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Abstract: 

The Global Navigation Satellite System (GNSS) is used for precise positioning applications, such as surveying and 
geodesy. The aim of the present work is to evaluate the effectiveness of web-based relative positioning (RP) and 
precise point positioning (PPP) GNSS post-processing services using measurements of different satellite visibility 
obstacles. Within this framework, static GNSS observations were conducted at three control benchmarks selected 
taking the impact of natural and human-made obstacles on satellite signals into consideration. 3 hours of static GNSS 
observations in Istanbul, Turkey were repeatedly obtained from three control BMs over six days and were evaluated 
through two RP (AUSPOS, OPUS) and three PPP (CSRS-PPP, Magic-PPP, GAPS-PPP) web-based GNSS post-processing 
services. The 6-day average of the three control benchmark coordinates computed using the Bernese GPS software 
v5.0, and were accepted as true results. They were compared to the local coordinates acquired through the RP 
and PPP web-based GNSS post-processing services. The different satellite visibility conditions were found to have 
significant effects on the GNSS point positioning solutions. We also found that web-based GNSS post-processing 
services provide easy and effective solutions for geodetic positioning applications.
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1. Introduction 

Today, satellite-based positioning systems are employed efficiently to obtain highly accurate spatial 
information. These systems are generally known as the Global Navigation Satellite System (GNSS) and encompass 
various applications (Hofmann-Wellenhof et al. 2007). The GNSS has created a dynamic platform, particularly for 
geodetic positioning research, and has lent new impetus to the land-surveying sector. The momentum gained 
during this rapid technological change and development contributes to a more practical perspective for analysis 
of: geodetic and cadastral applications, surveys for engineering purposes, terrestrial, mobile and airborne light 
detection and ranging (LIDAR) research, determination of crustal movements, hydrographic surveys, deformations 
monitoring, and geographic information system (GIS), among others (Rizos 2017; Langley et al. 2017).  

Apart from these comprehensive applications, there are many possible GNSS positioning measurements 
modes which vary in terms of complexity, precision, and accuracy based on user or program needs (Langley et al. 
2017). To improve GNSS precision and accuracy for measurement and modelling, it is important to understand the 
causes of station dependent errors, such as antenna phase variations and multipath effects (Wübbena et al. 2000; 
Wübbena et al. 2006; Hirt et al. 2010). 

Although there is an increasing variety of GNSS applications, these techniques are still based either on relative 
or absolute position determination principles. Taking both relative positioning (RP) and precise point positioning (PPP) 
principles into consideration, especially in post-processing, it is necessary for users to have professional experience 
in both GNSS data processing and analysis software usage. Therefore, the scientific and commercial data evaluation 
software must meet those users’ requirements. Appropriate software selection depends upon the purpose of the 
research (e.g., deformation) and features of the network (e.g., baseline length). However, the main consideration is 
that users need a significant amount of time to gain a comprehensive understanding of the subject. These scientific 
software packages are not readily accessible to inexperienced users (Ebner and Featherstone 2008). Furthermore, 
because license fees for these commercial software packages are very high, purchases should be considered carefully 
(Tsakiri 2008).

Apart from scientific and commercial software have traditionally used by professionals, in recent years several 
web-based (WB) GNSS processing and data evaluation services have been developed for less-skilled users by various 
institutions. Even basic GNSS positioning and data evaluation application users can benefit from these services. They 
are user-friendly because they are backed up by scientific software, and most of these services are open-access. 
Additionally, the development of WB positioning services is a current research area for researchers working in the 
GNSS positioning and data evaluation field.

