
Developing new restorative materials should avoid damage to tissue structures. This 
study evaluated the biocompatibility of a commercial dental glass ionomer cement (GIC) 
mechanically reinforced with cellulose microfibers (GIC+CM) or cellulose nanocrystals 
(GIC+CN) by implantation of three test specimens in subcutaneous tissue in the dorsal 
region of 15 Rattus norvegicus albinus rats. Each rat received one specimen of each 
cement, resulting in the following groups (n=15): Group GIC (Control), Group GIC+CM 
and Group GIC+NC. After time intervals of 7, 30 and 60 days, the animals were sacrificed 
and the following aspects were histologically evaluated: type of inflammatory cells, 
fibroblasts, blood vessels, macrophages, giant cells, type of inflammatory reaction and 
capsule thickness (µm). These events were scored as (-) absent, (+) light, (++) moderate 
and (+++) intense. The results were statistically analyzed by Kruskal–Wallis test and 
Mann–Whitney post test. At 7 days, Group GIC+NC showed more favorable tissue repair 
because quantitatively there were more fibroblasts (p=0.022), fewer macrophages 
(p=0.008) and mononuclear cells (p=0.033). Polymorphonuclear neutrophils and giant 
cells were absent in all experimental periods. At 60 days, test specimens in Group GIC+NC 
were surrounded by a fibrous tissue capsule with reduced thickness (26.72±2.87 µm) in 
comparison with Group GIC+CM (41.21±3.98 µm) (p=0.025). In general, all biomaterials 
showed satisfactory biocompatibility, but glass ionomer cement modified with cellulose 
nanocrystals showed a  more advanced tissue repair.
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Introduction
Glass ionomer cement (GIC) is a most important 

milestone in dentistry, due to its fluoride-releasing 
properties, adhesion to dental structure, thermal expansion 
coefficient similar to that of dental structures and 
biocompatibility (1-3). Nevertheless, these cements have 
some limitations like a deficient mechanical integrity 
and capacity to bear fracture loads (4). Therefore, when a 
material like chlorhexidine is added to their formulations, 
it may increase cell death significantly (5). In the last 
few years, increasing worldwide interest in sustainable 
technologies led to the creation of products with lower 
impact on the environment (6). Thus, a vast range of 
researches and work were applied in the area of polymeric 
materials and composites.

Among them cellulose attained an outstanding place, 
since it may be used in its microcrystalline form or in the 
form of nanocrystals (7,8). There are various nanostructured 
materials, like carbon nanotubes and inorganic nanocrystals 
(9), nevertheless, cellulose nanocrystals present several 
advantages over them, such as the low cost, easy formation 
process and mainly better mechanical properties in 
comparison with those materials (10).

Silva et al. (11) added cellulosic fibers to glass ionomer 
cement in an endeavor to enhance the mechanical strength 
of this material. Studies have reported that the cellulosic 
fiber-modified glass ionomer cement showed increased 
compressive strength and abrasion resistance and higher 
bond strength to dental structures. In a recent study 
(12), glass ionomer cement was reported as completely 
interlaced with cellulose nanocrystals randomly distributed 
throughout the cement matrix, suggesting union between 
them. Therefore, following the logic of the experiments, the 
aim of this study was to evaluate the biocompatibility of a 
commercial glass ionomer cement modified with cellulose 
microfibers and cellulose nanocrystals.

Material and Methods
Composite Development

The cellulose microfibers (CM) were obtained by 
processing 6 g of eucalyptus cellulose fibers hydrolyzed 
with hydrochloric acid. The suspension was filtered and 
washed with distilled water until the pH was equal to 
the distilled water. The product was mixed with distilled 
water and sonicated for five cycles of 2 min each, at a 
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controlled temperature. The material obtained was frozen 
in liquid nitrogen and freeze-dried. To obtain the cellulose 
nanocrystals (CN) the eucalyptus containing α-cellulose 
(96-98%) was hydrolyzed with sulphuric acid (13) at 50 
°C for about 40 min. The dispersion was diluted twice and 
washed three times with deionized water by centrifugation, 
dialyzed against deionized water until it attained pH~6, 
immediately ultrasonicated for 5 min. and filtered. The final 
concentration of cellulose nanocrystals in the dispersion 
was approximately 1% by mass (12).

