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HIGHLIGHTS 
 

• A novel multi-objective optimization algorithm is proposed for simultaneous feature selection and gene 
data clustering. 

• An efficient feature selection approach is utilized for relevant feature subset in gene data clustering. 

• An approach based on simulated annealing is employed to simultaneously optimize three objective 
functions. 

• The obtained Clustering results are proven superior to nine other existing clustering techniques.  

Abstract: Clustering algorithms play a crucial role in identifying co-expressed genes in microarray data, while 
feature subset identification is equally important when dealing with large data matrices. In this research paper, 
we address the problem of simultaneous feature selection and gene expression data clustering within a multi-
objective optimization framework. Our approach employs the Archived multi-objective simulated annealing 
(AMOSA) algorithm to optimize a multi-objective function that incorporates two internal validity indices and a 
feature weight index. To determine data point membership in different clusters, we utilize a point symmetry-
based distance metric. We demonstrate the effectiveness of our proposed approach on three publicly 
available gene expression datasets using the Silhouette index. Furthermore, we compare the clustering 
results of our approach, unsupervised feature selection and clustering using Multi-objective optimization 
framework (UFSC-MOO), to nine other existing techniques, showing its superior performance. Statistical 
significance is confirmed through Wilcoxon Rank Sum test. Also, biological significance test is employed to 
show that the obtained clustering solutions are biologically enriched. 
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INTRODUCTION 

Classification and Clustering are the major areas of machine learning that captivate researchers for in-
depth study and application. The classification techniques are widely applied for text classification [1-6], 
sentiment analysis [7-9], sarcasm identification [10, 11], evaluation of reviews by multiple instructors [12], 
and many more. The clustering technique groups the data based on similarity in implicit property of data. 
However, Classification and clustering become a challenging task for high dimensional data because of high 
computational complexity. To this end, multiple meta-heuristic feature selection schemes are proposed for 
classification. Xue Yu and coauthors [13] addresses the problem of feature selection in large scale feature 
set for classification. For this, they designed a self-adaptive particle swarm optimization (SaPSO) algorithm 
for feature selection with multiple candidate solution generation strategy (CSGS) that outperforms various 
competing techniques in terms of classification accuracy. Besides, Song X.F. and coauthors [14] also 
addresses the aforementioned challenges of high dimensional data set, thereby designed an algorithm based 
on correlation-guided clustering and particle swarm optimization showing competing accuracy. Inconsistent 
data holding missing values or noisy data in large data set may lead to local optimum solutions. To this end, 
particle swarm optimization based feature selection using fuzzy clustering [15] is employed for class 
imbalance problem. Besides, consensus clustering can be utilized to handle imbalanced class data by 
applying undersampling approach to majority class [16]. Deep learning approaches like Recursive Neural 
Network [17] and Evolutionary algorithm like genetic algorithm [18] are also employed for extracting relevant 
features for sentiment classification. Here, high dimensional data such as gene expression dataset is typically 
represented as a large matrix, where each row corresponds to gene expression levels and each column 
represents different experimental conditions or samples. Thereby, Microarray data clustering poses a 
significant challenge due to its high dimensionality, high computational complexity and the need to capture 
the behaviour of thousands of genes simultaneously. Additionally, appropriate sample selection can aid in 
visually representing gene behaviour across various experimental conditions. So, feature selection is a crucial 
step in microarray data clustering to achieve precise and meaningful visual representations of gene 
interactions. Mostly feature selection approaches employ wrapper method that may hold certain limitations- 
the requirement of class information, commonly based on single validity measure, unable to retain diverse 
solutions and hence, cannot avoid local optima [19]. With this view, several feature selection methods [20] 
for gene expression data analysis are pointed by researchers. To this end, the top ranked features are 
selected by using- the pipelining framework of attribute clustering and feature ranking techniques [21]; the 
hybrid approach based on the ReliefF filter method and a novel meta-heuristic Equilibrium Optimizer (EO) 
[22]; the threshold based sample selection decided using the division operation of relational algebra [23]. 

While clustering approaches applied to reduced sample spaces have shown promising results still, they may 
fall short when dealing with symmetric, overlapping, and high-dimensional data, particularly when optimizing 
a single objective function [24, 25]. Also, these approaches may find difficulty in avoiding local optimal 
solutions. To overcome this issue, various multi-objective approaches have been proposed for simultaneous 
feature selection and clustering. Prakash J. and coauthors [26] proposed a multi-objective based gravitational 
search and K-means algorithms for simultaneous feature selection and clustering. Here, K-means is 
employed for centroid initialisation; though this approach has shown encouraging results, it faces high 
computational cost. Hancer E. and coauthors [19] contributed by using a multi-objective differential 
evolution technique based on variable-string length encoding scheme and have shown promising results for 
real world data set. More recent research work for simultaneous feature selection and gene data clustering 
employing the different techniques includes- fuzzy clustering using non-dominated sorting genetic algorithm 
II and multi-objective evolutionary algorithm based on decomposition [27]; Co-expressed genes identification 
using Archived Multi-objective Simulated Annealing [28]; transcriptome-wide time series expression profiling 
[29]; multi-view clustering  using ensemble technique [30]; a-Priori Biological Knowledge in clustering [31]. 
Further, Focussing on the need to deal with noisy constraints in constraint set of gene data, Wang Z. and 
coauthors [32] proposed the multi-objective clustering algorithm using semi-supervised learning, based on 
selection of constraints and multi-source constraints integration. Apart from clustering, several meta-heuristic 
approaches are embedded for feature selection and classification in bio-medical domain as well; utilization 
of cuckoo search for feature subset selection to increase the accuracy of Naive Bayes classifier [33]; artificial 
ant colony optimization with naive bayes classifier for classification of cancer while, cuckoo search is applied 
for feature subset selection [34]; A hybrid approach using cuckoo search (CS) for minimising the number of 
elected genes  and increasing the performance of Naive bayes classifier [35].  
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In the previous studies, clustering methods applied to reduced sample spaces have demonstrated 
potential. However, they may fail short when dealing with complex data scenarios like symmetry, overlap, 
and high dimensionality, particularly when optimizing a single objective functions. In light of these 
observations, multi-objective clustering approaches have emerged, aimed at obtaining optimal clusters from 
gene expression data. However, there remains a gap in the literature regarding the simultaneous resolution 
of feature selection and clustering challenges within a multi-objective optimization framework.  Motivated by 
this observation, we propose an approach that formulates the problem of sample selection and clustering as 
a multi-objective optimization problem with preserving the biological significance of gene clusters. To optimize 
multiple objective functions, we employ a simulated annealing-based multi-objective optimization method 
called AMOSA [36]. This approach is a response to the limitation of conventional methods that overlook 
certain data characteristics. 