The main aim of the present work is to evaluate static GNSS observations using Bernese GPS software v5.0, 
two RP (AUSPOS, OPUS) and three PPP (CSRS-PPP, Magic-PPP, GAPS) WB post-processing services. Observations 
for this analysis were conducted at three specifically-chosen ground benchmarks (BMs) in Istanbul, Turkey. A brief 
description of the RP and PPP, including a comparison of the WB RP and PPP techniques, is given in Section 2. 
Section 3 describes the features of the collected static GPS observation data from the field. The results of the 
Bernese GPS software v5.0 and WB GNSS services and comparison are presented in Section 4, followed by the 
conclusion in Section 5.
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2. The relative positioning versus precise point positioning techniques 

GNSS observables are ranges deduced from measured time or phase differences based on a comparison 
between received signals and receiver-generated signals. The code ranges’ accuracy is measured in meters, whilst 
the carrier phases’ accuracy is in the millimetre range. Specific receiver technology or smoothing techniques can 
be used to improve the code ranges’ accuracy.  While the code ranges are largely unambiguous, phase ranges are 
weakened by the fact that they are ambiguous by an integer number of full wavelengths (Hofmann-Wellenhof et 
al. 2007). To obtain the high-accuracy coordinates for satellite-based positioning, the determination of the phase 
ambiguities is a critical requirement. 

Conventionally, most of the professional GNSS users utilise the RP technique to obtain highly accurate 
coordinate. However, this technique has some disadvantages compared to the absolute positioning technique, such 
as the fact that a minimum of two or more GNSS receivers must be used, and the true coordinates of the reference 
stations must be known (Héroux and Kouba 2001; Gao and Chen 2004). In addition, the increase in the distance 
between the reference station (base) and rover station reduces the accuracy of the position.  

The RP approach has changed over the last few decades. Observations no longer require at least two GNSS receivers 
and instead can be obtained using just one, because of the permanent reference receiver networks’ (Continuously 
Operating Reference Station [CORS]) control point which is associated with a single GNSS receiver. The strategy for 
setting up CORS networks to process GNSS data using the RP technique has important advantages. These networks, 
which are set up and operated at global, regional, national or local levels, eliminate the requirement for constructing 
reference stations in distant locations far from the GNSS surveying areas (Eckl et al. 2001). Today, with the help of 
CORS networks that collect data 24 hours a day, we are able to produce new control points using the RP technique. 
However, to save the user from having to download reference stations from the CORS network, the International 
GNSS Service (IGS) and other organisations’ open-access reference stations can be used (El-Mowafy 2011). Real-time 
applications, such as Real-Time Kinematic (RTK) positioning, require a CORS network. Many government agencies and 
private companies have established their own CORS networks to support RTK users (Rizos et al. 2012). 

The RP approach is considered to be the most accurate and precise technique for positioning applications, 
especially geodetic, geodynamics and deformation research. Nevertheless, as the precise orbit and clock products 
have been launched by various organisations in the past few decades, PPP, which is an absolute positioning 
technique and a new technique for modelling diverse error sources, has been developed (Zumberge et al. 1997). 
It is an alternative technique, which ensures the acquisition of highly accurate spatial information from a single 
GNSS receiver (El-Mowafy 2009; Holden et al. 2017).  Also, the PPP technique does not require data to be collected 
from CORS or IGS stations near prospective users (Guo 2015). Although PPP does not require any base or reference 
station, it does require accurate knowledge of precise orbit and clock products and Earth rotation parameters (ERPs) 
(Dow et al. 2009; Martín et. al 2011).

Using the PPP technique, observations produced by a single receiver determine not only its three coordinate 
components but also other parameters: for example, the receiver clock error and the total neutral atmosphere 
delay of the observations. PPP can be used mainly for positioning and a variety of other tasks, as the observation 
model must take into account the many effects inherent in GNSS signals and undifferenced observations, both 
ionospheric-free carrier-phase and code pseudorange. Because the observations from a single receiver are used, 
they are known as undifferenced (Leandro et al. 2011).

