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Abstract: Classification of viruses is an essential step before suitable treatment of a disease. In this work, a 
novel approach for the classification of virus texture from TEM images is proposed. Chebyshev moments are 
used to classify virus textures with the Pre-trained convolution neural networks. Resnet50 is a pre-trained 
deep learning model used to classify images into object categories. Chebyshev moments and the pruned 
features extracted from the last global pooling layer of Resnet50 are fused to improve the classification 
accuracy. The fused feature vector along with corresponding labels is used to train a multiclass Error 
Correcting Output Code (ECOC) classifier to give the output. The proposed approach is tested on a standard 
benchmark virus texture dataset. Peak, mean, and median classification accuracies are calculated and 
compared with the state of the art approaches. In addition, various other classification metrics i.e., sensitivity, 
specificity, Mathews Correlation Coefficient, and kappa are given to justify the validity of the proposed 
method. 80% of the image dataset is chosen for training and the remaining 20% for testing. A peak 
classification accuracy of 90.33%, mean accuracy of 86.99% and median accuracy of 86.66% is achieved. 
Superiority of the proposed method is justified with simulations. 

Keywords: Virus Texture classification; Chebyshev Moments; ECOC Classifier; Resnet50; Convolutional 
Neural Network. 

INTRODUCTION 

Detection and classification of viruses is a crucial step before suitable treatment of a disease. Imaging 
of viruses is not possible with commercial digital cameras as their size is very small. An expert needs to use 
a microscope for it. Transmission Electron Microscope (TEM) is used for imaging the viruses. Negative stain 
TEM [1] is more suitable for early diagnosis of virus. Different viruses have a different texture which is used 
to distinguish between them. Even though the type of virus can be identified by visual means through a 

HIGHLIGHTS-  
 

• Classification of virus texture based on pre-trained CNN and ECOC classifier is proposed. 

• Model accuracy improved using Chebyshev moments and the pruned features of Resnet50. 

• The proposed algorithm outperformed in terms of classification accuracy. 
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microscope, it requires a lot of experience and skill. In this regard, an automatic virus classifier is very useful. 
Here, Machine learning techniques are deployed to simplify the task of classification.  

The sizes and shapes of the viruses vary from one category to the other. Mere sizes and shapes may 
not be sufficient to distinguish. In addition, if texture information is used then the classification task would be 
more effective. There are many works in the literature addressing the problem of texture analysis and the 
texture descriptors. Gabor filters, image moments, Haralick features, GLCM features and Local Binary 
Pattern (LBP) are some well-known features used in the texture analysis. Kylber and coauthors [1] have 
demonstrated the power of two local and two global texture descriptors in identifying the type of virus in the 
virus texture dataset. They have proved that a multi scale extension (MSE) and the radial density profiles 
(RDP) in Fourier domain do a better job than standard LBP. They have used a Random Forest classifier for 
classification. They have given an RDP measure and a variant of LBP, Local Binary Pattern Filtered (LBPF) 
and analysed textures of virus texture dataset for both object level and fixed scale datasets. A mean accuracy 
of 73.8% is reported on the object scale dataset. 

Loris Nanniand coauthors [2] used various texture descriptors for image classification. They included 
quinary coding of LBP variants, an approach based on co-occurrence matrix, and ensemble of local phase 
quantization variants with ternary encoding. On the object scale dataset, they have achieved a mean 
accuracy of 80.7%.There are many works [3-5] on virus images in the literature. 

J Y Ren and X J Wu [6] have proposed a novel image descriptor known as Covariance Descriptor (CovD) 
for representing the image. CovD encodes the second order statistics of the features extracted from the 
image pixels. They have tested the performance of CovDs on UIUC material dataset, Virus texture dataset, 
and human face recognition. The best accuracy obtained on virus texture dataset was 79.4±3.3%. 

K X Chen and coauthors have improved the CovD by extending from Euclidean space to Semi Positive 
Definite (SPD) manifold. It is a low dimensional and more discriminative as claimed by the authors of [7].  
These descriptors were tested on Cambridge hand-gesture (CG) dataset, ETH-80dataset, MDSD dataset 
and Virus cell dataset. For the virus cell dataset, the best accuracy obtained was only 77.93±5.03%. Instead 
of considering full dataset, a subset of dataset was chosen at random. This is obtained for the Log-Euclidean 
framework based arc-cosine kernel (LogE.Arc kernel). 

