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The c.63A>G polymorphism in the 
NKX2.5 gene is associated with 
thyroid hypoplasia in children 
with thyroid dysgenesis 
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ABSTRACT 
Objective: To search for genetic alteration in NKX2.5 gene in patients presenting both congenital 
heart disease (CHD) and TD. Subjects and methods: Individual phenotypes were carefully analyzed 
in 86 children with thyroid dysgenesis (TD) using thyroid function tests, scintigraphy, ultrasound 
and echocardiography. DNA was extracted and NKX2.5 gene coding region was amplified by poly-
merase chain reaction (PCR) and sequenced. Results: CHD were found in 8.1% of patients with TD. 
The mutation screening revealed two known polymorphisms in patients with isolated TD or TD as-
sociated with CHD. None of them are predicted to result in codon change in conserved domain. The 
c.63A>G polymorphism was detected in 54/86 patients (49 with isolated TD and 5 with TD combined 
with CHD). There was a significant association of c.63A>G polymorphism with hypoplasia (p < 0.036). 
The c.541G>A polymorphism was observed in only one patient with isolated thyroid hypoplasia. 
Conclusion: NKX2.5 mutations were not found. The c.63A>G polymorphism might be associated 
with thyroid hypoplasia. Arch Endocrinol Metab. 2015;59(6):562-7
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INTRODUCTION

C ongenital hypothyroidism (CH) occurs in 
1:3,500-1:4,000 newborns. In 80-85% of the 

cases, CH is due to thyroid dysgenesis (TD), which are 
developmental abnormalities of the thyroid gland in-
cluding thyroid ectopy, thyroid agenesis or athyreosis, 
thyroid hypoplasia, and thyroid hemiagenesis (1). Sev-
eral specific transcriptional factors, in view of their im-
portant role in thyroid organogenesis and thyroid spe-
cific gene expression, would be strong candidate genes 
for the etiology of TD; thus, the thyroid transcription 
factor 1 (TITF-1, also known as NKX2.1), forkhead 
box E1 (FOXE1) and the paired homeodomain factor 
PAX8 have been described as causes of human TD (1). 
However, abnormalities in these genes have been found 
in only a small proportion of patients with TD (2-5). 

NKX2.5 appears to function during the early period of 
organogenesis in the developing embryo. Murine Nkx2.5 
is expressed in early heart progenitor cells, as well as in thy-
roid, tongue, stomach and spleen (3,6,7). The NKX2.5 
transcription factor is known to be essential for normal 
heart morphogenesis, myogenesis and function (8,9). 
Several loss of function mutations in NKX2.5 (OMIM 
600584) have been described in patients with Congenital 
Heart Disease (CHD) and the most frequents one were 
atrial septal defect, ventricular septal defect and tetralogy 
of fallot (10,11). CHD has a higher frequency in children 
with CH than in the general population (11,12). Clinical 
interest in this gene have arised from the identification of 
heterozygous mutations involved in the pathogenesis of 
human TD, including a mutational screening conducted 
in 241 patients with TD in Italy, allowing identification of 
three mutations in four patients (7). 
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In mouse, Nkx2.5 expression has been recently 
demonstrated in precursors of thyroidal cells in the 
pharyngeal floor at embryonic day 8.5 (E8.5), a pe-
riod coincident with the appearance of Titf-1, PAX8 
and Pax8, but disappears around E12.5 (12). There-
fore, once Nkx2.5 mRNA is present in the thyroid pri-
mordium at an early stage of development, it might be 
required in normal thyroid morphogenesis. Nkx2.5-/- 
embryos exhibited a smaller outgrowing bud of endo-
dermal cells, indicating that Nkx2.5 is required as com-
ponent of the genetic control of thyroid development 
(7). These observations propose a functional impact of 
NKX2.5 on genetic pathogenesis of TD and motivate 
us to address the question if genetic abnormalities of 
NKX2.5 could play an important role in patients pre-
senting both CHD and TD or isolated TD. Our results 
indicate that no NKX2.5 mutations are not common 
in patients presenting TD, even in combination with 
CHD. However, the variant c.63A>G was significantly 
associated with hypoplasia. 