Our proposed approach UFSC-MOO, tackles the task of multi-objective clustering and feature selection. 
Here, we encode cluster centers and features as intermediate solutions and use AMOSA to simultaneously 
optimize the Sym index [37], XB index [38], and feature weight index. This optimization process aims to 
identify the Pareto-optimal front [36], which represents a set of non-dominating solutions. These solutions 
correspond to different cluster centres and combinations of samples with respect to genes, ultimately leading 
to well-separated gene clusters. To obtain symmetrical and compact clustering solutions, the assignment of 
data points to different clusters is determined based on point symmetry based distance measure [39]. To 
evaluate the performance of UFSC-MOO, we conduct experiments on three publicly available gene 
expression datasets. Further, we compare the clustering results obtained using UFSC-MOO with nine other 
popular existing clustering approaches, including FCM [40], MO-fuzzy [41], MOGA [42], SGA [43], SOM [44], 
Hierarchical average linkage clustering [45], CRC [46], K-mean [47], and Spectral clustering [48]. The 
performance of UFSC-MOO is assessed using the silhouette index. Additionally, we employ wilcoxon rank 
sum test [49] and biological significance test [50] to demonstrate the statistical significance and biological 
significance of the gene clustering results obtained through our proposed technique, UFSC_MOO. In the end 
of this research, the contribution of all authors is equally important. P.G. designed the study, analysed and 
interpreted the data, implemented the algorithm, validated the results statistically, compared the results to 
other existing techniques, drafted the manuscript  and; A.A. contributed in supervision of experiments, result 
validation, paper proofing, concept validation; and V.S. made contributions in  critical revision of the 
manuscript, supervision of experiments, providing administrative, technical and material support. 

MATERIAL AND METHOD 

In the present section, we discuss the proposed multi-objective approach (UFSC-MOO) for simultaneous 
feature selection and gene expression data clustering. The experimental set up for simulation of proposed 
methodology is given as- the data pre-processing steps, the computation of fitness function (Sym index, XB 
index and feature weight index), implementation of the AMOSA underlying multi-objective optimization 
technique, and various parameter settings are integrated within the C environment. Statistical significance 
tests and all the visualizations, such as the Eisen plot and cluster profile plot for gene expression data analysis 
are conducted using the Matlab environment. Biological significance tests are performed using the Gene 
ontology tool [51]. 

Problem Statement 

Let the gene data matrix is given by X = {X̅j: j=1, 2….n} where, X̅j is represented as a D-dimensional 
vector. Here the goal is to assign data points to K distinct clusters by determining the membership value Zkj , 

which represents the degree of membership of jth point to kth cluster given as, ∑  𝐾
𝑘=1 ∑ Z𝑛

𝑗=1 kj = n. Secondly, 

including the entire given feature set in clustering may lead to curse of dimensionality. So, projecting the D-
dimensional feature space into F-dimensional feature space while, gratifying the various cluster quality 
measures is posed as the multi-objective optimization problem here. Further, the proposed work can be 
mathematically formulated as below: 

Input: The input is taken as a set of n number of data points given by X= {X̅j: j=1,2….n}, where X̅j is represented 
as a D-dimensional vector. 
Optimization framework: The multiple cluster validity measures are optimised simultaneously according to 
search strategy of AMOSA [36], a multi-objective optimization approach. 
Output: The objective is to output an efficient feature subset F such that, F <=D and clustering is performed 
on the selected F features for the given gene data set to be partitioned into K different clusters. The 
membership matrix Z with dimension K X n is generated dynamically, that represents the membership value 
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of data points to the particular cluster. Here, K is the number of clusters and n is the total number of data 
points. The membership value is given by, 
 

∑  K
k=1  ∑ Zn

j=1 kj = n,                                                            (1) 

 
Where, If Zkj = 0, then jth point is not a member of cluster k 
             If Zkj = 1, then jth point is member of cluster k 
 
 

Proposed Approach: UFSC-MOO - Simultaneous Unsupervised Feature Selection and Clustering in 
a Multi-Objective Optimization framework  

In the present section, we have discussed the step-by-step working of proposed algorithm, UFSC-MOO. 
Here, three objective functions are optimised simultaneously utilizing AMOSA [36]. Consequently, we obtain 
a solution set comprising several dominating and non-dominating solutions. These non-dominating solution 
set form a Pareto-optimal front. Figure 1 shows the stepwise procedure of UFSC-MOO, followed by 
description of each steps in detail.  