MATERIAL AND METHODS 

Image moments in Classification 

Image moments are used in many diversified fields of computer vision, object recognition, and shape 
extraction. Both orthogonal and non-orthogonal moments [8] are available and have been used in image 
processing applications extensively. Orthogonal moments are able to remove the redundancy. Hence, 
orthogonal moments are preferred over non-orthogonal moments. Some of the moments are discrete ones 
and others are continuous ones. Zernike moments, Legendre moments, Chebyshev moments, Jacobi 
moments, Gaussian Hermite moments are orthogonal moments. Chebyshev moments are the moments 
obtained from the Chebyshev polynomials. For higher order moments, numerical instability in the computation 
of moments is a problem. Mukundan [9] has proposed an orthonormal version of Chebyshev moment 
computation even at the higher order and is briefed here. 

Chebyshev moments are generated from the Chebyshev polynomials. One important property of the 
Chebyshev moments is that they preserve the orthogonality even in the discrete case.  As this property is 
useful in the characterization of regions, they are suitable for texture analysis [10][11][12]. 2D Chebyshev 
moments [8] of a digital image are calculated as follows. 
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It is easy to compute the Chebyshev moments as per the equation (1). However, the computation of 2D 

Chebyshev moments,
mnT  leads to erroneous results when the size of the image is large. A procedure for 

computation of higher order discrete orthogonal Chebyshev moments by constructing orthonormal version of 
Chebyshev polynomial is used for texture analysis. The feature vector is formulated from the Chebyshev 
moments after discarding the dc component.  
 
 
Resnet50 Architecture 

There are many pre-trained deep learning models and Convolutional Neural Networks (CNN) available 
for extracting the features of the images. Alexnet, Googlenet, Squeezenet, Resnet18, Resnet50, 
Inceptionnet, and Mobilenetv2 [13][14] are some examples under this category.  Rather than considering a 
typical CNN architecture and training it from the scratch for the given dataset, utilizing a pre-trained CNN is 
a popular approach. Most of the pre-trained CNNs are trained on ImageNet dataset. There are millions of 
images in the ImageNet dataset. The number of object categories is 1000. Wide varieties of objects are there 
in the dataset. Resnet50 [15][16] is a 50 layers deep neural network. Hence, wide variety of features from 
various objects is already learnt by the Resnet50 network. 

Resnet50 accepts 224×224 size images as input. Hence, images of both training and test dataset must 
be resized to 224×224 before applying to Resnet50.  Extracted features from lower level layers represent low 
level features. Deeper layers extract high level features. Pooling layers are used for feature vector size 
reduction. In 5 stages, it has 48 convolutional layers, 1 max pooling layer and one global average pooling 
layer. Its architectural details are shown in Figure 1. Approximately twenty three millions of trainable 
parameters are there in Resnet50. 

The ResNet-50 model consists of a convolution and Identity block in each stage. There are three 
convolution layers in each block. Input activation dimension and output activation dimension is same in 
identity block and is not the case with the convolution block. A two dimensional convolution layer is there in 
the short cut path of convolution block and is absent in the identity block. 
 
 

Virus Texture Dataset v.1.0 

The Virus Texture Dataset v.1.0 [1] consists of TEM images of various types of virus. There are 1500 
images in the dataset. 15 categories/classes are there. Resolution of the images is 41×41. All are grayscale 
images. The diameter is relatively constant within a virus type. Shape of the virus ranges from icosahedral to 
highly pleomorphic. The pixel sizes used for imaging are from 0.5 to 5 nm. There is a sampled version also 
in the dataset. Both 16 bit and 8 bit images are there. There are known under fixed scale and object scale.  
Size of a pixel is 1 nanometer in fixed scale and20 pixels are used to represent the virus in the object scale. 

