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Abstract: Exploring the natural complementarity that exists between renewables is pivotal for optimizing 
clean electricity generation. Quantifying this complementarity can enhance electrical planning, reducing 
waste of natural resources and guiding investment decisions more effectively. To quantify the 
complementarity existing in Brazilian river basins, a methodology was proposed. Data on influent natural 
energy, irradiance, and wind speed are analyzed using Python. Through a comprehensive process, the most 
suitable correlation coefficient is identified. The subsequent calculation of coefficients for specific source 
combinations and periods, as well as the application of the Innovative Trend Analysis methodology, allow an 
understanding of the existing complementarity dynamics. The methodology was applied to the Capivari River 
basin, located in the state of Paraná, which included a monthly analysis of complementarity between 
hydraulic generation with wind and photovoltaic sources from June 2016 to April 2024. There was no 
discrepancy in the interpretations of the results obtained for Spearman’s Rho and Kendall's Tau, although 
the magnitude of Kendall's Tau is, on average, 30% lower for the combination of photovoltaic and hydraulic 
and 49% for the combination of wind and hydraulic. The combination of wind and hydraulics exhibited 
seasonal complementarity, demonstrating lesser advantages compared to photovoltaic generation, with 
around 61% of the acquired values of Spearman’s Rho being negative, approximately 28% of which were 
negligible. This percentage is lower than the over 82% of negative values observed for the photovoltaic and 
hydraulic combination, of which 12% are negligible. The results are consistent with the literature and validate 
the proposed methodology. 

HIGHLIGHTS  
 

• A methodology for analyzing complementarity between renewable sources is proposed. 

• The complementarity between sources for a Brazilian river basin is analyzed. 

• Analysis of complementarities in hydraulic generation with wind and solar sources. 

• Results using Spearman's coefficient and Kendall's tau are presented. 
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INTRODUCTION  

The imperative to mitigate greenhouse gas emissions has spurred a progressive surge in renewable 
energy generation. Nonetheless, inherent characteristics, notably the intermittency in solar, wind, and sea 
wave processes resulting from their reliance on variable conditions, pose significant challenges and 
complexities [1]. To overcome this challenge, some alternatives can be applied, such as: the use of energy 
storage systems, the interconnection of geographically distributed generators, the strategic management of 
load dispatch, and the integration of electric vehicles as distributed sources, particularly in microgrids. Other 
solutions involve the use of sources with a high level of complementarity, and also plant hybridization 
processes [2–4].  

In this context, complementarity refers to the capacity of one or more sources to provide energy in a 
manner that complements each other, either temporally, spatially, or both. This ensures that the power 
generated by one source complements that of another, and their combined output is sufficient to fulfill the 
demand of the connected load. Temporal complementarity is a characteristic of two or more types of sources 
that complement each other over time in the same region. For example, in the case of two sources, the 
minimum availability of one coincides with the maximum availability of the other. This dynamic complements 
the global energy supply and can be better utilized with the use of hybrid systems [1,5–7]. Spatial 
complementarity, on the other hand, refers to the complementarity between generations located in different 
regions. This characteristic is useful for better management of interconnected systems and should be 
considered in electrical planning [6]. 

In cases where studies indicate the existence of complementarity between solar and hydraulic 
generations for a given region, for example, there is the possibility of installing floating photovoltaic systems 
on the reservoirs of hydroelectric plants. In this way, in addition to increasing energy production and 
controllability, considering that hydroelectric generation is capable of responding to the natural fluctuation of 
photovoltaics [8], several other benefits can be listed. Among them, benefits include the increase in system 
efficiency due to the evaporative cooling of panels and cables caused by the body of water. Additionally, 
there is the reduction in evaporation of the free water surface, which helps to preserve the volume of water 
stored. Further benefits are the reduction in the formation of waves and consequently erosion on the banks 
of the reservoirs, the sharing of transmission infrastructure that does not require greater investment, and the 
use of the reservoir without the need to occupy new areas. Lastly, the approach facilitates the sharing of 
maintenance and operation labor [9]. This strategy not only enhances energy generation but also optimizes 
the utilization of the country's water potential, aligning with the recent efforts aimed at increasing energy 
diversity while minimizing environmental impact [10]. Nevertheless, despite the numerous advantages, there 
are drawbacks that must be considered in comparison with land-based systems. These disadvantages may 
or may not be offset by the advantages mentioned, such as higher costs of project, initial installation, and 
maintenance, as well as environmental impacts such as changes in water quality and disruption of wildlife. 

The significant benefits and abundant renewable potential in Brazilian territory justify the growing interest 
in complementarity. Studies focusing on specific regions within Brazil to assess the complementarity between 
energy sources have been published [5,6,8,9,11–21]. However, while these studies provide valuable insights, 
they often focus on broader regional analyses or combinations of two energy sources. A notable gap remains 
in the literature regarding detailed studies that simultaneously assess the complementarity between hydraulic 
and photovoltaic, as well as hydraulic and wind source within a single river basin. This discrepancy is further 
evidenced by the importance of hydraulic generation for the Brazilian electrical matrix, which represents more 
than 50% of the national installed capacity [22]. To address this gap, we propose a method for assessing 
temporal complementarity within Brazilian river basins defined by the ONS (National Electric System 
Operator). Subsequently, a case study is conducted to evaluate the complementarities between hydraulic, 
photovoltaic, and wind generation within the Capivari River basin, in the state of Paraná. This study includes 
a comparison of the results obtained using different metrics, thereby providing a detailed and localized 
understanding of energy complementarity. 