Pre-processing of Gene expression data 

The experimental analysis utilizes three benchmark gene expression datasets as shown in Table 1 - 
Yeast Sporulation [52], Yeast cell cycle [53], and Arabidopsis Thaliana [54]. The details of these data sets 
and their pre-processing are discussed as below: 
Yeasts Sporulation: Initially, there are total 6118 genes and their expression values are measured over 7 
time points. After pre-processing step, total 474 active genes are selected. The pre-processing step includes 
log-transformation and calculating the root mean square values, using a threshold of 1.60. 
Yeast Cell Cycle: With 6000 genes measured over 17 time points, 384 active genes are selected after pre-
processing step. Similar to pre-processing of Yeasts Sporulation, log-transformation and root mean square 
values are computed, applying a threshold of 1.60. 
Arabidopsis Thaliana: Initially, there are total 138 pre-processed genes measured over 8 time points. In pre-
processing step, we have eliminated entire rows having zero attributes. After this step, we normalized all the 
data values with mean zero and variance one. 
These pre-processing steps are specific to each dataset and aim to prepare the gene expression data for 
further analysis. 
 
                             Table 1. Description of pre-processed data set where N and D represent count on 
                             genes and samples respectively 

Data Set N D 

Arabidopsis Thaliana 138 8 

Yeast Sporulation 474 7 

Yeast cell cycle 384 17 
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Figure 1. Working principle of UFSC-MOO 

 

Encoding scheme and archive initialization 

Here, the state representation of AMOSA [36] basically comprises two fields. The first field is encoded 
as a set of real numbers showing coordinates of cluster centres. While, second one is given by string of 
decimal values between 0 and 1 exhibiting the feature activation code (feature weight) of samples in different 
combinations. The larger the value of activation code, the more preferred is corresponding feature, that is 0 
indicates that the feature is ignored while 1 indicates that the feature is preferred. The length of encoded 
string can be determined by (F+K) x F, where F and K represent the number of features and the number of 
clusters respectively. Figure 2 shows an illustration for state representation, comprising three clusters (K) 
and five different features (F). Here, we take threshold value as 0.5, thereby selecting the features F1, F3, 
F4 having activation code (feature weight) value greater than pre-decided threshold value. Now, data 
instance allocation to clusters and calculation of objective functions is done considering only the selected 
features. 
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Figure 2. An Illustrative example for state representation 

Assignment of points and membership updating 

Let the cluster centres represent the different clusters. In UFSC-MOO, the allocation of data points to 
the various clusters is determined based on point symmetry based distance measure, Dp_s [39]. The 
advantage of utilizing point symmetry based distance metric [39] is that we obtain more symmetrical and 
compact clustering solutions. In a particular encoded string, let K be the total number clusters, F represented 
as number of features, n is the total number of genes and cluster centre is given by C. The assignment of 
data points to cluster centres is done as follows: 

X̅i ε cluster k, Ɐ 1≤i ≤ n, 

If Dp_s (X̅i, C̅k) ≤ Dp_s (X̅i, C̅j), Ɐ 1≤j ≤ K, j ≠ k, 

                                      And Dsym (X̅i, C̅k) = Dp_s (X̅i, C̅k) / Deuc (X̅i, C̅k) ≤ α,                                           (2) 

 

In second case, if Dp_s (X̅i, C̅k) / Deuc (X̅i, C̅k) > α, then K-means algorithm is utilized to assign point �̅�i to 
any cluster z. The value of z is decided using the following condition: 

 

       Deuc (X̅i, C̅z ) ≤ Deuc (X̅i, C̅j ), where 1≤j ≤ K, j ≠ z                                            (3) 

 
Here, the symmetry of data point with respect to cluster centre within a cluster is calculated by Dsym. If 

value of Dsym is small, then the point is considered almost symmetrical to cluster centre. For this purpose, we 
have taken α as a threshold to examine the symmetricity property. If the amount of symmetricity is less than 
α, then we can conclude that the given data point is symmetrical, otherwise the data point is not considered 
symmetrical to any cluster. In that case, we employ K-means for assignment of points to cluster according to 
minimum value of Euclidean distance metric given by Deuc. Here, UFSC-MOO computes the distance for only 
those features that holds larger value of feature weight when compared to threshold value in a particular 
string. To accomplish this, the parameter α is set as the maximum nearest neighbour distance among all the 
points within a given data set. 

Feature Selection 

Feature selection is responsible for selecting the relevant features, thereby decreasing computational 
complexity in high dimensional gene expression data set. Here, features are assigned normalized activation 
code (feature weight) ranging between 0 and 1 based on feature importance. Here, 0 signifies feature is 
omitted, while 1 signifies feature is selected. We have considered a threshold activation code value as 0.5, 
that shows if the value of feature activation code is greater than 0.5, the feature is included in selected feature 
subset, otherwise the feature is discarded. Further, the value of absolute feature weight (Fwt) is calculated as 
below and is optimised in multi-objective function by AMOSA [36] in order to obtain optimal clusters.  

Fwt = 
𝐷−𝑑

𝐷−1
                                                                                  (4) 
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Where D is the total number of features and d is the number of selected features based on value of their 
activation codes. So, feature selection is carried out in each iteration as the part of multi-objective optimisation 
by AMOSA, unless the desired clustering solutions are obtained.  

