ARTERY RECONSTRUCTION IN LIVER TRANSPLANTATION: THE BEST RECONSTRUCTION OF RIGHT HEPATIC ARTERY VARIATION

Reconstrução arterial no transplante hepático: a melhor reconstrução para variação da artéria hepática direita

Wellington ANDRAUS, Luciana BP HADDAD, Liliana DUCATTI, Rodrigo B MARTINO, Vinicius Rocha SANTOS, Luiz Augusto C D’ALBUQUERQUE

From Liver Transplant Unit, Gastroenterology Department, Clinical Hospital of São Paulo University, School of Medicine, São Paulo, SP, Brazil.

ABSTRACT – Introduction – Variations on the anatomy of the hepatic artery are common, with incidence of 20–50%. In liver transplantation, back-table reconstruction is often necessary for an easier and prompt arterial anastomosis and so, the use of arterial patches has been related to lower the incidence of complications. However, when a right hepatic artery variation from the superior mesenteric artery is present, the reconstruction occasionally produces twisting and flow problems. Methods - Is described a surgical alternative for right hepatic artery variation reconstruction using a Carrel-patch from the superior mesenteric artery. The patch is anastomosed with the splenic artery stump to allow vertical orientation and improve blood flow. Results: Among 120 liver transplants, four consecutive cases of right hepatic artery variation were reconstructed using this technique. All of them showed good flow and patency in postoperative period. Conclusion - The proposed technique proved to be an interesting alternative for the reconstruction of right hepatic artery variation in liver transplantation.

INTRODUCTION

In the general population, anatomic variation of hepatic arteries ranges from 20 to 50% in different series. Since the original paper done by Michels, several studies have followed him and developed classification systems for the anatomic variants of hepatic arteries. As a consequence, screening for these variations and a search for vascular reconstruction techniques to optimize the irrigation of the biliary tree and liver graft have taken place. Indeed, increased knowledge on three-dimensional anatomical position of these vessels and technological progress in vascular reconstruction have led to the development of techniques aiming to reestablish liver blood supply. Furthermore, interventional radiological studies have shown that vessel position is very important to the rheological behavior of several anatomical variants and to the reconstructions.
Thus, quality of reconstruction is essential to prevent arterial thrombosis that ultimately leads to graft loss.

In anatomical variations, when a replaced or accessory right hepatic artery (R/A-RHA) from the superior mesenteric artery exists, the reconstruction anastomosing the superior mesenteric artery with the celiac trunks occasionally produces twisting and flow problems. Therefore these authors attempted to develop a technical surgical alternative for R/A-RHA reconstruction to allow vertical orientation and benefit blood flow. This proposition was successful in attending these requirements and, in the authors point of view, is the best modality for reconstruction of these anatomical variations.

TECHNIC

First, the anatomical right hepatic artery is identified from the superior mesenteric artery. Then, liver arteries are carefully dissected while maintaining the integrity of the superior mesenteric artery branch to the liver (which often has a small diameter). Further, the small R/A-RHA branches to the pancreas are tied and sectioned to expose the artery to the liver.

A small trunk of the splenic artery is preserved to perform anastomosis with a patch from the superior mesenteric artery. A small splenic artery length is sufficient because the R/A-RHA’s length is always enough to permit this anastomosis. As a bonus such a procedure allows simultaneous pancreas procurement, because there is no need for a long splenic or mesenteric artery stump.

Next is made the section of superior mesenteric artery (5 mm in length on each side of the hepatic branch) and then longitudinally is opened the opposite side of the cylinder, to prepare a “Carrel-patch” with a 5 mm radially to the artery ostium. The Carrel-patch is then adjusted to fit the ostium of the splenic artery by removing the excess of the superior mesenteric artery around the branch.

Then is placed the superior mesenteric artery Carrel-patch on the splenic artery, checking its length and three-dimensional orientation to perform anastomosis without tension or torsion. These conditions are crucial in order to maintain the best flow. Anastomosis is performed with polypropylene suture 7-0 and checked for permeability and integrity by injection of preservation liquid to perform a flow test (Figure 1).