In numerical terms, the complementarity between two renewable energy sources can be computed 
through correlation coefficients or complementarity indices, which consider their typical variations and 
availability over a pre-defined period. In a simplified way, a correlation coefficient measures the degree of 
relationship between two variables, reflecting the strength and direction of their association. In the field of 
renewable energy research, the most widely cited coefficients for evaluating the correlation between 
renewable resources are Pearson, Kendall, and Spearman [1,23,24]. 
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The vast majority of researchers use Pearson's coefficient as a metric when seeking to quantify the 
complementarity between renewable sources in their articles, such as [12,13,19,25–32]. Pearson's coefficient 
is indeed more efficient when data adheres to a normal distribution; however, the statistical efficiency of 
Kendall and Spearman's coefficients remains above 70% for all possible values of the population correlation, 
as noted in [33]. Nevertheless, the Pearson coefficient, being a parametric measure, is a most suitable for 
the linear relationship between two variables and may not be the best choice when the data does not follow 
a normal distribution. Moreover, in many instances, researchers do not verify or explicitly mention the data 
distribution before computing the Pearson coefficient [12,19,25–32]. In addition to normality, Pearson's 
coefficient also assumes linearity and homoscedasticity of the dataset [34]. 

Therefore, the proposed method diverges from existing literature in that it incorporates statistical tests 
that provide information about the distribution of data. Based on this information, it is possible to determine 
which coefficient should be used in each case. The evaluation will also encompass potential discrepancies 
between the results of different coefficients applied. When the assumptions for applying the Pearson 
coefficient are not met, other alternatives are utilized, such as Spearman’s Rank, also known as the 
Spearman’s Rho (ρS) and Kendall’s Tau (τ) [35]. These are non-parametric methods, which are worthwhile 
as they do not require prior knowledge of the data's distribution. In practice, many real-world data sets do not 
conform to a specific distribution model. Consequently, non-parametric approaches are flexible and suitable 
for such data [36]. Furthermore, non-parametric correlation measures are robust to outliers, adding to their 
practical utility [33].  

In addition to these traditional methods, we introduce the Innovative Trend Analysis (ITA) methodology 
with significance test as an innovative approach for assessing energy complementarity. This method is 
among the modern trend analysis techniques. It is widely used to investigate issues related to meteorological 
data, such as precipitation trends under varying conditions [37-40]. Nevertheless, it had not yet been 
employed as a metric for assessing energy complementarity [1,24]. 

 ITA allows for a more comprehensive evaluation by identifying and analyzing trends and patterns within 
the data that may not be evident through conventional correlation coefficients. This methodology not only 
considers linear and non-linear relationships but also incorporates adaptive mechanisms to account for 
temporal variations and external influencing factors. The application of ITA in renewable energy studies 
provides a robust framework to understand the intricate dynamics between different energy sources, offering 
deeper insights and potentially enhancing the accuracy of complementarity assessments. This novel 
approach addresses the limitations of conventional methods, offering a more detailed and flexible analysis 
suitable for the complex nature of renewable energy data [41]. For example, studies have shown that hydro-
climatological time series may contain characteristics of past changes in terms of climate variability, including 
shifts, cyclic fluctuations, and more significantly, trends. ITA is based on non-parametric methods without 
restrictive assumptions, providing objective and quantitative trend identification applicable to various types of 
time series [39,42]. 

METHODOLOGY  

The proposed methodology is characterized by the possibility of application in any of the Brazilian river 
basins defined by ONS. This section delineates the entire procedure, encompassing the process from data 
acquisition to obtaining results. To apply the methodology, the Python programming language was used. In 
addition to being a very useful tool for data analysis, it is a simple and intuitive language, facilitating both 
code composition and comprehension. An additional benefit lies in the extensive array of freely available 
resources, like libraries with different purposes. All these benefits make Python one of the most popular 
languages today, according to the TIOBE ranking [43], which analyzes data from searches in online search 
tools and posts made by developers in specialized forums [44]. 

Data Acquisition 

The complementarity analysis was carried out based on the results obtained for the correlation coefficients. 
To calculate these coefficients, the study utilized daily ENA (Affluent Natural Energy) data, which is measured 
as storable in daily average power (MWavg) of the river basins. These data are made available by the ONS. 
Additionally, meteorological data were used, provided by INMET (Brazilian National Institute of Meteorology) 
and accessed through the BDMEP (Meteorological Data Bank). This database contains daily meteorological 
data in digital form from historical series from several stations, and is maintained in accordance with the 
international technical standards of the World Meteorological Organization [45].  
The network of automatic meteorological stations (AMSs) operated by INMET is the most comprehensive 
data collection network in Brazilian territory [46]. Files are available in CSV format with hourly data for each 
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AMS over a period of one year. Data can be queried from the year 2000 onwards. However, it is important 
to note that the start date of operation for several stations is later, resulting in a smaller dataset for those 
locations. In each file, the following station location data are provided: region, federative unit, latitude, 
longitude, along with measured data such as total precipitation, atmospheric pressure, global radiation, 
temperature, relative humidity, hourly wind direction, maximum wind gust and wind speed, all accompanied 
by date and time information. For the purposes of this study, specific data were extracted: date, time, global 
radiation (kJ/m²) and wind speed (m/s).  
For each basin of interest, a specific AMS was selected based on its data relevance. To determine the most 
suitable AMS, the correlation was calculated between the ENA data of each reservoir and the basin. The 
AMS located nearest to the reservoir and exhibiting the highest correlation coefficient with the reservoir's 
data was chosen as the representative station for that basin. 

Data Adequacy and Processing 

After selecting the AMS, it was necessary to conduct data quality control (QC) to identify potential 
suspicious or erroneous data and address it appropriately before proceeding with the analysis. It is 
commonplace for a dataset to exhibit some failures at some point, whether due to instrumental problems, 
registration errors or poor maintenance [47]. The QC procedure is summarized in Figure 1. 

 

 
 

Figure 1. Data adequacy flowchart. 