Three groups of cylindrical-shaped test specimens 
measuring 5x3 mm were fabricated for the biocompatibility 
evaluation using a conventional glass ionomer brand 
(Vidrion R, SS White, Rio de Janeiro, RJ, Brazil): Group 
GIH (control, n=15), Group GIC+CM, n=15) and Group 
GIC+NC (n=15). Group GIC samples were obtained by 
agglutinating the powder (sodium fluorosilicate, calcium, 
aluminum, barium sulphate, polyacrylic acid, pigments) 
with the glass ionomer cement liquid (tartaric acid, distilled 
water). Group GIC+CM samples were obtained by previous 
preparation of 0.010 g by weight concentration of cellulose 
microfibers and adding them to glass ionomer cement 
during the manipulation. In Group GIC+NC the nanocrystals 
were prepared and added to the glass ionomer cement 
liquid in concentrations of 0.4% of their total mass. The 
composites were prepared respecting the 1:1 powder:liquid 
ratio and mixed in accordance with the manufacturer’s 
recommendations. The test specimens were stored in 
distilled water at 37 °C (±1 °C) until use.

Biocompatibility Test - Subcutaneous Implant
The research protocol was approved by the Research 

Ethics Committee on the Use of Animals of the UFVJM, 
Brazil, in compliance with the ethical guidelines for animal 
experimentation. 

Fifteen young male rats (Rattus norvegicus albinus, 
Holtzman), five months old, and mean weight of 141.15 
g were used. The animals were obtained from the Animal 
Care Facility laboratory of the Basic Science Department, 
Federal University of Minas Gerais, Brazil. During the 
study, the animals were maintained in cages identified 
according to the group and study period. The animals 
were fed solid ration, (except for the 12 h preoperative 
period) and water ad libitum. For the surgeries, the animals 
were anesthetized with 1 mL (mg/kg of the animal’s live 
weight) of Ketamine (Chloramine – ketamine hydrochloride, 
injectable IM/IV–50 mg/mL - Biochimico, Rio de Janeiro, 
RJ, Brazil), administered intraperitoneally. Subsequently, 
the dorsal region was shaved and cleaned with 0.12% 
chlorhexidine solution (Farmoderm, São Paulo, SP, Brazil). 
The entire surgical operation was performed by a trained, 
experienced researcher (JLM) and under aseptic conditions.

The evaluator (RMS) was blinded for the microscopic 
analysis. A 10 mm incision was made in the median dorsal 
region using a #15 scalpel blade and tissue division was 
performed with blunt-end scissors. Thus three surgical sites, 
approximately 18 mm deep, were formed in the connective 
tissue, to receive one test specimens of each material. In 
the Group GIC, test specimens were placed in the left 
superior region; in Group GIC+CM, in the right superior 
region; and those of Group GIC+NC in the central inferior 
region. The distance between samples was 1 cm. Careful 
asepsis was implemented throughout the operation. No case 
developed purulent exudation. The skin edges were closed 
with nylon 5-0 (Ethicon; Johnson & Johnson, São José dos 
Campos, SP. Brazil). The animals were daily observed to 
identify local, systemic and behavioral abnormalities such 
as edema, exudation, suture dehiscence, lack of appetite 
and prostration. After the time intervals of 7, 30 and 60 
days, the rats were sacrificed by anesthetic overdose and 
the test specimens including the surrounding tissues (skin 
and subcutaneous connective tissue) were removed for 
histopathological analysis. Thus, there were 5 animals 
for each study period, totaling 15 samples at the end of 
the evaluated periods. The tissue samples were fixed in 
10% buffered formalin for 48 h and then dehydrated and 
embedded in paraffin. Serial sections 5 µm-thick were 
obtained at every 50 µm, up to 12 sections per specimen. 
The sections were stained with hematoxylin-eosin (HE) 
and analyzed by a trained pathologist (JLM), using a light 
binocular microscope (Zeiss - PrimoStar, Oberkochen, 
Germany) coupled to an image capture system (Axio 
com ERc5s, Jena, Germany) and AxioVision LE 4.8.2.0 
(Oberkochen, Germany) software for Windows. The total 
area of the field analysis was 55.896 µm². Each tissue sample 
was subjected to qualitative, descriptive, morphological and 
morphometric analyses of the connective tissue around 
the implant in two superior and two inferior fields of the 
fibrous capsule, at 10×, 40× and 400× magnifications, 
considering the following histopathological events: I: 
type of inflammatory infiltrate: prevalence of polymorpho 
nuclear neutrophils or mononuclear cells; II: presence of 
fibroblasts and blood vessels; III: macrophage activity: 
presence of macrophages and inflammatory multinucleated 
giant cells; IV: type of inflammatory reaction: acute or 
chronic; V: fibrous capsule thickness.

A qualitative descriptive analysis of the events I to IV 
was performed using the following scores: (-) absent, (+) 
light, (++) moderate and (+++) intense (Silva et al. 2009). 
In the quantitative analysis, fibrous capsule thickness (µm) 
was measured in four distinct regions, using the AxioVision 
(Oberkochen, Germany) software.

