apigenins 
and metal ions in a stoichiometric ratio decided cornflower 
petals colour (Deng et al. 2019). A cyanin isolated from Rosa 
hybrida formed a lactone ring with the gallic acid residue 
(Yoshida et al. 2009). These findings suggest that apigenin 
and syringic acid might be the anthocyanin co-pigments 
assisting leaf colouration. In addition, abundant phenolic 
compounds detected in leaves, for example taxifolin, which 
has extraordinary antioxidant and anti-inflammatory 
activities (Zhang et al. 2021). These results suggest that the 
leaves of S. oblata are a natural source of bioactive substances 
and inspire the reuse of fallen leaves for economic benefits.

In conclusion, this study demonstrated that leaf reddening 
of S. oblata resulted from anthocyanin accumulation and 
chlorophyll degradation. During the leaf colouration, the 
chlorophyll and carotenoid contents evidently decreased. 
In contrast, the total polyphenol, total flavonoid, and 
total anthocyanin contents significantly increased, which 
was consistent with the pigment distribution in leaf cells. 

Numerous phenolic metabolites were detected in leaves. The 
key polyphenols that turned leaves red were identified as 
delphinidin-3-O-rutinoside and cyanidin, whose contents 
significantly correlated with leaf colour values. Moreover, 
the contents of delphinidin-3-O-rutinoside and cyanidin 
were evidently positively correlated with those of apigenin, 
paeonol, and syringic acid, which could be the anthocyanins 
co-pigments.
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