The quality control begins with the selection of the measurement file from the meteorological station 
nearest to the location of interest, the initial consideration focused on the number of lines and columns in the 
file. The correct values were 20 columns, due to the 19 distinct pieces of information available and the index 
column created by Python itself, and 8760 rows, considering that the files included hourly measurements for 
all 365 days of the year. For the year 2020, being a leap year, the expected number of rows was 8,784. If the 
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amount of data was incorrect, the subsequent station was chosen for analysis. In step 2, the standard 
deviation was calculated for each one of the data series. A null result would indicate that the equipment had 
not provided measurements correctly [48], i.e., all values are identical. In such cases, the measurement 
should be dismissed and step 3 is performed. 

If the data number was correct, in step 4, the data were adjusted to the Brasília time zone because they 
were originally in Coordinated Universal Time (UTC), which is three hours ahead of Brasília time. It is crucial 
to acknowledge that Brazil encompasses four distinct time zones. The state of Paraná, the focus of this case 
study, adheres to the Brasília time zone, which is the standard time zone for the central and most populous 
regions of Brazil. 

Regarding radiation, an additional adjustment was necessary: missing data, represented by NaN in 
Python, as well as data falling outside the time range of 6am to 6pm, were replaced with zero. This is because 
NaN indicates an absence of measurement, and outside this hourly interval, it is expected that the radiation 
will indeed be zero.  

In the step 7 the process of checking the consistency of the radiation and wind speed data continues 
with a check for physically impossible values. The criteria used were the same as those adopted by the 
SONDA network (National Environmental Data Organization System), which is, in turn, based on two data 
quality control strategies: BSRN (Baseline Surface Radiation Network) and Webmet.com [49]. However, 
applying this criterion requires modifying the radiometric variable, as was done in Step 6. 

In the case of the radiometric variable, although the term "global radiation" appears in the measurements 
provided by INMET, it is understood that the data actually represents horizontal global solar irradiance. This 
refers to the total rate of energy per unit area incident on a horizontal surface, in other words, the flow of solar 
radiation received [46,50]. As the data is available in kJ/m² and the samples are integrated into hourly values 
[51], it is possible to convert the unit using Equation 1: 

𝑘𝐽

ℎ. 𝑚²
=

1000

3600

𝑊

𝑚²
 (1) 

A column was added to the data set with the values consistent with the established unit (W/m²). In 
general, negative values and those above the result of Equation 2 are considered physically impossible 
[49,52]. In this way, the upper limit is defined as:  

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑎 . 1.5. 𝜇0
1,2 + 100 𝑊/𝑚² (2) 

Where: 

𝑆𝑎 =
𝑆𝑜

𝑈𝐴
 (3) 

𝜇0 = cos (𝜃𝑍) (4) 

The solar constant adjusted for the Earth-Sun distance is denoted as 𝑆𝑎, UA is the Earth-Sun distance 
in Astronomical Units, S0 is the solar constant at the average Earth-Sun distance, while θZ represents the 
angle of the solar zenith. 

Once all the physical limits had been established, the percentage of data within the appropriate range 
was investigated in step 8. If this value was less than 90% [53–55], the measurement would be discarded, 
and another AMS would need to be defined to represent the watershed. In all cases where the data from an 
AMS was not good enough for the analysis, the next AMS with the shortest distance from the HPP 
(hydroelectric power plant) would be selected and the entire process would be carried out again. In the event 
that the data outside the established limits represented less than 10% of the total, they would not be replaced 
or discarded. 

In step 9, the presence of outliers in the measurements was evaluated. These values, which are 
discrepant from the rest of the dataset, deviate from the standard and can lead to calculation errors in 
statistical analyses and thereby potentially distorting conclusions and generalizations about the observed set 
[56]. 

Tukey's method was used to detect outliers. It is a methodology based on the IQR (interquartile range) 
widely used by researchers in the field of engineering in view of its simplicity, considerable effectiveness and 
ease of visualization and interpretation of the boxplot [57]. Furthermore, it is a method that does not assume 
distributional assumptions, nor does it depend on the mean or standard deviation, and should only be avoided 
in cases of small samples [58]. The values between the inner and outer fences are considered possible 
outliers, while a value that exceeds the outer fences is probably an outlier. The aforementioned values were 
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calculated for two distinct divisions of the dataset. In the initial analysis, all measurements for each variable 
throughout the year were considered, resulting in the identification of only two IQRs. In the second approach, 
the data for each variable were grouped by hour, resulting in 24 IQRs for each variable. In addition to 
employing the aforementioned method in its mathematical form, a visual analysis of the characteristic 
boxplots of the data was also conducted. Substitution would only be made if both the mathematical and visual 
criteria indicated inconsistent values, as indicated in step 10. 

One of the difficulties in working with INMET data is the large amount of missing data, a challenge not 
unique to this system. Data incompleteness and the presence of unreliable data are intrinsic characteristics 
of the majority of available databases. In some cases, unreliable or missing data can account for up to 50% 
of entries [59]. One way around this problem is to exclude information containing missing data. However, this 
decision implies a reduction in sample size and could lead to the discarding of data that is useful for analysis, 
potentially resulting in a biased outcome. As a possible way to mitigate this issue, imputation methods have 
been developed to fill in the gaps with estimated values [60]. 

The fundamental concept of single imputation methods is a single value to replace each missing piece 
of information in the data set. There are several techniques based on this premise, including conditional mean 
imputation (CMI), where means are calculated for different subgroups based on the classification variables 
[59]. Missing data was then filled in step 11, following a priority and possibility order [59]: 

• 1st: the result of the average between the values observed at that time on the previous day and the 
following day; 

• 2nd: result of the average between the values of the previous and following hours; 

• 3rd: result of the monthly average of the data measured at that time. 

As this technique requires values from previous or following days, it is not applicable to the first and last 
days of the year. In the event of a gap occurring on these two days, the initial method to fill it was to use the 
average of the data from the hour before and the hour after the gap. Should this approach prove infeasible 
the gap would then be filled with the monthly average for the missing hour. 