Whether through RP or PPP principle-based techniques, GNSS professionals process and analyse GNSS data 
using scientific or commercial software options of varying quality and cost. In addition to the expense, this software 
also requires users to be trained and experienced in using it. Therefore, as a solution to users with only a basic level 
of knowledge of GNSS post-processing, more user-friendly WB services were developed by several organisations to 
more easily evaluate the GNSS data (Ghoddousi-Fard and Dare 2006; Tsakiri 2008).
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2.1 Web-based relative positioning and PPP post-processing services

Several WB GNSS post-processing services have become available for less-skilled users from various organisations 
in recent years (Ghoddousi-Fard and Dare 2006; Tsakiri 2008). These organisations and their WB GNSS post-processing 
services for the RP approach are: Geoscience Australia’s Online GPS Processing  Service (AUSPOS; Geoscience Australia 
2016),  National Geodetic Survey (NGS)’s Online  Positioning  User  Service  (OPUS; NGS 2016), and Scripps Orbit and 
Permanent  Array  Center  (SOPAC)’s the  Scripps  Coordinate  Update  Tool (SCOUT; SOPAC 2014). 

WB RP post-processing services, through which data is collected in the “static” mode, primarily use the 
double-differenced phase measurements utilizing this equation (El-Mowafy 2011):

          (1)

where  is the double-difference operator at the time the receiver receives the data (t) and  signifies the phase 
measurement.  is the true geometric range, where  is the satellite time and refers to the travel 
time from the satellite to the receiver. ds is the orbital prediction error and  and  are the ionospheric 
and tropospheric errors, respectively. Finally,  is the wavelength, N is the integer phase ambiguity and is the 
measurement noise (such as multipath, the user antenna centre variation and other effects).

The organisations for the PPP  approach are National  Resources  Canada (NRCan)’s  Canadian  Spatial  
Reference  System (CSRS-PPP; NRCan 2016),  the University of New  Brunswick’s  GPS Analysis and Positioning  
Service (GAPS; the University of New Brunswick 2016), GMV Aerospace and Defense company’s Magic-PPP 
(MagicGNSS 2016), Jet Propulsion  Laboratory (JPL)’s Automatic  Precise  Positioning  Service (APPS; JPL 2014), 
and Trimble Navigation Limited’s Trimble CenterPoint RTX Post-Processing (Trimble CenterPoint RTX Post-
Processing Service 2014).  Zumberge et al. (1997) and Kouba and Heroux (2001) stated that the ionospheric-free 
combinations of dual-frequency GPS pseudorange (P) and carrier-phase observations ( ) in the PPP approach 
are related to the user position, satellite and receiver clock offset, and tropospheric and ambiguity parameters 
according to the following simplified observation equations:

          (2)

          (3)

where P is the ionosphere-free combination of P1 and P2 pseudoranges (P3 =2.546(P1)-1.546(P2)) and  signifies 
the ionosphere-free combination of L1 and L2 carrier phase observations ( ).  is 
the geometrical range computed as a function of satellite and station coordinates, C is the vacuum speed of light, dT 
is the station receiver clock offset from the GPS time, dt is the satellite clock offset from the GPS time, and Tr is the 
signal path delay due to the neutral-atmosphere (primarily the troposphere). N is the non-integer ambiguity of the 
carrier-phase ionosphere-free combination, and  are the carrier-phases L1, L2 and L3-combined (10.7 cm) 
wavelengths, respectively. Finally,  are the relevant measurement noise components, including multipath, 
observable-dependent receiver bias, and observable-dependent satellite bias and other effects.

RP and PPP WB post-processing services use processing engines based on sophisticated scientific geodetic 
GNSS data processing software; they can be seen in the specifications and classifications in Table 1. Detailed 
information about the WB GNSS post-processing services can be found at the websites of the individual services; 
website links are provided in Table 1.

Users may submit data to the WB GNSS post-processing services’ web pages or FTP sites via the internet. After 
the user submits the data to these services, they are then analysed, and the results returned include the estimated point 
coordinates and standard deviation (SD) values. Some of these services also send comprehensive analysis reports, which 
include a graphical illustration of these results. Although many of these services are open-access, some of them require a 
username and password for free access. However, in order to estimate high-accuracy coordinates for a point, some factors, 
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Table 1: The specifications of web-based GNSS post-processing services