SUBJECTS AND METHODS

Subjects

Between 2001 and 2013 we have identified 1,051 new-
borns with CH in the neonatal thyroid screening pro-
gram of the State of Bahia, Brazil by dry blood spot 
TSH measurement collected after 24 hours of life from 
a heel prick (TSH cut-off 9 mU/L, Delphia Perkin-El-
mer immunofluorimetric assay). Within 24 h of a posi-
tive screening result, the neonates had a history and a 
physical examination performed and a blood sample was 
taken for confirmation of diagnosis [serum TSH and 
total T4 (TT4)] employing chemoluminescent assays; 
reference intervals are 6-12 mg/dL for TT4 and 0.3-4 
mU/L for TSH. After the confirmation of results, le-
vothyroxine (L-T4) replacement treatment, 10-15 mg/
kg/day, was started and L-T4 dosage was adjusted du-
ring infancy and childhood according to serum TSH 
and TT4. When the infants reach 3 years, they follow a 
protocol to determine if the CH is permanent or tran-
sient, consisting of serum thyroid function tests (TSH 
and TT4), thyroid 123I or 131I scanning, and thyroid ul-
trasound after 30 days of L-T4 therapy discontinuation. 
According to the results, children were divided into five 
groups: 1) ectopy, 2) agenesis, 3) hypoplasia, 4) hemia-
genesis and 5) normal eutopic thyroid gland or goiter. 
Eight hundred fifty one patients were confirmed for 

permanent CH, from which 710 have been followed in 
our institution. 

We have selected 86 patients with TD for clini-
cal and molecular studies. The cardiac phenotype was 
evaluated by history, review of medical records, physical 
examination, 12-lead electrocardiogram (EKG), and 
2-dimension transthoracic echocardiography. Family 
history of CHD and thyroid disease was investigated by 
chart report (i.e., clinical testing of parents was not per-
formed for the purpose of this study). Medical records 
of all patients were reviewed to determine whether any 
non-cardiac congenital malformations or other recog-
nized genetic syndromes were present. Clinical studies 
were performed without knowledge of genotype. Writ-
ten informed consent was obtained from the parents of 
all participants in accordance with protocols approved 
by the Federal University of Bahia.

Genotype analysis

Deoxyribonucleic acid was extracted from whole blood 
using standard techniques. The coding region of the 
NKX2.5 gene, including exon/intron boundaries, was 
amplified from genomic DNA by polymerase chain reac-
tion (PCR). The exon 1 were amplified using two pair 
of primers: 1F 5´-CTTGTGCTCAGCGCTACCT-3´ 
and 1R 5´-CTCCTGGCCCTGAGTTTCTT-3´. The 
exon 2 were amplified by a total of 2 PCRs with the 
following two pair of primers derived from the flanking 
introns: 2AF 5’-GCGCTCCGTAGGTCAAGC-3’, 
2AR 5’-TAGGGATTGAGGCCCACG-3’, 2BF 5’-CA-
GACTCTGGAGCTGGTGG-3’ and 2BR 5’-CCC-
GAGAGTCAGGGA-3’. 100 ng of genomic DNA was 
amplified in a 25-μL volume containing: 40 ng of each 
oligonucleotide primers; 200 μmol/L each of deoxya-
denosine triphosphate, and deoxythymidine triphos-
phate; 1,5 nM of MgSO4 and Taq polymerase. The 
reaction of exon 1 started with 5 minutes at 94C follo-
wed by 35 cycles of 30 seconds 94C, 30 seconds at 56C 
and 30 seconds at 72C and finished with a 10 minutes 
extension period at 72C. For the exon 2, all reactions 
started with 2 minutes at 95C followed by 35 cycles of 
45 seconds at 95C, 30 seconds at 59C or 60C, and 45 
seconds at 72C and finished with a 10-minute exten-
sion period at 72C. DMSO (0.2 mL/20-.L reaction) 
was added to standard reagents for the exon 1 and for 
the first reaction of exon 2. PCR products were purified 
with PureLink Quick PCR Purification kit (Invitrogen, 
Germany) and sequenced using the ABI PRISM Dye 
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Terminator cycle sequencing Ready Reaction kit (PE 
Applied Biosystems) according to the manufacturer’s 
instructions. Bidirectional sequencing was performed 
by an automated sequencer (ABI3100 genetic analy-
zer). Sequences were analyzed with Bioedit Software 
and alterations were examined in context of the open 
reading frame. One hundred normal individuals were 
screened for the identified sequence alterations. 