Finally, in order to estimate the photovoltaic energy generated, we considered a hypothetical 30 MW 
plant. The power of the photovoltaic array (P) was estimated using Equation 5. 

𝑃 = 𝜂𝑆𝐺 (5) 

In which η represents the total system efficiency, which was considered equal to 20%, S is the total area of 
photovoltaic module [m²], considered equivalent to 150,000 m² and the global solar irradiance is G [W/m²]. 
 

Regarding wind speed, an upper limit of 25 m/s was considered in step 7, as this restriction applies to 
measurements at 10 meters, the same height at which the AMSs collect data. The procedure outlined in 
steps 7 to 11 for solar data was similarly applied to the wind speed data. 

After reviewing the data, we proceeded to extrapolate the wind speed data in step 12, keeping in 
consideration that the sensors capable of measuring wind speed, known as anemometers, are conventionally 
positioned 10 meters above the surface of the flat ground and in an open ground. The wind speed can be 
adjusted in relation to height using Equation 6, known as the logarithmic wind profile law, which is widely 
used across the European continent [61]. This law was also used in the development of the maps of different 
heights in the Atlas of Brazilian Wind Potential [62]; therefore, it was chosen for the extrapolation of speeds 
in this study. 

𝑣2

𝑣1
=

ln (
ℎ2
𝑧0

)

ln (
ℎ1
𝑧0

)
 (6) 

 
The height from the ground at point 1 is denoted as h1, while the height of the ground at point 2 is h2. At point 
1, the wind speed is v1. At point 2, it is v2. Finally, z0 represents the roughness coefficient.  

The roughness coefficient varies according to the region, since it corresponds to a measure in meters of 
the ground's imperfections [63]. In order to define the coefficient for each AMS, the digital elevation model 
was downloaded from INPE's TOPODATA project website [64]. The roughness layer was then opened in 
QGIS software, and the characteristic roughness values were identified using the latitude and longitude 
coordinates of the AMSs. 
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When it comes to generated wind power, estimates can be made using various models already proposed 
in the literature, including linear, exponential and cubic models. The last one was used in this work and is 
expressed according to Equation 7 [65]. 

𝑃 = 𝑛
1

2
𝐶𝑝𝐴𝜌𝑣0

3 (7) 

P denotes the wind power and n represents the number of wind generators, while the power coefficient of 
wind generator is CP, A is the area of the airstream, ρ is the air density in the local and the wind speed is v0. 
 

In this model, with the exception of speed, all the terms can be considered constant and grouped together 
in a constant K. This means that the variation in the power of a wind turbine essentially depends on the cube 
of the speed at the specified height. Therefore, if complementarity is carried out in terms of generation, it is 
necessary to convert the wind speed series to wind speed cubed [21]. It is important to note that while the 
conversion of wind speed to wind speed cubed is essential for Pearson's correlation, it does not impact 
Spearman's rho and Kendall's tau, as these measures of correlation are based on rank order and are 
unaffected by the transformation. Furthermore, since K remains a constant multiplicative factor for all wind 
speed values, there will be no change in the result of the correlation coefficient calculation. 

To estimate the wind power generated, wind speeds between 4 m/s and 25 m/s were considered, 
reflecting the current characteristics of wind turbines. For speed values outside this range, the power 
generated was considered null. For the purposes of this paper, a hypothetical wind farm of approximately 30 
MW was considered, a value typically found in wind power plants. These include Tanque, Damascena and 
Maniçoba in the state of Bahia, Buriti, Nossa Senhora de Fátima and Itarema IX in the state of Ceará, Ventos 
de Santa Ângela 12, 19, 20 and 21 in Piauí, Santana I and Terral in Rio Grande do Norte, Coxilha Seca and 
Chuí V in Rio Grande do Sul and Salto and Bom Jardim in Santa Catarina [66]. The parameters used are 
shown in Table 1. 

                                       Table 1. Parameters used to estimate the wind power generated 

Parameter Value 

Number of wind turbines – n 12 

Power coefficient – CP 0.42 

Area of the airstream – A [m²]  11,904.76 

Air density – ρ [kg/m³] 1.225 

 
Once the generations had been estimated and the ENA data imported, the Kolmogorov-Smirnov test 

was applied to ascertain whether each of the data categories exhibited a normal distribution. Furthermore, 
the Harvey-Collier test was employed to assess linearity, while the Breusch-Pagan test was utilized to verify 
the homoscedasticity assumption. For all tests, the significance level (p-value) was set at 0.05. If the 
aforementioned assumptions were met, the Pearson coefficient would be employed to assess 
complementarity. In the event that the aforementioned tests did not yield satisfactory results, we employed 
the Mann-Kendall test to ascertain the monotonicity of the relationships between the data. Upon verifying 
monotonicity, the Spearman’s Rho and Kendall’s Tau coefficients would be employed. Opting for either of 
the latter two coefficient would suffice for assessing complementarity; however, one of the objectives of this 
article is to evaluate whether there exists a discrepancy between the results obtained in both coefficients. 

Strategy for Complementarity Assessment 

The complementarity assessment was conducted using results from correlation coefficients and the 
application of the Innovative Trend Analysis Methodology. In both approaches, the daily average values of 
photovoltaic and wind generation estimates, along with the daily values of ENA, were utilized. Although the 
data were daily, they were aggregated monthly for the calculation of correlation and ITA. The selection of the 
appropriate coefficient for each situation was based on the outcomes of normality, linearity, and 
homoscedasticity tests. If at least one variable failed to meet the assumptions required for the Pearson 
coefficient application, Spearman and Kendall coefficients were applied instead. 