Service Technique Organisations Software Website

AUSPOS

RP

Geoscience Australia Bernese http://www.ga.gov.au/bin/gps.pl

OPUS National Geodetic Survey (NGS) PAGES https://www.ngs.noaa.gov/OPUS/

SCOUT SOPAC GAMIT http://sopac.ucsd.edu/cgi-bin/SCOUT.cgi

CSRS-PPP

PPP

National Resources Canada (NRCan) NRCanPPP http://webapp.geod.nrcan.gc.ca/geod/
tools- outils/ppp.php

GAPS-PPP University of New Brunswick GAPS http://gaps.gge.unb.ca/ 

Magic-PPP GMV Aerospace and Defense 
company MagicPPP http://magicgnss.gmv.com/ppp

APPS Jet Propulsion Laboratory (JPL) Gipsy http://apps.gdgps.net/ 

Trimble RTX Trimble Navigation Limited Trimble https://www.trimble.com/positioning-
services/

such as data processing solution techniques and algorithms (mathematical models) of the service used, the accuracy of the 
other data and products (e.g., reference station coordinates, satellite orbit and clock corrections), observation duration, and 
quality of the collected data, all play a significant role. While these services have several advantages for the less experienced 
users, they are also useful software for GNSS surveying and processing projects with concern about software, hardware, 
equipment, personnel and logistics costs.  These WB services are routinely upgraded with new technological changes.

Both RP and PPP WB GNSS post-processing services use highly accurate and precise IGS data and products 
(e.g., Héroux et al. 2001). Encompassing more than 200 organisations from more than 100 countries, the IGS has 
more than twenty years of successful production and distribution of GNSS data. While the IGS makes important 
contributions to the development and enhancement of the GNSS standards around the world, it also has the vital 
function of collecting, archiving and presenting the high accuracy GPS/GLONASS ephemerides, satellite and orbit 
clocks, ERPs, coordinates and velocities of IGS tracking stations and atmospheric parameters (Dow et al. 2009; IGS 
2017). Several additional organisations, including JPL, NRCan, the Center for Orbit Determination in Europe (CODE) 
and Bundesamt für Kartographie und Geodäsie (BKG), are significant data providers for GNSS positioning.

3. Data and methodology

3.1 Field experiments

This study tests the performances of RP and PPP techniques on three ground BMs with different satellite 
visibility conditions. 3 hours of static GNSS observations were carried out over 6 days, on 15th, 16th, 17th, 20th, 21st 
and 24th of May 2014 (GPS Day of the year (DoY): 135, 136, 137, 140, 141 and 144). Repeated measurements of the 
BMs will mask the effects of systematic errors, e.g., multipath will affect the Bernese GPS software and WB services 
solutions similarly, and centring errors over the BMs will vanish in the average values (Ebner and Featherstone 2008). 

All multipath signals travel a longer path than the direct signal. A given point on the direct path signal will, 
therefore, arrive at the antenna earlier than the same point on any of the multipath signals (Braasch 2017). Multipath 
signals occur from the natural and human-made obstacles, which often cause signal reflection or diffraction. The 
impact of natural and human-made obstacles into the satellite signal is illustrated in Figure 1. Within this framework, 
the locations of the three BMs in Istanbul, Turkey were selected taking into consideration the impact of natural (e.g., 
trees) and human-made (e.g., buildings, roadside) obstacles, can be seen in Figure 2.
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Figure 1:  The impact of natural and human-made obstacles into the satellite signal. In addition to the desired direct 
path signal, there are three non-line of sight (LOS) signals impinging upon the antenna of the GNSS receiver. There 
are two reflected signals (one from the ground and one from the tree on the right) and one diffracted signal (from 

the building on the left).

Figure 2: (a, b, c) The study area was located on the Campus of Davutpasa, Yildiz Technical University in Istanbul, 
Turkey. (d) P101, P102 and P103 stations are located near buildings, a woodland area and the roadside, respectively.
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In Figure 2, the non-direct-path signals cause distortion, leading to code and phase measurement errors. 
Differential techniques do not completely eliminate this phenomenon, and therefore multipath errors remain 
an important source of error for researchers to be aware of when doing work that requires high precision and 
accuracy (Braasch 1996; Braasch 2017). Featherstone et al. (1998) emphasised that because multipath errors are 
site-dependent, it is almost impossible to quantify the exact size of these errors. Mitigation strategies to minimise 
multipath errors may be effectively implemented, but will not be considered in this study. Additional information 
about multipath mitigation can be found elsewhere (e.g., Ge et al. 2000; Braasch 2017).