The results of the histological events were analyzed 
by SPSS (Statistical Package for Social Sciences, IBM Inc., 
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New York, NY, USA), version 17.0. The Shapiro-Wilk and 
Levene tests verified the normality and homogeneity 
of variance of the collected data. The Kruskall-Wallis 
test and Mann–Whitney post-test were used to analyze 
the data of histopathological events and the capsule 
thickness. Correlation between the capsule thickness and 
histopathological events was also analyzed. A p-value less 
than 0.05 was considered statistically significant.

 
Results

Table 1 shows a summary of the qualitative microscopic 
analysis results. Polymorphonuclear neutrophils and giant 
cells were not associated with biomaterials in any of the 
experimental periods. At day 7, there was moderate presence 
of mononuclear cells, blood vessels and macrophages only 
for Group GIC+CM animals that had moderate chronic 
inflammatory reaction underneath the capsule. Group 
GIC and Group GIC+NC animals developed a slight chronic 
inflammation. GIC+NC showed moderate occurrence of 
fibroblasts, whereas for Group GIC and Group GIC+CM, 
there was a slight presence at 7 days. In the time intervals of 
30 and 60 days, there was the same pattern of histological 
events for the three evaluated groups. Figure 1 shows the 
histopathological events according to biomaterials and 
experimental times.

The Kruskall-Wallis test revealed a statistically 

significant difference between the groups when fibroblasts 
(p=0.022) and macrophages (p=0.019) were evaluated. In 
the post-test analyses, this difference occurred between 
the Group GIC and Group GIC+CM for macrophages 
(p=0.022), Group GIC and Group GIC+NC for macrophages 
(p=0.008) and mononuclear cells (p=0.033), and between 
Group GIC+CM and Group GIC+NC there was difference 
for fibroblasts (p=0.010). Therefore, the best histological 
aspects were for Group GIC+NC at 7 days. In the analyses 
of the time intervals at 30 and 60 days, the Kruskall-Wallis 
test revealed no significant difference between the groups.

Table 2 presents the descriptive quantitative 
measurements of the fibrous capsule thickness at 7, 30 
and 60 days. Only at 60 days there was a statistically 
significant difference between Group GIC+CM and Group 
GIC+NC (p=0.028). Figure 2 presents the histological 
features of the fibrous capsule and surrounding tissues at 
all experimental times.

Spearman’s correlation showed that at day 7, the 
Group GIC and Group GIC+CM showed positive correlation 
between mononuclear cells and macrophages (p=0.001), 
and Group GIC+NC showed positive correlation between 
fibroblasts and macrophages (p=0.001). After 30 days, 
Group GIC and Group GIC+NC showed positive correlation 
between mononuclear cells and macrophages, while 
for Group GIC+CM this correlation occurred between 

Table 1. Descriptive qualitative analysis of the histopathological events at 7, 30 and 60 days according to established scores

Histopathological 
events

7 days 30 days 60 days

Group GIC 
(Control)

Group 
GIC+CM

Group 
GIC+NC

Group GIC 
(Control)

Group 
GIC+CM

Group 
GIC+NC

Group GIC 
(Control)

Group 
GIC+CM

Group 
GIC+NC

Polymorphonuclear 
neutrophils

- - - - - - - - -

Mononuclear + ++ + + + + + + +

Fibroblasts + + ++ ++ ++ ++ ++ ++ ++

Blood vessels + ++ + + + + + + +

Macrophages + ++ + + + + + + +

Inflammatory 
Giant Cells

- - - - - - - - -

Table 2. Descriptive quantitative measure of the fibrous capsule thickness at 7, 30 and 60 days

Group

 Capsule Thickness (µm)

Median (Range)
7 days

p value*
Median (Range)

30 days
p value*

Median (Range)
60 days

p value* Post-hoc**

GIC (Control) 60.24 (93.45)

0.223

53.23 (101.68)

0.459

30.15 (49.38)

0.022

AB

GIC+CM 49.14 (71.36) 43.52 (167.18) 41.58 (82.75) A

GIC+NC 60.48 (77.94) 46.24 (68.88) 27.83 (36.45) B

*Kruskal–Wallis Test (p<0.05). **Mann–Whitney Test.  Different letters within Post-Hoc column indicate statistically significant difference (p<0.05).
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mononuclear cells, macrophages and capsule thickness 
(p=0.001). After 60 days, there was a higher correlation 
among the histopathological events for the three groups, 
and between them and capsule thickness.