With regard to the correlation coefficient (r), the results obtained following the calculation for the 
hydraulic/photovoltaic and hydraulic/wind combinations should be interpreted in accordance with Table 2 
[69], which presents the numerical ranges in absolute values. It is important to highlight that the response 
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obtained through the application of these metrics is dimensionless and varies from -1 to +1. Negative values 
indicate that the relationship between the observed variables is inversely proportional; as one increases, the 
other decreases. If the coefficient is zero, there is no correlation. Positive values denote the presence of a 
directly proportional correlation, indicating that the behaviors of the variables are similar, which can also be 
called similarity. The strength of the correlation increases as the absolute value of the coefficient approaches 
one, and weakens as it approaches zero [69]. The intermediate classification, which defines a correlation as 
weak or moderate, does not have precisely defined limits in the literature, but generally does not present 
significant variations. 

                                  Table 2. Interpretation of correlation coefficients values 

Absolute value of the coefficient r  Correlation 

r ≥ 0,9 Very Strong 

0,7 ≤ r < 0,9 Strong 

0,4 ≤ r < 0,7 Moderate 

0,1 ≤ r < 0,4 Weak 

0,0 ≤ r < 0,1 Negligible 

 
As the objective of the methodology was to evaluate complementarity, the best results would be the 

negative ones, particularly those closest to -1. This illustrates Since they would represent that, while one 
source produces the minimum, the other produces the maximum, ensuring that the demand continues to be 
met consistently.  

With regard to the ITA method with significance test, the trend slope for each month is calculated in 
accordance with the methodology proposed in [40]. In the event that the value exceeds the upper (lower) 
confidence limit, it is accepted as an increasing (decreasing) trend. In the event that none of the mentioned 
conditions are met, it can be concluded that there is no statistically significant trend at a given confidence 
level [70]. This study employs a 95% confidence level. In instances where a declining trend is observed for 
one energy source while an increasing trend is observed for another, it can be posited that these sources 
exhibit complementarity. 

RESULTS 

Using the proposed methodology, the complementarity between two combinations of electrical energy 
sources was evaluated for the Capivari basin: hydraulic and photovoltaic and hydraulic and wind. These 
combinations of sources were chosen for two main reasons: firstly, because they include hydraulic 
generation, which still represents the largest portion of energy generation in Brazilian territory; secondly, 
because they offer viable options within the context of plant hybridization, especially in the case of 
photovoltaic generation with floating panels. 

The chosen basin, located in the Brazilian state of Paraná, hosts a single hydroelectric plant along the 
course of its main river, Usina Capivari Cachoeira (Governador Pedro Viriato Perigot de Souza). Given the 
presence of only one HPP, the ENA of the reservoir is equivalent to the ENA of the basin. Consequently, the 
location of this reservoir is taken as the basis for analyzing the basin. According to the INMET data catalogue, 
the closest meteorological station to HPP Capivari Cachoeira, approximately 30 km away, was identified as 
“Barra do Turvo”. However, this station did not fulfill the established data quality criteria. The subsequent 
closest AMS was “Morretes”, also failed to meet the necessary standards for analysis. The third AMS, 
“Colombo”, located 56 km from the HPP, satisfied the criteria set forth. This station, with data available from 
June 2016, enabled the monthly analysis spanning from that date to April 2024.  

During this period, the data did not exhibit any outliers based on visual inspection, remaining within the 
expected value range; thus, there was no need for replacement. However, it was necessary to impute missing 
data according to the established criteria. The average percentage of imputed data per year was 8.51% for 
irradiance data and 3.61% for wind speed data. Over the entire period, 5,255 irradiance data points and 2,475 
wind speed data points were imputed, representing approximately 7.58% and 3.57% of the total data, 
respectively. 

When conducting the tests outlined in the methodology, the data did not exhibit a normal distribution, yet 
demonstrated a monotonicity. Therefore, the analyses were conducted using the Spearman and Kendall 
coefficients.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Complementarity analysis between photovoltaic and hydraulic generations using traditional methods 

The results for Spearman’s Rho and Kendall’s Tau, which relate the photovoltaic and hydraulic 
generations for all months of the analyzed period, are presented in Table 3. Negative values of moderate 
and strong correlation are highlighted. The final line of the table presents the monthly average (Avg.) for each 
coefficient.  

  Table 3. Results obtained for the photovoltaic and hydraulic combination using traditional methods 

Year Coeff Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2016 
ρ𝑆 - - - - - -0.54 -0.15 0.03 -0.35 -0.17 -0.10 -0.53 