3.2 Features of the static GPS observation data 

In many studies, the baseline length, precision and measurement durations were investigated (Eckl et 
al. 2001; Snay et al. 2002; Psimoulis et al. 2004; Soler et al. 2006; Dogan 2007; Häkli et al. 2008; Weston et al. 
2009; Aktug and Lenk 2010). The main reason the GNSS observations are conducted for at least 3 hours is that, 
in GNSS applications which contain measurements of more than three hours duration, the effect of baseline 
length on attitude becomes insignificant; a precision akin to that received for short baselines can also be 
obtained for long baselines. Above all, the fact that negative exponential distribution was obtained in baseline 
lengths for less than three hours of measurement duration, and the regression equations of measurement 
duration is taken as significant criteria in determining the utility of at least 3 hours of measurement duration 
(Aktug and Lenk 2010). Weston et al. (2009) analysed of the relationship between baseline length, precision 
and measurement duration for the measurement duration is up to 600 km baselines, and it was determined 
that precision change is not meaningful in over 3-hour measurements of these baselines. From this study, 
measurements carried out for more than 2 hours in the horizontal direction and more than 3 hours in vertical 
directions do not cause significant changes. Geng et al. (2010) also emphasised that 3 hours of observations 
for static PPP should be used if a reliable millimetre positioning accuracy is required.

Taking the findings of former studies about baseline length, measurement duration, and accuracy of point 
position into consideration, at least 3-hour long GNSS observation at each BM during the six days were attempted. 
The simultaneous static GNSS observations are independent of each other and are presented in Table 2. From this 
table, the measurements were done in at least 3-hour session at each BM with the exception of P102 in the GPS DoY 
140, which ended earlier than expected due to the technical malfunctions.

In this study, only the GPS observations were used in the analysis. In the field measurements, the data record 
interval was set at 1 second, and the satellite elevation cut-off angle was set of 10⁰. The Topcon HyperPRO GNSS 
receivers were used in the acquisition of static GPS observations. The raw data collected in the field was converted 
into receiver independent exchange (RINEX) format, resulting in eighteen RINEX files acquired for six observation 
days at three BMs. 

Table 2: The static GNSS observations durations

GPS DoY P101 P102 P103
135 07:09 - 10:12 07:16 - 10:22 06:58 - 10:23
136 07:50 - 10:54 07:50 - 10:57 07:50 - 10:56
137 06:08 - 09:17 06:20 - 09:20 06:16 - 09:19
140 07:07 - 10:30 07:20 - 09:08 07:16 - 10:32
141 05:34 - 08:44 05:44 - 08:48 05:42 - 08:46
144 10:53 - 13:58 10:57 - 14:00 10:55 - 14:00
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4. Results

4.1 The GPS data processing through Bernese GPS software version 5.0 

The scientific software packages Bernese (Dach et al. 2007 and 2015), GIPSY/OASIS II (Lichten et al. 1995; Webb 
and Zumberge 1997) and GAMIT (King and Bock 2005) are frequently used to obtain highly accurate coordinates 
for GNSS data processing. Because of its availability, the Bernese GPS software v5.0 (Dach et al. 2007) was chosen 
to process GPS observations for this study. The 6-day average for the local coordinates from the three control BMs 
(P101, P102 and P103), calculated using the Bernese software RP approach based on IGS stations, were accepted as 
true (reference) results. The two IGS stations chosen to process GPS observations, ISTA (Istanbul, Turkey) and TUBI 
(Gebze, Turkey), were selected for their location and accessibility. The final GPS satellite ephemerides and earth 
rotation parameters obtained from precise IGS products were used in the Bernese GPS software v5.0 analysis.