Discussion
The present study sought to evaluate the biocompatibility 

of glass ionomer cements modified by the addition of 
cellulose microfibers and nanocrystals. Cellulose is the most 
abundant organic compound on the planet and became a 
classical example of a natural resource to produce organic 
elements for reinforcements, including cellulose microfibers 
and nanocrystals. These particles  present the following 
advantages: a renewable  resource, low cost, low density, 
highly specific mechanical properties, non-abrasive and 

easy processing (14,15). 
According to Silva et al. (12), the different concentrations 

of CM or CN used to prepare the groups were due to the 
relative size and properties of each particle. When the 
concentrations of CN were over 1%, the nanoparticles 
aggregated, causing the composites’ mechanical properties 
to fail. On the other hand, for CM concentrations smaller 
than 3%, the amount of filler was not sufficient to enhance 
the mechanical properties of the GIC. This behavior 
is characteristic of larger fillers, when relatively large 
concentrations are required to achieve reinforcement, 
whereas the advantage of nanofillers  as the CN, is that 
very small concentrations are required for reinforcement, 
due to the large specific area of the nano-materials.

SEM/EDS and FTIR analyses of the modified biomaterials 

Figure 1. Histological features according to groups and experimental times. 7 days. A: Group GIC exhibiting macrophages (M) (+), other mononuclear 
cells (MN) (+) and fibroblasts (F) (+). B: Group GIC+CM exhibiting macrophages (++), other mononuclear cells (++), blood vessels (BV) (++) and 
fibroblasts (+). C: Group GIC+NC exhibiting macrophages (+), other mononuclear cells (+), blood vessels (+) and fibroblasts (++). 30 days. D: Group 
GIC exhibiting macrophages (+), blood vessels (+), fibroblasts (++) and moderate collagenization (CL). E: Group GIC+CM exhibiting macrophages 
(+), fibroblasts (++) and moderate collagenization. F: Group GIC+NC exhibiting macrophages (+), blood vessels (+), fibroblasts (++) and moderate 
collagenization. 30 days. G: Group GIC exhibiting innumerable fibroblasts (++), scarce blood vessels (+) and abundant collagenization. H: Group 
GIC+CM exhibiting numerous fibroblasts (++) and abundant collagenization. I: Group GIC+NC exhibiting numerous fibroblasts (++) and abundant 
collagenization. HE 400×.
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suggested that the composites maintained the main 
characteristics of their precursors (12). Normally, in level 
I biocompatibility tests the biomaterials are inserted in 
polyethylene or silicone tubes (16-20). However, in the 
present study, the test specimens were implanted directly 
in subcutaneous tissue. This methodology may be used 
safely, as it is based on the results of Silva et al. (11), 
who evaluated the solubility and disintegration of this 
modified cement and found that did not exceed 0.78%. 
This value agrees with the international specifications (21). 
Corroborating previous studies, no multinucleated giant 
cells or acute inflammation were identified around the 
implanted materials, in every experimental time interval 
(16,17,19). The complete absence of these cells indicated 
that the biomaterials had low potential to induce foreign 
body giant cell reactions. This type of granulomatous tissue 

Figure 2. Histological features of the fibrous capsule (FC) and surrounding tissues in each experimental times: At 7 days. A: Group GIC exhibiting 
thick fibrous capsule (62.86±30.65) little collagenization (CL). B: Group GIC+CM exhibiting medium thick fibrous capsule (50.49±17.65) and little 
collagenization. C: Group GIC+NC exhibiting thick fibrous capsule (61.83±23.91) and little collagenization. At 30 days. D: Group GIC exhibiting 
medium thick fibrous capsule (56.08±25.02) and moderate collagenization. E: Group GIC+CM exhibiting thick fibrous capsule (65.76±59.88) and 
moderate collagenization. F: Group GIC+NC exhibiting medium thick fibrous capsule (50.2±17.63) and moderate collagenization. At 60 days. 
G: Group GIC exhibiting thin fibrous capsule (30.15±4.28) and abundant collagenization. H: Group GIC+CM exhibiting thin fibrous capsule 
(41.21±3.98) and abundant collagenization. H: Group GIC+NC exhibiting thin fibrous capsule (26.72±2.87) and abundant collagenization. HE 400×.

reaction has been related for resin-modified glass ionomer 
cement (17) and some ionomer cements with an acid-base 
reaction (22,23).