𝜏 - - - - - -0.40 -0.14 0.06 -0.23 -0.11 -0.09 -0.34 

2017 
ρ𝑆 -0.13 -0.49 0.11 -0.49 -0.28 -0.60 0.17 -0.48 -0.04 -0.02 0.34 -0.39 

𝜏 -0.09 -0.32 0.06 -0.34 -0.19 -0.44 0.14 -0.32 -0.03 -0.02 0.25 -0.29 

2018 
ρ𝑆 -0.10 -0.30 -0.37 -0.32 0.02 -0.58 0.12 -0.67 -0.06 0.09 0.15 -0.21 

𝜏 -0.09 -0.22 -0.28 -0.21 0.03 -0.46 0.08 -0.50 -0.03 0.05 0.08 -0.14 

2019 
ρ𝑆 -0.39 -0.41 -0.26 -0.41 -0.49 -0.11 -0.01 -0.09 -0.61 -0.10 -0.43 -0.61 

𝜏 -0.27 -0.27 -0.19 -0.29 -0.36 -0.09 0.00 -0.06 -0.44 -0.06 -0.28 -0.43 

2020 
ρ𝑆 -0.32 0.03 -0.14 -0.23 0.08 -0.47 -0.36 -0.54 -0.07 -0.24 -0.44 -0.40 

𝜏 -0.24 0.03 -0.07 -0.15 0.06 -0.35 -0.24 -0.35 -0.07 -0.15 -0.31 -0.28 

2021 
ρ𝑆 -0.34 -0.37 -0.24 0.37 -0.60 -0.31 0.21 -0.20 -0.31 -0.14 -0.56 -0.47 

𝜏 -0.25 -0.24 -0.15 0.21 -0.41 -0.19 0.16 -0.14 -0.21 -0.13 -0.34 -0.35 

2022 
ρ𝑆 -0.49 -0.06 -0.18 0.05 -0.66 -0.45 -0.09 -0.48 -0.06 -0.46 -0.57 -0.14 

𝜏 -0.36 0.01 -0.10 0.05 -0.49 -0.32 -0.03 -0.38 -0.04 -0.36 -0.40 -0.09 

2023 
ρ𝑆 -0.42 -0.19 -0.10 -0.45 -0.13 -0.70 -0.45 -0.61 -0.42 -0.35 0.00 0.15 

𝜏 -0.28 -0.12 -0.08 -0.32 -0.08 -0.54 -0.33 -0.43 -0.26 -0.27 0.03 0.14 

2024 
ρ𝑆 0.09 -0.22 0.32 -0.61 - - - - - - - - 

𝜏 0.07 -0.16 0.22 -0.44 - - - - - - - - 

Avg. 
ρ𝑆 -0.26 -0.25 -0.08 -0.26 -0.29 -0.53 -0.07 -0.48 -0.37 -0.17 -0.23 -0.33 

𝜏 -0.18 -0.15 -0.07 -0.19 -0.19 -0.47 -0.04 -0.27 -0.16 -0.16 -0.07 -0.22 

 
Two of the twelve months of the year showed a negative correlation in all calculations made for the six 

years: June and September. Among them, June exhibited the highest average complementarity with a 
Spearman’s Rho (ρS) of -0.53, followed by August with -0.48, which showed a negative correlation in all years 
except 2016. July, on the other hand, had the highest occurrence of positive correlation values, albeit weak, 
across the analyzed period, indicating similar generation patterns. Additionally, July also presents the lowest 
average monthly precipitation for the period of eight years, in comparison to the average of the other months 
[71]. Furthermore, it has the lowest average monthly ENA for the entire period, as illustrated in Figure 2. This 
suggests that energy generation planning could benefit from the existing complementarity, thereby prioritizing 
energy generation from one source over another during specific periods. 

Comparing the results of the two coefficients, the behavior is quite similar, both present a negative 
correlation for most of the period, with the Spearman’s Rho being a more favorable indicator of the correlation, 
due to the magnitude. The average of ρS, considering the 95 months of analysis, is -0.2505 and the average 
of τ is -0.177. Only in the month of February 2022, there is a discrepancy regarding the sign in the results. 
However, both results are considered negligible, which does not change the analysis as a whole. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Despite the average percentage difference between the mean coefficients being approximately 30%, 
only for the months of August and November does the interpretation of the results according to Table 2 
change when analyzing both coefficients. 

Complementarity analysis between wind and hydraulic generations using traditional methods 

The outcomes for the Spearman’s Rho and Kendall’s Tau for, which depict the relationship between 
photovoltaic and hydraulic generations throughout all months within the scrutinized timeframe, are presented 
in Table 4. And negative values of moderate and strong correlations are emphasized. 

Table 4. Results obtained for the wind and hydraulic combination using traditional methods 

Year Coeff Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2016 
ρ𝑆 - - - - - -0.42 0.25 -0.09 -0.06 -0.16 0.09 0.08 

𝜏 - - - - - -0.28 0.16 -0.05 -0.02 -0.12 0.06 0.07 

2017 
ρ𝑆 -0.15 0.12 -0.14 0.11 0.05 0.06 -0.03 0.11 -0.04 0.23 0.03 -0.10 

𝜏 -0.08 0.08 -0.12 0.07 0.04 0.03 -0.03 0.06 -0.01 0.13 0.03 -0.07 

2018 
ρ𝑆 -0.22 -0.28 -0.41 0.06 0.32 -0.51 -0.24 -0.53 0.15 0.09 0.05 0.22 

𝜏 -0.15 -0.18 -0.31 0.02 0.23 -0.35 -0.16 -0.37 0.10 0.08 0.03 0.13 

2019 
ρ𝑆 -0.33 -0.19 0.10 -0.39 0.01 -0.14 0.32 -0.31 -0.12 -0.14 0.05 -0.37 

𝜏 -0.23 -0.12 0.06 -0.25 0.00 -0.06 0.23 -0.24 -0.04 -0.09 0.03 -0.24 

2020 
ρ𝑆 -0.26 0.16 -0.24 -0.09 -0.28 -0.08 -0.18 0.07 -0.41 -0.19 -0.13 -0.44 

𝜏 -0.17 0.11 -0.19 -0.05 -0.18 -0.07 -0.13 0.05 -0.31 -0.12 -0.07 -0.30 

2021 
ρ𝑆 -0.05 -0.28 0.18 0.29 -0.20 -0.04 0.23 -0.03 0.09 -0.17 -0.54 -0.15 

𝜏 -0.07 -0.21 0.13 0.25 -0.12 -0.03 0.15 -0.03 0.07 -0.10 -0.44 -0.11 

2022 
ρ𝑆 -0.08 0.32 -0.37 -0.02 -0.25 -0.41 -0.17 0.04 -0.06 -0.37 -0.23 -0.18 

𝜏 -0.05 0.23 -0.27 0.02 -0.18 -0.28 -0.13 0.03 -0.05 -0.28 -0.18 -0.12 

2023 
ρ𝑆 0.04 0.38 0.09 -0.51 -0.07 -0.09 0.25 -0.03 0.15 0.27 0.03 -0.18 

𝜏 0.04 0.29 0.04 -0.39 -0.04 -0.08 0.14 -0.02 0.11 0.16 0.00 -0.11 

2024 
ρ𝑆 0.06 -0.03 0.39 -0.10 - - - - - - - - 

𝜏 -0.08 0.01 0.10 -0.11 - - - - - - - - 

Avg. 
ρ𝑆 -0.15 0.03 -0.05 -0.07 -0.06 -0.20 0.04 -0.10 -0.03 0.07 -0.08 -0.14 

𝜏 -0.10 0.00 -0.07 -0.06 -0.04 -0.13 0.02 -0.07 -0.02 -0.05 -0.07 -0.09 

 
Approximately 61% of the acquired values were negative, a percentage lower than the over 82% 