In the first processing step, single point positioning is performed by using ionosphere-free (L3) observations, 
receiver clock errors are eliminated, and coordinates of the reference stations in the network are pre-determined. 
Cycle slips and outliers have been controlled by using triple differences. After this process, the outliers are removed. 
If the carrier phase cycle slips are the problem, then they are fixed. Ambiguity parameters will be computed. Then, 
the ambiguity parameters are resolved. In order to resolve these ambiguity parameters, the Quasi Ionosphere Free 
(QIF) strategy has been applied. The Saastamoinen model (Saastamoinen 1972) was chosen for the tropospheric 
delays at each station, and these delays have been eliminated by determining the zenith delay parameters computed 
in constant time intervals. Consequently, Cartesian coordinates (X, Y, Z) of the three BMs in ITRF2008 reference 
frame were computed. The Cartesian coordinates were transformed into local coordinates (North [N], East [E], 
Up[U]) and assigned as true coordinates to be compared with RP and PPP WB GNSS services’ coordinates. These 
Bernese-derived averaged coordinates and their SDs in the local coordinate system in the ITRF2008 reference frame 
are presented in Table 3. 

4.2 The data process through web-based post-processing services 

In this study, five out of eight available WB GNSS post-processing services were used. SCOUT and APPS, which 
are the RP and PPP WB GNSS post-processing services, respectively, were not usable due to upload restrictions for 
RINEX files. While SCOUT has a 10 MB RINEX-file restriction, APPS has a member restriction of 10 MB and a non-
member restriction of 5 MB. The datasets, we obtained from fieldwork are approximately 20 MB per file, which 
rendered these services unusable in this study. Also, the Trimble RTX was not used in this study because it does not 
support our GNSS antenna type (Albayrak 2014; Albayrak et al. 2016).

To use the RP post-processing WB services, users submit information through the web interface, including 

Table 3: The results of the Bernese-derived averaged coordinates and their standard deviations (SDs) in the local 
coordinate system [N: North, E: East, U: Up] in the ITRF2008 reference frame

Benchmarks N (m) E (m) U (m) SDN (cm) SDE (cm) SDU (cm)

P101 2551.329 4587.605 1.289 0.531 0.380 0.624

P102 2466.929 4674.271 0.382 0.244 0.150 0.223

P103 2452.139 4630.607 1.109 0.208 0.139 0.202
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their e-mail addresses, the GPS receiver antenna type used and the antenna height from the antenna reference 
point (ARP). For the PPP WB services, in contrast, this information is obtained from the RINEX-files directly. In 
addition to this information, users can specify other variables, such as ocean tidal loading corrections files. The user 
can also change the elevation cut-off angle, which defaults to 10⁰ in GAPS and Magic-PPP services. In summary, 
there are three steps for using WB PPP services: upload the RINEX-file, select static or kinematic mode and provide 
their e-mail address.

The final reports sent to the user contain calculated point coordinates and SD values. Additionally, some 
services present comprehensive analysis reports with a graphical illustration. The processing speed of WB GNSS 
post-processing services at the same internet speed are approximately 6 min. for AUSPOS, 3 min. for OPUS, 4 min. 
for CSRS-PPP, 1 min. for Magic-PPP and 50 seconds for GAPS. Four services share the processing speed in their final 
report; only GAPS does not share this information.

All eighteen RINEX files were evaluated by the five services, producing ninety result files. All services except 
for Magic-PPP sent the final reports via e-mail. The Magic-PPP service differs from other services because of its WB 
GNSS data evaluation, which enables the user to reach the result files through the data upload page. 

The averages of the local coordinates over the six days, processed through the Bernese GPS software v5.0 
for P101, P102, and P103, were selected as the reference coordinates. The average Bernese coordinates and the 
6-day WB services coordinates, in the local coordinate system, for P101, P102 and P103 BMs are plotted by their 
horizontal (N, E) and vertical (U) components, which can be found in Figure A1 in the Appendix.