Statistical analysis

We used t test and Hardy-Weinberg test to estimate the 
differences in the frequency of NKX2.5 polymorphisms 
in our cohort and the general population and between 
each subgroup of TD. We built a two-way contingency 
table comparing the group of positive heart disease with 
each type of TD, thus we tested for dependence bet-
ween each categorization and patients without CHD. 
The association of subtype of TD or presence of CHD 
in each subgroup and NKX2.5 polymorphisms was 
analyzed by X2 (Fisher’s Exact Test).

RESULTS

Clinical observations

We found a high prevalence of CHD in patients with 
TD (7/86; 8.1%). Seventy nine infants presented with 
isolated TD (32 ectopy, 15 agenesis, 30 hypoplasia and 
2 hemiagenesis). The overall female:male ratio was 2:1 
(Table 1).

Five from seven patients with TD associated with 
CHD harbored the c.63A>G NKX2.5 polymorphism 
(Table 1). In family 1, the mother was diagnosed with 
autoimmune hypothyroidism. Her affected daughter 
(Patient A, Figure 1) was detected by neonatal screen-
ing, when the TSH level was 91.4 uIU/ ML. The ul-
trasound showed an agenesis, but the level of serum Tg 
was 4.5 ng/mL and the thyroid scan showed an ectopic 
gland (Table 1, Figure 1). In family 2, a male patient 
(Patient B) was diagnosed lately and the ultrasound de-
tected a hypoplastic thyroid gland (Table 1, Figure 1). 
In family 3 (Patient C, Figure 1), the neonatal TSH 
screening was 40 uIU/ML and a hypoplastic gland was 
confirmed by ultrasound. All the propositus from fami-
lies 1-3 presented atrial septal defect on cardiac evalu-
ation (Table 1, Figure 1). In Family 4, the proband 
(Patient D) had an absent thyroid gland by ultrasound 
associated with serum Tg levels of 17.3 ng/mL and 
an ectopic gland detected by thyroid scintigraphy. This 

patient had pulmonary stenosis (Table 1, Figure 1). 
The patient of family 5 (Patient E) was diagnosed with 
twenty-three days of birth and hypoplasia was observed 
by ultrasound (Figure 1, Table 1).

Table 1. Phenotype/Genotype summary in seven patients with TD 
associated with CHD

Patient Gender Thyroid
phenotype

Cardiac 
phenotype Polymorphism

1 Female Ectopy ASD c.63A>G

2 Male Hypoplasia ASD c.63A>G

3 Female Hypoplasia Lown-Ganong-
Levine 

Syndrom

No

4 Male Hypoplasia ASD No

5 Male Hypoplasia ASD c.63A>G

6 Male Hypoplasia AVB c.63A>G

7 Male Ectopy PS c.63A>G

ASD: atrial septal defect; PS: pulmonary stenosis; AVB: atrio-ventricular block.

Figure 1. Pedigrees of the five families with patients harboring the c.63A>G 
polymorphism associated with TD and CHD. All family members were 
analyzed. Squares, men; circles, women; open symbols, clinically unaffected 
individuals; solid black symbols, affected by hypothyroidism with ectopy or 
hypoplasia; half black symbol represent a individual with hypothyroidism.

Ectopy

Family 3

C
Hypoplasia

D
Ectopy

E
Hypoplasia

Family 4 Family 5

Family 1 Family 2

Hypoplasia
A B

Correlating NKX2.5 polymorphisms and clinical 
phenotype

We did not find any NKX2.5 mutation in patients with 
both TD and CHD or isolated TD. Table 2 shows the 
polymorphisms found. The known c.63A>G NKX2.5 
polymorphism was detected in heterozigozity in 33 
(38.3%) of patients and in homozigozity in 21 (24.3%) 
of cases (Table 2) (Figure 2). Among patients positive 
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for the c.63A>G polymorphism, 49 had isolated TD 
(18 ectopy, 24 hypoplasia, 6 agenesis, 1 hemiagenesis) 
(Table 2). The polymorphism c.63A>G was associated 
with hypoplasia (p < 0,036). 