observed for the photovoltaic and hydraulic combination. However, even though presenting negative values 
in more than half of the results, upon analyzing the monthly average values, we find that 8 are negligible and 
the remaining four indicate weak correlation. Regarding the utilization of the two coefficients, both illustrated 
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analogous trends, diverging solely in terms of sign for April 2022, and January and February 2024. 
Nonetheless, this discrepancy is irrelevant, given that all involved values are considered negligible. The 
average value of τ is approximately 49% lower than ρS. However, despite the considerable difference, the 
results of the two coefficients would have distinct interpretations only for the months of August and December, 
in which Spearman indicated the existence of weak correlation and Kendall indicated nonexistence. 

Complementarity analysis using Innovative Trend Analysis 

The calculated trend slope values are presented in Table 5. Values exceeding the confidence interval 
are indicated by a blue highlight, while values representing a significant decreasing trend are indicated by a 
yellow highlight. The remaining values do not indicate a significant trend. 

  Table 5. Results obtained using Innovative Trend Analysis 

Year  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2016 

PPV - - - - - -0.07 0.00 0.04 0.03 0.07 0.05 0.09 

PW - - - - - -0.55 -2.35 0.76 -1.73 0.99 -0.53 0.43 

ENA - - - - - 1.76 -0.92 10.0 -4.55 -0.54 0.09 -0.68 

2017 

PPV -0.14 0.12 -0.03 0.01 -0.09 0.03 0.05 0.01 -0.06 -0.08 0.01 -0.08 

PW -0.58 -0.67 -2.05 1.15 -0.12 -1.46 0.33 -1.78 -1.25 -1.01 0.81 1.16 

ENA -0.89 -2.07 -0.25 -2.05 3.49 -7.74 0.20 1.01 0.72 -0.04 0.77 10.7 

2018 

PPV 0.01 -0.01 -0.08 0.00 -0.01 0.09 -0.02 0.08 0.07 0.13 0.03 -0.06 

PW -0.80 0.22 -0.30 -0.97 0.48 -0.77 -0.01 0.99 0.59 0.31 1.71 -1.02 

ENA 6.95 -4.05 0.88 -0.48 -2.13 -1.28 0.47 -1.66 0.41 1.57 -2.32 -0.10 

2019 

PPV 0.03 -0.08 -0.07 -0.05 -0.06 -0.02 0.02 -0.01 0.02 -0.04 0.16 0.19 

PW -1.40 1.02 -1.08 0.43 0.12 1.13 -0.09 -1.52 -0.26 0.07 -0.89 0.05 

ENA 2.08 5.96 1.14 -0.57 11.4 -8.39 -0.37 0.97 -0.13 -0.13 -1.36 -1.11 

2020 

PPV 0.01 0.03 -0.04 -0.03 0.05 0.08 0.01 -0.06 0.00 -0.02 0.02 0.09 

PW 1.05 0.05 0.36 -1.87 2.08 0.11 -1.39 -0.78 -0.15 -0.44 0.86 0.57 

ENA -1.78 -1.29 -2.54 -0.16 0.09 0.08 -0.19 4.87 0.17 -0.95 -0.49 -1.41 

2021 

PPV -0.10 -0.04 -0.02 -0.06 0.03 -0.05 0.10 0.07 0.01 0.11 0.13 0.03 

PW 1.02 -0.30 -1.55 -0.89 2.77 1.73 2.18 1.72 -0.96 -0.48 1.83 -0.04 

ENA 4.00 1.83 -5.66 -1.08 -0.59 1.97 0.55 -1.15 0.13 -0.06 -3.08 -0.10 

2022 

PPV 0.15 0.00 -0.06 0.04 0.01 0.08 0.02 0.02 0.08 0.10 -0.04 -0.05 

PW 0.40 0.02 1.24 0.81 1.70 2.37 -0.87 -0.26 -0.56 1.32 -0.66 -0.27 

ENA 2.13 -0.16 -0.76 0.02 0.77 -5.09 0.39 -1.14 1.31 1.45 16.9 -2.82 

2023 

PPV 0.12 -0.14 0.10 -0.03 -0.06 0.02 -0.03 0.07 0.08 0.02 -0.20 0.05 

PW -0.88 0.31 -0.96 0.53 0.14 0.42 -1.45 1.76 -1.92 -0.31 0.14 0.52 

ENA -3.07 -0.45 -2.05 -0.84 0.68 -0.74 0.16 -3.06 -0.16 -6.64 1.57 -1.67 

2024 

PPV -0.11 -0.19 -0.06 0.07 - - - - - - - - 

PW -0.77 -1.10 0.04 0.87 - - - - - - - - 

ENA -3.07 -0.81 -2.41 -1.09 - - - - - - - - 
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The significant values in Table 5 indicate that in 17 months, the trends in photovoltaic generation (PPV) 
and hydraulic generation, represented by ENA, are opposite. This indicates that while one source of 
generation increases, the other decreases, thereby characterizing complementarity. Of these 17 values, 11 
months coincide with the months showing moderate correlation according to Table 3. The remaining six 
months correspond to months exhibiting weak correlation. 

With regard to the combination of wind generation (PW) and hydraulic generation, 13 months indicate 
complementarity between the sources. Among these months, three have a moderate correlation coefficient, 
as indicated in Table 4. Six months have a weak correlation coefficient, while four months exhibit a positive 
or negligible correlation. 