4.3 Comparison of Bernese GPS software and web-based GNSS post-processing services

The coordinate results are analysed in-depth through coordinate differences (ΔN, ΔE, ΔU). The coordinate 
differences are the Bernese solution minus the WB services solution. The graphics displaying the coordinate 
differences of the six days (GPS DoY: 135, 136, 137, 140, 141 and 144) that belong to ΔN, ΔE and ΔU components of 
P101, P102 and P103 can be found respectively in Figures 3, 4 and 5. In these Figures, the accuracy of the horizontal 
component differences (ΔN and ΔE) are at the cm-level (except ΔE of P101 for Magic-PPP [GPS DoY 137 and 138] and 
AUSPOS [GPS DoY 144]). However, vertical component differences (ΔU) for P101 and P102 BMs for WB PPP services 
are generally at dm-level accuracy. 

4.4 Analysis of the Results

The descriptive statistical summary of the coordinate differences (Δ) obtained from the selected BMs is 
presented in Table 4. In this table, the vertical component differences (ΔU) are at the dm level and thus have low 
accuracy when compared with the horizontal component differences. ΔN provides the best SD results, and ΔE also 
has good SD results for the three BMs. We also see that the SDs of the horizontal components of P102 and P103 
BMs are not very different from each other, and provide a better result than P101. Receivers at P101 are subjected 
to intense satellite signal visibility obstacles; therefore, the accuracy of the results obtained through WB services is 
relatively lower compared to P102 and P103, which are only partially exposed to satellite signal visibility obstacles.

The SDs of the ΔN, ΔE and ΔU components for P101, P102 and P103 BMs’ WB services are presented in Table 
5 and Figure 6. In this Table and Figure, we can see that the best SDs for the WB services is given by OPUS in the ΔE 
and ΔU components and by GAPS in the ΔN component of P101; by AUSPOS in the ΔE component, by OPUS in the 
ΔN component and by CSRS-PPP in the ΔU component of P102; and, by AUSPOS in the ΔN and ΔE components and 

9 Albayrak et al.

Bulletin of Geodetic Sciences, 26(1): e2020003, 2020



Figure 3: Coordinate differences of North (ΔN) component between the Bernese software v5.0 and web-based 
services over 6 days for P101, P102 and P103

Figure 4: Coordinate differences of East (ΔE) component between the Bernese software and web-based services 
over 6 days for P101, P102 and P103
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Figure 5: Coordinate differences of Up (ΔU) component between the Bernese software and web-based services 
over 6 days for P101, P102 and P103

Table 4: Descriptive statistical summary of the coordinate differences (Δ) obtained with web-based GNSS Services 
and Bernese software v5.0 [in units of cm]

P101 P102 P103

ΔN ΔE ΔU ΔN ΔE ΔU ΔN ΔE ΔU

Min -2.89 -2.31 -24.53 -2.15 -1.71 -14.45 -1.12 -0.73 -11.83

Max 1.17 18.45 8.26 1.19 3.74 5.29 3.65 11.14 7.20

Mean -0.56 3.26 -8.51 -0.54 0.99 -6.63 0.68 1.50 -2.96

SD 1.14 4.80 8.51 0.85 1.46 6.20 1.02 2.03 5.85

Table 5: The SDs of the ΔN, ΔE and ΔU components of P101, P102 and P103 BMs [in units of cm]

P101 P102 P103

WB Services ΔN ΔE ΔU ΔN ΔE ΔU ΔN ΔE ΔU
AUSPOS 0.75 6.78 5.18 0.83 0.70 2.13 0.86 0.51 1.39