Multi-objective optimization framework and the objective functions used 

The proposed approach UFSC-MOO, employs a simulated annealing based multi-objective optimization 
technique, called AMOSA [36]. This algorithm encompasses the idea of archive consisting the set of equally 
valuable solutions. The addition of new solution to archive or deletion/ replacement of existing solutions from 
archive are based on dominance relation of new solution with current solution according to some set of criteria 
[36]. The amount of dominance between two solutions, say x and y is represented as:  

                                                          ΔDomx,y  = ∏
|fi(x)−fi(y)|

Ri

N
i=1,fi(x)≠fi(y) ,                                                 (5) 

Where, N represents total number of objective functions and Ri corresponds to the range of ith objective 

function. These parameters are essential for computing the acceptance probability of new solution to the 

archive. The archive in this approach is constrained to contain well-distributed pareto-optimal solutions. It is 

subject to two limits, namely soft limit and hard limit. The Soft limit (SL) decides the upper threshold on the 

number of non-dominated solutions to be kept in archive during the process. If the number of generated non-

dominated solutions exceeds SL, then archive size is reduced to hard limit (HL) by applying clustering 

method. The HL serves as a strict maximum size for archive at the end of algorithm. The experiment for the 

proposed UFSC-MOO clustering technique acquires several parameter settings including SL=100, HL=50 

and num_iter = 50, Tmax=100, Tmin=0.00001, cooling rate α = 0.9, probability of mutation=0.2 and probability 

of crossover =0.8. Now, selection of the best solution from multiple competing solutions in archive is based 

on the value of an internal cluster validity index. Further, optimization of the three objective functions is 

performed simultaneously using AMOSA, which includes the two internal cluster validity indices and the 

feature weight index. The details of AMOSA algorithm [36] and objective functions are given as: 

AMOSA Algorithm  

Set Tmax, Tmin, HL, SL, no_iter, α, Temp = Tmax 

Initialize the Archive.  

curr_point = random(Archive). /* a solution is randomly chosen from the Archive*/  

while (Temp > Tmin) 

for (i=0; i< no_iter; i++)  

new_point=perturb(curr_point). 

             Check the domination status of new-point and curr_point.  

/* dominance code for three different cases */  

If (current-pt dominates new-pt) /* Case 1*/  

∆domavg = 
(∑ ∆domi,new_point )+∆domcurr_point,new_point 𝐾

𝑖=1

𝐾+1
 

/* K = total number of points in the Archive which dominate new_point, K ≥ 0*/ 

    Prob =  
1

1+exp (∆domavg ∗Temp)
. 

   Set new-point as current-point with probability=Prob 

If (curr_point and new_point are equally non-dominating) /* Case 2*/  

Check the domination status of new_point and points in the Archive.  

if (new_point is dominated by K points in the Archive, where (K ≥1))/*Case 2(i)*/  

Prob =  
1

1+exp (∆domavg ∗Temp)
. 

∆domavg = 
(∑ ∆domi,new_point ) 𝐾

𝑖=1

K
 

Set new_point as current_point with probability=Prob. 
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Objective functions 

The specific details of the used objective functions are as follows- 
Sym Index: Sym index quantifies the average symmetry in relation to cluster centres, providing a 

measure of overall symmetry [39]. It is based on point symmetry distance. It seeks for highly symmetric 
clusters. Let the given data set Z= {𝑧�̅� ∶ i = 1,2. . n}   is partitioned into K well-separated clusters. For each j 

clusters, cluster centre 𝐶�̅� is calculated by:  𝐶�̅�  = 
∑ �̅�𝑖𝑗

𝑛𝑗
𝑘=1

𝑛𝑗
 . The total compactness within clusters represented 

by Ɛk   is defined by:  Ɛk = ∑ 𝐸𝐾
𝐼=1 I. Here, E is the total symmetrical deviation for some cluster j and is given 

by Ej = ∑ 𝐷
𝑛𝑗

𝑖=1
*p_s(𝑧�̅�𝑗 , 𝐶�̅�). Where, Dp_s(𝑧�̅�𝑗 , 𝐶�̅�) is computed as product of Dsym(𝑧�̅�𝑗 , 𝐶�̅�) and Deuc(𝑧�̅�𝑗 , 𝐶�̅�). The 

separation between two cluster centroids given by Dk, should be maximised.  

                             Dk = max || 𝐶̅i - 𝐶̅j ||    Ɐ i, j such that, 1 ≤ i, j ≤ K,                                                     (6) 

With a goal to identify highly symmetric and well-separated clusters while keeping a count on number of 
clusters, the value of Sym index is maximised. Sym Index can be expressed as:   

     Sym (K) = (
1

K
 X 

1

εk
X Dk ),        (7) 

Cont. 
if (new_point is non-dominating to all other points in the Archive) /*Case 2(ii)*/  

Set new_point as current_point and append new_point to the Archive. 

     If size of Archive > SL  

Cluster Archive to HL number of clusters/*Reduce the size of 

archive to HL*/ 

If (new_point dominates K points of the Archive, where K ≥1) /* Case 2(iii)*/ 

Set new_point as current_point and append it to the Archive.  

Remove all the K dominated points from the Archive.  

If (new_point dominates curr_point) /* Case 3 */  

Check the domination status of new_point and points in the Archive.  