DISCUSSION 

With the application of the methodology, it was possible to notice that the data did not present a normal 
distribution as expected. Consequently, one of the main assumptions for using Pearson's linear correlation 
coefficient was not met, indicating that the Pearson coefficient should not be used. This finding challenges 
the approach of most complementarity studies carried out in Brazil and around the world, which utilize this 
coefficient without acknowledging any specific knowledge about the distribution of data. However, the paper 
[24] demonstrates similar results for the application of Spearman and Pearson coefficients in an analysis 
between wind and hydraulic generation sources for the Brazilian territory. In article [72], the author opts for 
the Kendall’s Tau as an indicator of complementarity because the data did not follow a normal distribution. 
However, he included in the research a comparison between the results obtained using the Pearson 
coefficient, Spearman’s Rho and Kendall’s Tau. According to the author, the three indicators exhibit similar 
tendency. Nevertheless, the Pearson coefficient exhibits a higher range than Kendall’s Tau, while the 
Spearman’s Rho shows a wider range than Kendall’s Tau and a similar range as the Pearson coefficient. 

It is worth noting that mathematical analyses available in the literature [31,73,74] indicate that the 
magnitudes of Kendall's results are expected to be lower than those of Spearman's. This is consistent with 
the findings obtained in this study. Additionally, in [75], different possible cutoff values are proposed 
compared to those used in this work. This is because the values of τ are lower than the coefficients of Pearson 
and Spearman for the same strength. According to this proposition, values are considered weak from 0.06, 
moderate from 0.026, strong from 0.49, and very strong above 0.71. 

In terms of numerical findings, the study conducted by [24], evaluated the correlation between wind and 
hydraulic generations and the authors mention weak complementarity in the state of Paraná as one of the 
results, with a correlation coefficient within the range of -0.3 to 0. This is consistent with what was found in 
the current research, where the average of ρS, considering the 95 months of analysis, is -0.071 and the 
average of τ is -0.053, both falling within the mentioned range. Comparing this result with those of other 
studies carried out in other locations in the Brazilian territory demonstrates the climatic diversity found in 
Brazil and reinforces the idiosyncrasy of the Brazilian power system. Consider, for instance, the outcomes 
reported in [15], where a correlation coefficient exceeding 0.6 was estimated in an analysis spanning from 
1948 to 2010 for the northeast region of Brazil. And also the correlation maps presented in [14] which indicate 
high potential for complementarity in 50% of the territory occupied by the Brazilian state of Rio Grande do 
Sul. 

The research conducted by [26] assessed the complementarity among hydraulic, wind, and photovoltaic 
generations in Brazil, employing a methodology that divided the country into regions based on the annual 
behavior of each energy resource, a practice previously employed in [76,77]. Complementarities were 
analyzed between the same source in different regions, between different sources within the same region, 
and between different sources across different regions. Although, the regions studied are significantly larger 
in size than the Capivari basin. For comparison purposes, the basin was considered part of the regions 
designated as H1, W2 and S1 in the related work. The results obtained indicated a correlation of 0.92 for the 
wind-hydraulic combination and -0.47 for the photovoltaic-hydraulic combination. Unlike the first combination, 
which showed high similarity, the second combination's results suggest a moderate level of complementarity. 

Figure 2 presents normalized monthly averages of ENA, photovoltaic generation, and wind generation  
over the analyzed period. The blue line indicates that hydropower generation is typically lower during the 
autumn and winter periods in the region, spanning from the end of March to the end of September. This 
period could thus be advantageous for supplementing demand with alternative energy sources even if the 
correlation is not considered strong. By comparing the mathematically obtained results for complementarity 
with those shown in the figure, wind generation could complement demand in June, while photovoltaic 
generation could support the remainder of the period with lower hydropower generation. 
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Figure 2. Monthly Averages of Hydroelectric, Photovoltaic, and Wind Generation. 

CONCLUSION 

The purpose of the developed methodology is to enable its replication for the analysis of any river basin 
in Brazil. This article is confined to the territory of Brazil, with limitations imposed by the use of databases 
sourced exclusively from institutions within the country. Given that the developed procedure can be easily 
adapted with minimal modifications for application in other geographical locations, the outcomes derived from 
employing this methodology have the potential to serve as a valuable tool for contributing to energy 
generation planning. This is particularly relevant in the context of hybrid plant configurations, aiming to 
enhance the efficient utilization of existing infrastructures and optimize investments in new resources, such 
as energy storage systems and floating photovoltaic panels. 

When applying the Capivari basin as a case study for the methodology, it was observed that the results 
obtained for the Kendall and Spearman coefficients were quite similar. However, it was noted that Kendall's 
tau was approximately 30% lower than Spearman's rho when considering the monthly averages of the 
photovoltaic and hydraulic combination, and 49% lower when considering the combination of wind and 
hydraulic. Despite these discrepancies in magnitude, the analysis regarding the presence or absence of 
complementarity derived from both coefficients remained consistent. The combination of photovoltaic and 
hydroelectric generations was found to be more attractive than the combination of wind and hydroelectric, as 
it exhibited correlations ranging from weak to strong in approximately 72% of the months, according to 
Spearman's correlation coefficient observation. In contrast, the index for the latter combination was found to 
be around 44%. The responses obtained with the ITA also support this perception, as the number of months 
showing opposite trends for the combination involving photovoltaic generation is approximately 23.5% higher 
than the number of months involving wind generation. 

In essence, the findings extend beyond the specific context of the Capivari basin, presenting a 
methodology that not only contributes to the efficient use of existing infrastructures but also serves as tool to 
optimize investments in new resources, such as energy storage systems and floating photovoltaics panels. 
The implications reach beyond national borders, providing a versatile framework poised to shape the future 
of energy planning on a broader scale. 
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