After in vivo implantation of the biomaterial, it was 
expected that there would be a mechanism for normal 
wound healing, a complex process that involves the dynamic 
interaction of different types of cells. These responses were 
tested in the experiment presented here, because all the cell 
populations involved in the reaction of healing around the 
test specimens were quantified and correlated. Fibroblasts 
are cells that play a pivotal role in tissue regeneration, due to 
their capacity to produce extracellular matrix components, 
like collagen. These cells are also able to release growth 
factors that produce tissue homeostasis (24). Angiogenesis 
is the process of new blood vessel formation from pre-
existing vessels, to assure the transport of oxygen, nutrients 
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and growth factors to promote vascularization and tissue 
remodeling at the implant site (25). Moreover, macrophages 
and mononuclear cells participate in the protection against 
tissue injuries, and also stimulate fibroblast differentiation 
and proliferation in the healing process (16,24).

Glass ionomer cement has shown cellular biocompatibility 
in human gingival fibroblast cultures (24), in subcutaneous 
tissue (18,21,22), rat alveoli (25) and in deep cavities 
prepared in human teeth (3). In the present study, there was 
a positive correlation between the presence of macrophages, 
mononuclear cells and fibroblasts and correlation of them 
with the capsule thickness. These results allowed to infer 
that these cells probably produced cytokines and growth 
factors, and acted in an autocrine and paracrine manner, 
they contributed improve the healing process around the 
test specimen, denoted by the variable thickness of the 
fibrous capsule according to the implanted biomaterial. The 
experimental biocompatibility test of the tested materials 
also showed progressive reduction in the fibrous capsule 
with time (21,22,25). As there was a thinner capsule in 
Group GIC+CM in the present study, in comparison with the 
Group GIC, the inference was that the microfiber particles 
interacted well with the cell populations. Group GIC+NC 
showed a statistically significant thinner fibrous capsule 
(26.72±2.87 µm) than Group GIC+CM and associated 
with abundant collagenization. Boaventura et al. (17) 
found similar biocompatibility of various formulations of 
conventional glass ionomer cement. On the other hand, 
ceramic-reinforced glass ionomer demonstrated superior 
biocompatibility compared with conventional glass ionomer 
(18). In this study, the nanocrystals interacted structurally 
with glass ionomer cement and produced an advanced 
stage of repair. These results suggested further researches 
to assess the material biocompatibility with the dentin pulp 
complex as liner material in deep cavities and surrounding 
the dental pulp.

The results of this study demonstrated that a scaffold 
based on cellulose microfibers and nanocrystals retained 
the biocompatibility of the original glass ionomer cement. 
However, there was a significantly more expressive result 
obtained by the experimental glass ionomer cement 
modified with cellulose nanocrystals. 

Resumo
Os novos materiais restauradores em desenvolvimento devem evitar 
danos aos tecidos dentários. Portanto, o objetivo deste estudo foi avaliar 
a biocompatibilidade de uma marca comercial de cimento de ionômero 
de vidro convencional (CIV) modificado com microfibras de celulose 
(CIV+MC) ou nanocristais de celulose (CIV+NC) através da implantação 
de três amostras em tecido subcutâneo na região dorsal de 15 ratos 
Rattus norvegicus albinus. Cada rato recebeu um exemplar de cada 
cimento, resultando nos seguintes grupos (n=15): Grupo CIV (controle, 
n=15), Grupo CIV+MC e Grupo CIV+NC. Nos intervalos de 7, 30 e 60 dias 
os animais foram sacrificados e os seguintes aspectos foram avaliados 

histologicamente: tipo de células inflamatórias, fibroblastos, vasos 
sanguíneos, macrófagos, células gigantes, tipo de reação inflamatória 
e espessura da cápsula (µm). Estes eventos foram quantitativamente 
classificados conforme os escores: (-) ausente, (+) suave, (++) moderado 
e (+++) intenso. Os resultados foram analisados estatisticamente pelo 
teste Kruskal-Wallis e pós-teste Mann–Whitney. Aos 7 dias, o Grupo 
CIV+NC demonstrou um nível mais elevado de reparação tecidual 
porque havia maior quantidade de fibroblastos (p=0,022) e uma menor 
quantidade de macrófagos (p=0,008) e células mononucleares (p=0,033). 
Neutrófilos e células gigantes estavam ausentes em todos os períodos 
experimentais. Aos 60 dias, o Grupo CIV+NC apresentou cápsula de tecido 
fibroso com espessura mais reduzida (26,72±2,87 µm) em comparação ao 
Grupo CIV+MC (41,21±3,98 µm (p=0,025). No geral, todos os materiais 
apresentaram satisfatória biocompatibilidade, no entanto, o cimento 
de ionômero de vidro modificado com nanocristais de celulose proveu 
reparação tecidual mais avançada comparativamente aos demais materiais 
avaliados. 
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