A second polymorphism, c.541G>A was observed, 
in heterozigozity, in only 1 patient with isolated TD 
(Figure 2). A girl, diagnosed in neonatal screening 
(TSH 32.2 uIU/ML) presenting a hypoplastic thyroid 
gland.

DISCUSSION

Since NKX2.5 is one of the earliest transcription factors 
expressed in the thyroid lineage of developing vertebrate 
embryos and its targeted disruption results in perturbed 
morphogenesis, we hypothesized that it might be invol-
ved in TD etiology. The importance in human ontoge-

nesis was further underscored by recent identification of 
patients with NKX2.5 mutation associated with TD (7). 
In this study of 86 infants with TD detected by Neonatal 
Screening Program for CH, in Brazil, we hypothesized 
the possible contribution of NKX2.5 gene to the patho-
genesis of TD, firstly provided by Dentice and cols. (7). 

In our screening for germeline inactivating mutation 
in the NKX2.5 gene, in a group of DT patients without 
a family history, we observed no significant variation 
but a positive association between the c.63A>G poly-
morphism and thyroid hypoplasia as phenotype. 

This A → G polymorphism was previously detect-
ed in other studies and we have also found in normal 
subjects (13,14). Candidate gene mutations have been 
previously identified in familiar groups of CH, thus the 
patient’s selection may have played an important role 
because we analyzed patients selected from an entire 

Table 2. NKX2.5 polymorphisms identified among 86 patients with TD

Polymorphism Site Polymorphism type Allele frequency in patients Allele
Frequency in controls

c.63A>G

p.Glu21

rs2277923

TN domain Silent A/G 0.372

G/G 0.243

A/A 0.385

A/G 0.160

G/G 0.000

A/A 0.840

c.541G>A

p.Gln181

rs72554028

Homeodomain Silent G/A 0.012

A/A 0.000

G/G 0.988

G/A 0.000

A/A 0.000

G/G 1.000

Figure 2. Chromatograms showing the polymorphisms found in exon 2 of NKX2.5 gene. Top, Left: homozygous A-to-G transition at position 63 of codon 
21 in the NKX2.5 gene; top midle: heterozygous A-to-G transition at position 63 of codon 21 in the NKX2.5 gene; top right: wildtype sequence; Bottom, 
left: wildtype sequence; Bottom, right: heterozygous G-to-A transition at position 541 of codon 181 in the NKX2.5 gene.
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population, mostly sporadic cases. Our results indi-
cate that the mutation rate of NKX2.5 gene is rare in 
patients with TD, even in a phenotype-focused study 
from a different genetic background. In fact, a popula-
tion-based study in a Czech cohort of 170 patients with 
CH, including 15 with CHD, has not found mutations 
on NKX2.5 gene (15). Similarly a japanese study en-
rolling 102 patients, 37 with thyroid ectopy, did not 
find any mutations and confirms that NKX2.5 muta-
tions are rare (4). Indeed, a closer look at the italian´s 
publication shows that some unaffected parents also 
carried the c.73C>T variant, suggesting that it might 
be not disease-causing but perhaps only disease-predis-
posing (7).