OPUS 0.80 1.12 3.34 0.75 1.48 2.41 1.44 4.29 3.29
CSRS-PPP 0.64 1.70 3.92 0.81 1.11 0.96 0.67 0.84 2.29

Magic-PPP 1.39 7.31 7.55 0.81 1.98 1.92 0.95 0.96 0.60
GAPS 0.43 2.70 4.33 0.89 1.79 6.30 0.93 1.09 1.82
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Figure 6: The standard deviations of the ΔN, ΔE and ΔU components for P101, P102 and P103 Benchmarks’ web-
based services

by Magic-PPP in the ΔU component of P103. As emphasised earlier, the fact that the AUSPOS and OPUS services 
give the closest results to the reference coordinates calculated through the Bernese software is an indication that 
the RP principle is still dominant for acquiring high accuracy and high precise point positioning data. Looking at the 
SDs are given in Table 5 and Figure 6 for the three services that use the PPP technique, we see that the best results 
have been produced by: GAPS in the ΔN component, and CSRS-PPP in the ΔE and ΔU components of P101; CSRS-PPP 
in the ΔE and ΔU components and CSRS-PPP and Magic-PPP provide the same SDs result in the ΔN component of 
P102; CSRS-PPP in the ΔN and ΔE components, and Magic-PPP in the ΔU component of P103.

5. Conclusions

Measurements were taken in one geographic area—Istanbul, Turkey—which has many potential error 
sources. These measurements allowed us to evaluate the RP and PPP techniques based on WB GNSS post-processing 
services as alternatives to GNSS scientific and commercial data evaluation software. Scientific and commercial RP 
and PPP techniques require user experience and an expensive license fee. However, open-access RP and PPP WB 
GNSS processing services have been developed for less-skilled users by various institutions (see Section 2.1). Basic 
GNSS positioning and data evaluation application users can also benefit from these services which provide easy and 
effective solutions for geodetic positioning applications.

We see that the results, acquired from the evaluation of 3-hour static observations at three control BMs 
with different visibility conditions, indicate that WB RP and PPP services’ results are closer to the results acquired 
through the Bernese v5.0 software (see Section 4). These results show that the current WB services are reliable, 
especially in regard to measurements at the cm-level geodetic applications. 

The services which give the best results are AUSPOS and OPUS, which use the RP technique. Considering the 
measurement duration criteria for obtaining high accuracy and high precision point position information, the RP 
technique is still predominant compared to the PPP principle.

In the comparison of the horizontal (N, E) and vertical (U) coordinate differences between the Bernese and 
the WB GNSS post-processing software, we see that the horizontal coordinates’ results from both software packages 
are better than vertical coordinates’ results for three BMs. 
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Taking the ground control BM selection criteria into consideration, the P101 BM was located near buildings 
and thus were subjected to intense satellite visibility obstacles. These, as expected, gave results farthest from the 
reference coordinates. On the other hand, the P102 BM was located in woodland and was presumably subjected to 
satellite visibility obstacles, while the P103 BM was along the roadside and also had slight satellite visibility obstacles 
which converged to the reference coordinates in approximately the same proportion. However, the P103 BM was 
closer to reference coordinates estimated by Bernese v5.0.

In light of these findings and the principles of the Regulations for Large Scale Mapping and Map Information 
Production, which form a legal basis for the production of large-scale maps with geodetic and photogrammetric 
techniques in Turkey, it is possible to use RP and PPP WB services in the production of  3rd order—C (C1, C2, C3, 
C4) degree—ground control BMs in the data post-processing stage (BOHHBUY 2005). Position accuracy, provided 
by RP services, fulfils the accuracy criteria stipulated in these Regulations. Also, the PPP technique continues to 
develop and is commonly used in many applications due to its accuracy. Therefore, it is projected that PPP and WB 
services based on the PPP technique will be more effective in the future. Various software developed as a basis 
for international projects are used by IGS for the real-time application of the PPP technique, as supported by post-
processing data evaluation.
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APPENDIX

Figure A1: (a, b, c) The average of the Bernese coordinates and the 6-day WB services coordinates for the horizontal 
(North and East) components are shown for P101, P102 and P103, respectively.  (d, e, f) The average of the Bernese 
coordinates and the 6-day WB services coordinates for the vertical components (Up) are shown with the GPS days 

(DoY: 135, 136, 137, 140, 141 and 144) for P101, P102 and P103, respectively [ITRF2008 reference frame]
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