When performing arterial anastomosis on the patient, the positions of the superior mesenteric artery Carrel-patch and the splenic artery are also verified to maintain vertical orientation of the hepatic branches and ensure their normal flow.

Hepatic blood flow is assessed by Doppler ultrasound (Doppler USG) on postoperative days 1 and 5.
Following liver transplant, hepatic blood flow status was checked by performing Doppler USG on postoperative days 1 and 5. This imaging assessment confirmed patency of all hepatic arterial branches, indicating that the reconstruction method employed herein allowed good blood flow.

DISCUSSION

The proposed technique using superior mesenteric artery Carrel-patch in cases of R/A-RHA is an easy and effective method for reconstruction and is capable of promoting a straight position of these vessels after anastomosis. Moreover, it utilizes a Carrel-patch, a method shown to be related to lower incidence of arterial thrombosis. Further, this technique did not lead to torsion or kinking in the celiac trunk, and allowed the hepatic artery to form a “Y” shape with the R/A-RHA, similar to the natural bifurcation of the proper hepatic artery.

The high incidence of artery anatomical variations has required careful management to prevent injury or provide alternatives for reconstructions. The hepatic vascular anatomy has become particularly important given the increase in liver surgery and transplantation procedures. Because one of the most frequently encountered arterial variations is the presence of an R/A-RHA from the superior mesenteric artery, several authors have suggested alternatives to surgical reconstruction. However, no consensus exists about the best reconstruction technique in cases of R/A-RHA in liver transplant.

The authors think that the reconstruction technique using the splenic artery with a superior mesenteric artery Carrel-patch (Figure 1) has multiple advantages: 1) the caliber of the splenic artery is always bigger than the R/A-RHA, and it has always a good flow, especially in cirrhotic patients; thus a better flow arrives at its ostium and the anastomosis takes place with a bigger arterial caliber; 2) the use of superior mesenteric artery Carrel-patch allows an easier anastomosis without the need for branch caliber reduction; 3) when Carrel-patch is not used, the small caliber of the R/A-RHA creates a challenge for anastomosis because of the consequent disproportion with the caliber of the splenic artery; 4) in anatomical position, the celiac trunk turns posteriorly and the splenic artery is inferior and bottom-up in relation to the celiac trunk. After the aorta is divided and the celiac trunk is rectified, the splenic artery turns to the right, facing the accessory right hepatic branch, leading to a straight position after the anastomosis (Figure 2); 5) the length of the R/A-RHA is always sufficient to allow a short splenic stump anastomosis; 6) the anastomosis with the splenic artery leaves other options to perform the anastomosis at the recipient subject (aortal patch, celiac trunk, left gastric artery patch); 7) the celiac trunk remains in a straight position after the reconstruction to perform the recipient anastomosis; 8) only a short stump length is needed for the splenic artery and the superior mesenteric artery, which allows a simultaneous pancreas procurement because the inferior pancreatic arteries are at distances greater than 1cm from the R/A-RHA in most cases.

Although the use of splenic artery stump to anastomose R/A-RHA has been previously mentioned in some reports for R/A-RHA reconstruction, these authors are the first to describe the advantageous use of an superior mesenteric artery Carrel-patch technique in back-table vascular reconstruction. Carrel-patch is best known in vascular surgeries, but hepatic branch patches are also used in liver transplants during arterial anastomosis in the recipients, having been first described by Quinones-Baldrich et al. Furthermore, the use of “patches” liver transplantation is related to a low incidence of arterial complications, and the suture outside the ostium is easier for the surgeon.

CONCLUSION

Preliminary results show that reconstruction of the R/A-RHA with the superior mesenteric artery Carrel-patch directly to the splenic artery stump is a good anastomosis alternative, preserving blood flow, placing the reconstruction in an ideal three-dimensional position and maintaining the celiac axis for the final donor-recipient arterial anastomosis. For all these reasons this technique is recommend for R/A-RHA back-table reconstructions.

REFERENCES