If (new_point dominates K points of the Archive, where K ≥1) /* Case 3(i)*/ 

∆dommin = minimum of the difference of domination amounts between the 

new_point and the K points 

Prob =  
1

1+exp (−∆dommin )
. 

Set point of the archive which corresponds to ∆dommin as curr_point with 

probability = Prob  

else set new_point as curr_point.  

If (new_point is non-dominating with respect to the points in the Archive)/*Case 

3(ii)*/ 

Set new_point as the curr_point and append it to the Archive.  

If curr_point is in the Archive, remove it from the Archive.  

Else if Archive_size> SL.  

Cluster Archive to HL number of clusters. 

    If (new_point dominates K other points in the Archive ) /* Case 3(iii)*/  

Set new_point as current_point and add it to the Archive.  

Remove all the K dominated points from the Archive.  

         End for Temp= α∗Temp. 

End while 

If Archive-size > SL  

Cluster Archive to HL number of cluster 
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XB Index: XB cluster validity index [38] basically focuses on two characteristics of clusters-Compactness and 
separation. The good partitioning scheme tries to attain lower value of compactness and larger value of 
separation between cluster centres. XB index can be defined as ratio of compaction to the separation 
computed in terms of Euclidean distance, derived as: 

      XB= ∑ ∑ ϻn
b=1

K
a=1 ab

2||x̅b - c̅a||2 /( n * (mina≠k || c̅a - c̅k ||2)),                                         (8) 

Where, n and K represent the number of data points and the total number of clusters encoded in a 
solution respectively. Here,  c̅a denotes ath cluster, x̅b denotes bth data point and ϻab denotes belongingness 
of the data point b to cluster a. If ϻab holds 1, indicates data point b belongs to cluster a, while value 0 shows 
that data point b does not belong to cluster a. However, XB index seeks for clusters that are hyper spherical 
in shape and the value of XB index should be minimised to evolve optimal clustering solutions. 

Feature Weight Index (Fwt): The third index Fwt is associated with feature selection scheme that is 
simultaneously done with clustering procedure. This index is responsible for selection of relevant feature and 
is represented as feature string in a cluster solution representation. Fwt must be maximised to compensate 
the bias of previous two objective functions on dimensionality. Usually, dataset has tendency to be distributed 
into a greater number of clusters with smaller area depending on the number of clusters rather than forming 
lesser number of bigger sized cluster. However, the clustering results may comprise overlapped clusters 
whenever the first two objective functions cause high dimensionality reduction. The reason for such an issue 
is that both Sym and XB indices directly or indirectly depends on Euclidean distance for calculation and so 
are biased towards lower dimensions that lowers the value to 1 [24] [25]. To balance this bias, feature weight 
index is maximised. Therefore, we can define the overall multi-objective fitness function that is optimized 
using the popular approach AMOSA as follows:  

      Overall fitness function = Max( Sym, 1/XB, Fwt )                                                       (9) 

The proposed approach UFSC-MOO maximizes the value of aforementioned fitness function using 
AMOSA framework to obtain highly symmetrical clusters without overlapping and thus we can attain optimal 
clustering solutions. 

Mutation Scheme 

Once the optimal set of solutions is obtained, we apply mutation operators to further explore the search 
space. In UFSC-MOO, each solution comprises two components-cluster component and the selected feature 
subset component. To maintain diversity within the solutions, we employ mutation operations on the current 
solution string to generate new solution string. Specifically, we utilize three distinct types of mutation 
operations on the cluster component of a given solution string, aiming to introduce diversity into the 
subsequent generation of solutions. The feature string is randomly updated during each iteration. The specific 
details of these mutation operations are given as: 
1. The first mutation operation utilizes the laplacian distribution for modifying the old value of cluster centroids 
to new value. Here, laplacian distribution is employed to perturb each cluster centroids in solution string using 

p(ɛ) ∝ 𝑒−|𝑐−ϻ|/𝛿. Here c is the cluster centroid. ϻ is used to represent position for perturbation and δ is scaling 
factor initialised as 1. The perturbation operation is applied to all dimensions in the given context. 
2. The Second mutation operation involves reducing the number of clusters in a specific solution string by 
randomly removing one cluster centroid.  
3. The third mutation operation is utilized to increase the cluster numbers in a specific solution string. This is 
done by randomly selecting a data point from the dataset and adding it to the solution string as a new cluster 
centroid. 
The above mutation operations are performed with equal probability on a solution string. Also, any one of 
these mutation schemes is performed on solution string if is opted for mutation step. 

Selection of a single best solution 

We obtain a set of non-dominating solutions in pareto-optimal front [37] after completion of all the above 
stages of proposed UFSC-MOO. These non-dominating solutions are equally good in some or the other 
prospective. Though all these solutions are equally important yet, we need to find the single best solution, to 
meet the user requirements and sometimes from comparison prospective. For this, we have employed 
Silhouette index [55] to select the best solution among all solutions present in pareto-optimal front. The value 
of Silhouette index can be defined in terms of compaction and separation as: 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Sil(C) = 
𝑦−𝑥

(𝑥,𝑦) 
                                                            (10) 

Here, x measures cluster compactness calculated as the average distance of genes within a particular 
cluster; y measures cluster separation computed as the minimum average distance of a gene with respect to 
other cluster’s gene. 

RESULTS AND DISCUSSION 

In the present section, the results obtained using UFSC-MOO algorithm is discussed. The performance 
of proposed approach is evaluated and compared with nine other commonly used clustering approaches. 
Here, three publically available data sets namely Yeast Sporulation, Yeast cell cycle and Arabidopsis 
Thaliana, are used for experiment after pre-processing step.  