 In Brazil, another study including 27 patients with 
TD without CHD, identified the same c.63A>G poly-
morphism in NKX2.5 gene (20). We might consider 
that hypothetical mechanisms such as epigenetic or so-
matic changes could cause the inactivation of this gene 
(13,16). It is still discussed if somatic nature and mosa-
icism of NKX2.5 mutations are major etiological path-
way in CHD because the results obtained from fresh 
frozen diseased tissue sample are different from data 
obtained from formalin fixed archival tissues (13,16). 
However, unknown genes, but functionally similar in 
the same embryonic path, might be involved in the 
pathogenesis of TD associated or not with CHD, as 
for example, the report indicating that deficiency of the 
T-box transcription factor Tbx1 results in hemiagenesis 
and hypoplasia of the thyroid gland due to a failure of 
the embryonic thyroid to establish contact with ves-
sels derived from the cardiac outflow tract at a criti-
cal step necessary for the proper guidance of bilateral 
growth and lobulation (2). Such genes may be either 
uniquely or differentially expressed and encode pro-
teins including ion channels and signaling molecules. 
Indeed, the initial induction of follicular thyroid cells 
has been shown to be associated with factors secreted 
by endothelial cells and may involve input from epi-
genetic mechanical factors (2). Recent data revealed 
that NKX2.5 was expressed in multipotent progeni-
tors during cardiac development, suggesting role in 
regulation of the endocardial/endothelial fate in the 
developing heart and embryo, although the molecu-
lar mechanisms are unknown (17). Thyroid formation 
begins at approximately embryonic day (E) 20-22 in 
the human when progenitors cells migrate through the 
primitive streak to the more caudal side of the embryo 
to form the thyroid gland (18). Although a cooperative 

action of NKX2.5 with other cellular factors could be 
essential for the maintenance of gene expression during 
thyroid embryogenesis, alternatively, loss of function 
of NKX2.5 can lead to a limited gradual diminution 
of a downstream target genes during development, 
without interfere at its initial regulation. As NKX2.5 
is expressed so early at thyroid bud, it can potentially 
interact with other crucial transcription factors and 
modulates their activity post-translationally by chang-
ing its dimerization process. 

In addition to the polymorphisms described in 
TD, many different heterozygous germline NKX2.5 
mutations have been identified in patients suffer-
ing from CHD (OMIM 600584). Those previously 
reported mutations associated with CHD are more 
primarily localized within the homeodomain. In this 
report, five of the patients positive for the c.63A>G 
polymorphism had a CHD phenotype. Although 
most published cases in CHD phenotype are in se-
quences affecting the homeodomain, there is no clear 
genotype-phenotype correlation. CHD of these pa-
tients with NKX2.5 germline mutations were mainly 
of atrial septal defect with or without AV block, al-
though there were reports of patients with tetralogy 
of Fallot, ventricular septal defect, double-outlet right 
ventricle, interrupted aortic arch, truncus arteriosus, 
L-transposition of the great arteries, hypoplastic left 
heart syndrome and aorta coarctation. So, the spec-
trum of NKX2.5 mutations is diverse in terms of mu-
tation type, position of the affected amino acid and its 
predicted impact on protein-protein interactions. In 
fact, experimental studies have shown that other por-
tions of NKX2.5, even far away from the homeodo-
main, are also functionally very important (21). The 
NKX2.5 gene from diseased cardiac tissues of patients 
with complex cardiac malformations typically contains 
multiple mutations (14). As well, thyroid growth de-
fect could be associated with single germilane muta-
tions or, alternatively, additional mutations arising in 
the hypoplastic gland could amplify the effect of the 
germinal polymorphisms. Therefore, studies in which 
there is only examination of lymphocytic DNA may 
not reveal the molecular basis of TD. 

NKX2.5 appears to be an unlikely candidate gene 
for CHD associated with TD. The molecular mecha-
nisms of TD with or without CHD are complex: while 
familial TD occurs at greater-than-random frequency, 
monozygotic (MZ) twins are discordant (19). We be-
lieve that germeline predisposing factors likely exist but 
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additional mechanisms are required to explain MZ twin 
discordance (somatic events, random mono-allelic ex-
pression even CNV – copy number variants).

 However, it is known that, in the heart, NKX2.5 
could have an essential role during the early thyroid 
morphogenesis, and might be implicated as a partner 
of the genetic circuit controlling thyroidal cell specifica-
tion and migration and have pointed to the importance 
of its dosage in thyroid development (20). Important-
ly, NKX2.5 mutations are known to be central to the 
genesis of CHD and, in this case, might be necessary 
but not sufficient for TD. NKX2.5 binding elements 
has been identified in a number of expressed genes and 
many other tissues as in lingual muscle, spleen, stomach 
and in the lung (21). 

It would be of interest to attempt to identify addi-
tional NKX2.5 downstream target genes and upstream 
signaling pathways for a more complete knowledge-
ment of its function during thyroid morphogenesis. 
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