In the present work, the object scale dataset is used and is shown in Figure 2. Sample images from one 
class ‘Dengue’ are shown in Figure 3. 
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Figure 1. Resnet50 Architecture 
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Figure 2. Sample Images of each category from virus texture dataset 

 

     
 

Figure 3. Sample images from the Dengue Class images 
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Proposed Algorithm 

The proposed algorithm uses Resnet50 which is a Pre-trained convolution neural network and 
Chebyshev moments for the classification of virus texture from TEM images. The virus image dataset is 
divided into two parts. Part1, 80% of the image dataset, is chosen for training and the remaining 20% as 
part2 for testing.  70%, 30% and 75%, 25% are the other possibilities the splitting the data. For an image of 
size N×N, Chebyshev moments of size 2N-2 are computed for all the images in training dataset. First feature 
vector is formed from this. The images are then resized to 224×224 and applied to Resnet50 as it accepts 
224×224 images only. All the training images are applied to the Global Average Pooling layer of the Resnet50 
network. Second feature vector is obtained. Both the feature vectors, i.e., from the moments and from the 
Global Average Pooling layer are concatenated so that a final feature vector is obtained which is used for the 
classification.   

An Error Correcting Output Code (ECOC) classifier [17] is trained with these features vectors along with 
the corresponding labels. The hyper parameters are chosen so as to maximize the classification accuracy. 
As the classification of virus texture dataset is a multiclass problem, ECOC classifier is chosen. In ECOC, 
the multi-class [18][19][20][21] problem is divided into various binary class problems. It requires coding and 
decoding. A basic binary learning mechanism is also required.SVM, KNN, and Linear Discriminant are some 
of the popular examples for binary learners. In this work, SVM binary learner is chosen. Results of predictions 
on binary learner are aggregated in ECOC. 

Chebyshev moments and the feature vector from the last Global Average Pooling layer are calculated 
for the test dataset also. The two features are concatenated and given to the trained ECOC classifier. Various 
binary losses can be considered while predicting with ECOC classifier. The outline of the proposed algorithm 
is shown as a flow chart in Figure 4. 

There are many choices that can be used in the ECOC classifier. The type of basic binary learner& 
kernel in the binary learner, coding, decoding, and the binary loss function in the prediction are few options 
to quote. The overall classification test accuracy does depend on the selection of these parameters. One can 
use optimization strategies for selection of these parameters or fine tune manually. There are many 
combinations of selections and hence it is difficult to obtain the best manually. Hence, optimization is 
preferred.   
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Figure 4. Flow chart of the proposed algorithm 

RESULTS 

Simulations are carried using MATLAB R19b software. The system configuration consists of an i3 
processor with 8 GB RAM with no GPU. The size of the images in the virus texture dataset is 41×41. Hence, 
the size of the feature vector obtained from the Chebyshev moments is 80 (2×41-2). Size of the feature vector 
obtained from the Global Average Pooling layer of Resnet50 is 2048. However, in the process of fine tuning, 
the size of the feature vector is restricted to 2000 by removing the last 48 features. Hence, the total size of 
the feature vector is 2080. There are total 1500 images in the virus texture dataset. 1200 images are chosen 
for training the classifier and 300 images are used in the testing process. 

Various binary classifiers can be used in the multi class classification using ECOC. A classification 
accuracy of 75% with KNN, 77.33% with discriminant classification, 88.33% with linear classification and 
62.33% with tree classification are obtained. The best classification accuracy is obtained with SVM learners 
i.e. 90.33%.  

Choosing the type of binary learner loss function is also crucial while predicting the labels of the test 
dataset. The best test classification accuracy of 90.33% is obtained when the binary loss function is chosen 
as ‘hamming’. Let us assume that  jy  is a class label for a particular binary learner (in the set {–1,1,0}) and 

js is the score for observation j , then  ),( jj syg  denotes the binary loss associated with the binary learner 

and is given by [1 – sign( jjsy )]/2 .The other binary learner loss functions (and their classification accuracies 

given in brackets) that are popular are Binomial deviance (89.33%), exponential (86%), hinge (89%), linear 
(73.33%), and logistic (84.33%) functions.  

Ten iterations are carried, as the random selection of training and testing images affects both the training 
and testing classification accuracy. For the 10 iterations, the testing classification accuracies are shown in 
Figure 5. The highest classification accuracy obtained is 90.33%.  

 
Figure 5. Classification accuracy versus Number of iterations 

The mean accuracy is 86.99% and the median accuracy is 86.66%.It may be inferred that, out of 15 
classes, 4 classes (Adeno virus, Astro virus, Papilloma, Rota virus) were accurately classified without any 
misclassified samples. Next best ones are ‘Marburg’, ‘Orf’, and ‘West Nile’ with one misclassified sample. 