Performance Metrics 

Here, Silhouette index [55] is used to evaluate the performance of proposed UFSC-MOO technique. The 
obtained partitioning results are visually shown using cluster profile plot [56] and Eisen plot [56]. Eisen plot is 
used to represent gene expression value at some time point in an ordinary way. Before plotting them, it is 
ensured that genes belonging to same clusters are placed sequentially together. For this, we reorder the data 
when required. Here, firstly we seek for the colour in data matrix which is exactly similar to its spotted colour 
in microarray. Different colours show different expression levels. Here, red colour represents higher 
expression levels. Green colour shows low expression levels and black colour is dominated when no values 
for differential expression is found while, white colour represents separation between two clusters. Cluster 
profile plot is generally used for visualizing a mean profile plot for each cluster in a cluster analysis. Before 
cluster profile plotting, initially the average gene expression values are computed with respect to 
corresponding time points for each cluster. Then, we compute standard deviation of expression values of 
different points within a particular cluster. Additionally, we conducted Wilcoxon rank sum [26] test to assess 
the statistical significance of obtained clustering solutions. To check the biological significance, we referred 
Gene ontology annotation [51] database. 

Result Analysis 

The proposed technique UFSC-MOO is primarily built upon the idea of simulated annealing, specifically 
AMOSA algorithm, to enable simultaneous feature selection and unsupervised clustering. We have applied 
this technique on three publically available gene expression data sets, utilizing them for both feature selection 
and gene clustering simultaneously. To evaluate the performance of UFSC-MOO, we  compared its results 
with nine widely used clustering techniques- FCM [40], MO-fuzzy [41], MOGA [42], SGA [43], SOM [44], 
Hierarchical average linkage clustering [45], CRC [46], K-mean [47] and Spectral clustering [48]. Figure 3 
shows the entire steps of experiment. The assignment of genes to different clusters is done based on the 
distance metrics computed using all available time points. In a similar way, objective function calculation also 
took into account these time points. Table 2 shows cluster count and the elected time points that are found 
by UFSC-MOO technique. Additionally, we evaluated the clustering performance by employing Silhouette 
index value. The higher value of Silhouette index indicates the better partitioning outcomes. To compare 
UFSC-MOO with other popular clustering techniques, we examined the silhouette index values obtained from 
each method. Table 3 shows the comparative analysis of UFSC MOO with aforementioned clustering 
approaches. 

Table 2. Partitioning results comprising selected features, count on clusters and Silhouette index value as determined 
by UFSC-MOO. 

 Data Set Preferred Features  K Sil(C) 

 Arabidopsis Thaliana 1,3,5,6,8 4 0.4412 

 Yeast Sporulation 1,3,4, 6,7 6 0.6331 

 Yeast cell cycle 1,3,5,6,7,8,12,13,16,17 5 0.4621 
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    Table 3. Comparative analysis of UFSC-MOO with other clustering techniques via Silhouette index value 

Algorithm      Sporulation     Cell Cycle     Thaliana 

   K          Sil(C)   K          Sil(C)   K          Sil(C) 

UFSC_MOO 

MO-fuzzy 

Multi-objective GA 

Fuzzy c-means 

Simple GA 

Average Linkage 

Self-organizing map 

CRC 

Spectral Clustering 

K-mean 

6 0.6331 

6 0.5961 

6 0.5781 

6 0.4751 

6 0.5712 

6 0.5045 

6 0.5812 

7 0.5665 

6 0.5595 

6 0.4578 
 

5 0.4621 

5 0.4472 

5 0.4265 

6 0.3685 

5 0.4251 

4 0.4385 

6 0.3971 

5 0.4212 

4 0.3565 

5 0.4085 
 

4 0.4412 

4 0.4162 

4 0.4055 

4 0.3691 

4 0.3971 

5 0.3095 

5 0.2261 

4 0.4061 

4 0.1591 

5 0.3695 
 

Results by proposed method 

For Yeast Sporulation gene data, UFSC-MOO clustering approach selects five out of 7 features and 
based on these features the six clusters are evolved (K = 6). The five samples are selected (given in Table 
2). The obtained value of Sil(C) is 0.6331 which is found highest when compared to nine other clustering 
approaches. The number of clusters and their corresponding S(C) scores for different clustering techniques 
are as follows: MO-fuzzy (6, 0.5961), MOGA (6, 0.5781), FCM (6, 0.4751), SGA (6, 0.5712), Average Linkage 
(6, 0.5045), SOM (6, 0.5812), CRC (7, 0.5665), Spectral (6, 0.5595) and K-mean (6, 0.4578).  For Yeast Cell 
Cycle gene data, UFSC-MOO clustering approach selects ten out of seventeen features and based on these 
features the five clusters are evolved (K = 5). The ten selected samples are as given in Table 2. The obtained 
value of Sil(C) is 0.4621 which is found highest when compared to other nine clustering approaches. The 
cluster count and Sil(C) scores for the clustering techniques are obtained as: MO-fuzzy (5, 0.4472), MOGA 
(5, 0.4265), FCM (6, 0.3685), SGA (5, 0.4251), Average Linkage (4, 0.4385), SOM (6, 0.3971), CRC (5, 
0.4212), Spectral (4, 0.3565)  and K-mean (5, 0.4085) clustering techniques are   respectively. For 
Arabidopsis Thaliana gene data, UFSC-MOO clustering approach selects five out of features and based on 
these features the four clusters are evolved (K = 4). The five selected samples are as given in Table 2. The 
obtained value of Sil(C) is 0.4412 which is found highest when compared to other nine clustering approaches. 
The cluster count and Sil(C) scores for the clustering techniques are obtained as: MO-fuzzy (4, 0.4162), 
MOGA (4, 0.4055), FCM (4, 0.3691), SGA (4, 0.3971), Average Linkage (5, 0.3095), SOM (5, 0.2261), CRC 
(4, 0.4061), Spectral (4, 0.1591) and K-mean (5, 0.3695).  