From the Figure 6, the performance of the classifier on ‘Dengue’ class is not that good. Seven samples 
are misclassified. As the data set is a multiclass one, the performance measures given here are averaged 
across all the classes. Various classification metrics are computed and are given in Table 1. 

82

83

84

85

86

87

88

89

90

91

1 2 3 4 5 6 7 8 9 10

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Number  of Iterations

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Bhuma, C.M.. and Kongara, R. 7 
 

 
Brazilian Archives of Biology and Technology. Vol.65: e22210636, 2022www.scielo.br/babt 

 
 

Figure 6. Confusion matrix for the test data 

 

 

 

Table 1. Computed values of various classification metrics 

Parameter Value 

Accuracy 0.9033 

Error 0.0967 

Sensitivity 0.9033 

Specificity 0.9931 

Precision 0.9067 

False Positive Rate 0.0069 

F1 Score 0.9024 

Matthews Correlation Coefficient 0.8970 

Kappa 0.2232 

 
 
 

The results obtained with the proposed algorithm are compared with the existing works in the literature 
and are shown in Table 2.Classification accuracy of the proposed method is better in comparison with the 
existing methods [6][7]. 

The performance of the proposed algorithm is obtained with different Resnet architectures like Resnet18, 
Resnet34, Resnet50, Resnet101 and Resnet152. Results are shown in Figure 7. It is observed that the 
performance with Resnet50 is better than the others. 
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Figure 7. Classification accuracy verses iteration number with Resnet18, Resnet34, Resnet50, Resnet101 and 
Resnet152. 

The feature vector obtained from the Chebyshev moments and the feature vector obtained from the 

Global Average Pooling layer of Resnet50 are fused (Concatenated) to improve the performance of the 

proposed method. In this fusion process, there are two cases. In case 1, full features obtained from the 

Resnet50 are used. In case 2, the last insignificant features are removed. These removed features are known 

as pruned features. The process of removing insignificant features is called pruning. 

From the Figure 8, Figure 9 and Figure 10, it is observed that the performance of the proposed method 

is better with the fusion of Chebyshev moments and pruned features of Resnet50. 

 

 
 

Figure 8. Classification accuracies with Chebyshev Moments, Resnet50 and Fused full features. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Bhuma, C.M.. and Kongara, R. 9 
 

 
Brazilian Archives of Biology and Technology. Vol.65: e22210636, 2022www.scielo.br/babt 

 
Figure 9. Classification accuracies with Chebyshev Moments, Resnet50 and Fused pruned features. 

 
Figure 10. Classification accuracies of Fused features with pruning and without pruning. 

DISCUSSION 

An algorithm for effectively classifying the TEM images of virus particles is presented in this work. To 
analyse the texture content present in the virus structure, the fusion of Chebyshev moments and the high 
level features extracted from the deeper layers of Resnet50 are considered. With appropriate choosing of the 
classifier, kernels, binary loss function in the prediction, it is possible to classify the texture data of virus 
images with good accuracy. Peak classification accuracy of 90.33% is achieved with the proposed work. A 
mean accuracy of 86.99% is achieved with a strategy of 80% training and 20% testing.  Consistent results of 
more than 85% classification accuracy are achieved even when the entire data is randomly shuffled. This 
proves the robustness of the features obtained from the Chebyshev moments and the deeper Resnet50 
features. Significance of the proposed methods lies in the usage of the traditional image moments with the 
CNN features. Traditional image moments i.e., Chebyshev moments are able to capture the shape and 
texture very well with limited number of features. Hence, CNN features can be supplemented with the image 
moments to have higher classification accuracy. 

CONCLUSION 

A novel approach is proposed for the classification of Virus texture data which is useful in disease 
treatment. Fusion of Chebyshev moments and pruned features of ResNet50 effectively improves the 
classification accuracy. Compared to the state of the art works, the proposed algorithm performs better in 
terms of classification accuracy both in mean sense and peak sense. Further improvement can be achieved 
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with the extraction of low level and middle level features from Resnet50 and by fine tuning the feature vector 
selection. Further work can be done in the direction of utilizing the meta heuristic optimization algorithms in 
the selection of appropriate layers from Resnet50 for effective classification. 
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