 

Figure 3. Descriptive View of Result Analysis 
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Statistical Significance Test  

 
Wilcoxon rank sum test [49] is performed to establish the statistical significance of UFSC-MOO compared 

to other clustering algorithms. Table 4 displays the p-values, indicating a significance level below 5%. The 
test compared the Silhouette index medians between UFSC-MOO and other clustering techniques for gene 
data. The p-value below 0.05 confirms a significant difference supporting the efficacy of UFSC-MOO in gene 
data clustering. 

Table 4. p-values computed for UFSC-MOO in respect to other clustering techniques 

Data Set MOGA 
MO-
fuzzy 

SGA SOM FCM 
K-
means 

Spectral CRC 

Arabidopsis 
Thaliana 

2.55E-04 1.07E-03 3.01E-03 5.78E-06 6.65E-05 3.11E-05 1.25E-10 2.11E-03 

Yeast 
Sporulation 

3.62E-05 3.01E-05 3.11E-05 3.79E-04 2.09E-08 3.97E-05 5.97E-05 5.01E-05 

Yeast cell 
cycle 

2.54E-04 1.09E-04 2.93E-04 4.44E-04 5.01E-06 2.22E-03 5.01E-04 2.01E-03 

The p-values in above table confirm the high statistical significance of Silhouette index values attained                       
by UFSC-MOO. 

 

Biological Significance Test  

 
Gene Ontology annotation [51] database is utilised to embark the biological relevance of the obtained 

clusters. The probability p is computed to demonstrate the compatibility between number of genes n, for a 
specific Gene ontology category and cluster of length K. This probability [50] is given by equation below. 

 

                                                    p = 1 −  ∑
(t

i)(
j−t
K−i

)

( j
n)

n−1

i=0

                           (11) 

 
Here, the number of genes for a specific GO group and the total number of genes to genome are 

represented by t and j respectively. Once the p-value for each GO category is obtained, biological significance 
test is employed for genes belonging to a cluster. Under any scenario, if p value holds zero, it shows that 
genes belonging to the particular cluster have identical biological function. In this paper, we conduct the 
biological significance test for Yeast Sporulation data set at 1% significance level. Moreover, the biological 
significance test is also conducted for clustering solutions given by different algorithms. The number of 
clusters for which the most significant GO terms having p-value less than 1% (0.01) in respect of different 
algorithms are given as- MO-fuzzy (6), MOGA (6), FCM (4), SGA (6), Average Linkage (4), SOM (4), CRC 
(6), Spectral (6) and K-mean (6). It is observed that for yeast sporulation data set, the count of GO terms for 
diverse clusters obtained by UFSC-MOO are non-identical, such as- cluster 1 (59 terms), cluster 2 (51 terms), 
cluster 3 (50 terms), cluster 4 (56 terms), cluster 5 (20 terms) and cluster 6 (28 terms). Now, for MO-fuzzy, 
the number of GO terms per cluster varies in comparison with UFSC-MOO as- cluster 1 (52 terms), cluster 2 
(35 terms), cluster 3 (30 terms), cluster 4 (21 terms), cluster 5 (10 terms) and cluster 6 (49 terms) at 1% 
significance level. Table 5 represents the p-values of the most significant GO terms of genes of a particular 
cluster. 
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Table 5. The three most significant Gene Ontology terms and associated p-values, of six non-identical clusters obtained 
by UFSC-MOO technique for Yeast Sporulation gene data set.  

Clusters 
Obtained 

        Significance Gene Ontology term    p-value 

Cluster 1 Cytoplasmic translation:GO:0002181 
Translation: GO:0006412   
Cellular protein metabolic process: GO:0044267 

   3.36E-61 
   9.80E-32 
   2.07E-17 

Cluster 2 sporulation :GO:0043934  
anatomical structure formation involved in morphogenesis : GO:0048646  
sporulation resulting in formation of a cellular spore :GO:0030435  

2.95E-39 
   1.47E-38 
   2.2E-38 

Cluster 3 reproductive process in single-celled organism:GO:0022413 
developmental process involved in reproduction:GO:0003006  
single organism reproductive process :GO:0044702  

   6.55E-33 
7.11E-32 
7.11E-32 

Cluster 4 ribosome biogenesis :GO:0042254  
ribonucleoprotein complex biogenesis :GO:0022613  
rRNA processing:GO:0006364  

1.45E-12 
 5.44E-11 
 4.22E-09 

Cluster 5 meiotic nuclear division:GO:0007126  
meiotic cell cycle:GO:0051321  
reciprocal DNA recombination :GO:0035825  

 2.90E-26 
 2.90E-26  
 6.28E-26 

Cluster 6 carboxylic acid metabolic process :GO:0019752  
oxoacid metabolic process :GO:0043436  
organic acid metabolic process :GO:0006082  

 5.71E-12 
 1.41E-11 
 5.69E-11 

 
The log transformation of p-values is done to enhance the user readability. The obtained clusters from 

various clustering algorithms having the significant GO terms are more biologically enriched if –log10 (p value) 
has higher value ( or lower p-value). Figure 4 shows the box-plot representing the six gene clusters. This 
boxplot below shows the comparison among results obtained by UFSC-MOO, MOGA and MO-fuzzy as all 
the three methods come up with six numbers of clusters holding the most significant GO-terms associated 
with their p-values. Now, It can be clearly observed that UFSC-MOO shows higher −log10(p-value) in 
comparison to MOGA and MO-fuzzy. Therefore, it can be concluded that our proposed UFSC-MOO 
successfully obtained more biologically and functionally enriched gene clusters.  
  

 

Figure 4. Boxplot of p-values of the most significant GO terms for Yeast Sporulation data set of all the clusters derived 

by UFSC-MOO, MOGA and MO-fuzzy clustering algorithms  
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Visual representations of obtained clustering solutions 

The obtained clustering solutions are visualised using Eisen plot as shown in Figure 5 and cluster profile 
plot, given by Figure 6-8 for all three given data sets. Cluster profile plot visualizes gene expression values 
of resultant clusters over different time points. Prior to plotting, gene expression values are normalized. For 
cluster profiling, firstly average gene expression values are calculated for each cluster considering different 
time points. Secondly, within each gene cluster, we compute standard deviation of expression values of 
different time points. In the end, we plot the cluster’s gene expression values with the average and standard 
deviation represented by a black line. In Eisen plot, the patterns having similar colour shows similar functional 
behaviour, so they are grouped together. Similarly, genes within same cluster shows similar functional 
behaviour as their gene expression values hold identical colours. Here, red colour represents higher 
expression levels. Green colour shows lower expression levels while white colour indicates cluster 
boundaries. The black colour denotes that differential expression values are not present. 

 

   

(a)           (b)                                                          (c) 
 

Figure 5. UFSC-MOO generates Eisen plot for gene data clustering in Yeast Sporulation (a), Yeast Cell cycle (b), 
Arabidopsis Thaliana (c) 
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Figure 6. Yeast Sporulation gene data: Cluster Profile Visualization 
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Figure 7. Yeast Cell Cycle data: Cluster Profile Visualization 
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Figure 8. Arabidopsis Thaliana data: Cluster Profile Visualization 

 
The UFSC-MOO technique has demonstrated superior results in simultaneous feature selection and 

gene data clustering compared to nine other clustering techniques. The inclusion of feature selection in the 
clustering procedure has significantly reduced the overall computational complexity. Notably, UFSC-MOO 
outperforms MO-fuzzy [41] and MOGA [42], which are popular multi-objective clustering techniques for gene 
expression data that lack a feature selection step. Our experimental results highlight the importance of feature 
selection in gene data clustering. The use of a point symmetry-based distance metric enables the detection 
of clusters with diverse shapes. Simultaneously optimizing multiple internal validity indices improves cluster 
partitioning results. Hence, UFSC-MOO effectively identifies suitable cluster centers and feature/sample 
combinations for gene expression data. The list of used abbreviations is mentioned in Table 6. 
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        Table 6. List of used Abbreviations 

Abbreviation Definition 

AMOSA 
UFSC-MOO 
Sym index 
MOO 
XB index 
FCM 
MO-fuzzy 
MOGA 
SGA 
SOM 
CRC 
GO 
Sil index 
HL 
SL 

Archived multi-objective simulated annealing 
Unsupervised feature selection and clustering using Multi-objective optimization 
Symmetry based cluster validity index 
Multi-objective optimization 
Xie-Beni index 
Fuzzy C-means 
Multi-objective fuzzy 
Multi-objective genetic algorithm 
Standard genetic algorithm 
Self organizing map 
Cyclic redundancy check 
Gene Ontology 
Silhoutte index 
Hard limit 
Soft limit 

CONCLUSION AND FUTURE WORK 

Our approach, UFSC-MOO, addresses the challenges of multi-objective clustering in gene expression 
data. We propose a comprehensive framework that simultaneously performs feature selection and 
unsupervised clustering to identify co-expressed genes. UFSC-MOO optimizes a multi-objective fitness 
function, combining Sym index, XB index, and feature weight index. By selecting relevant samples and 
features using feature weight, we reduce the computational complexity of clustering in a reduced dimensional 
space. Experimental results on three gene expression datasets demonstrate UFSC-MOO's ability to find 
optimal feature subsets and achieve high-quality partitioning. Comparative analysis with nine clustering 
methods confirms its superiority. The statistical significance test and biological significance test have proven 
that obtained clusters are statistically and biologically enriched. In our current research, we acknowledge 
certain limitations, by considering alternative optimization techniques like NSGA-2, PSO, and differential 
evolution to evaluate convergence and diversity. Additionally, we are actively exploring refined cluster validity 
measures to accommodate diverse cluster shapes and sizes. As our approach extends beyond gene 
expression data, we are dedicated to its application in diverse fields such as cancer data, MR brain image 
segmentation, and NLP. This expansion encompasses the exploration of advanced initialization techniques, 
and leveraging supervised information for enhanced clustering outcomes. Future work may include 
incorporating supervised information and exploring alternative multi-objective approaches for gene data 
clustering, leveraging semi-supervised learning with ground truth information. Further, we may explore and 
use several other meta-heuristic techniques for feature selection in gene data. 
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