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1. Introduction

Chitosan has numerous health benefits, including its 
potent antioxidant and antibacterial properties and it’s 
being a non-antigenic, biocompatible, non-toxic, and 
eco-friendly natural polymer formed from chitin (Chou et al., 
2015; Muxika et al., 2017; Guan et al., 2019). While many 
polysaccharides are neutral or anionic in charge, chitosan is a 
naturally occurring cationic polymer. Using further synthetic 
polymers or naturally negatively charged natural materials, 
this chitosan characteristic enables the construction of 

multilayer structures or electrostatic complexes (Venkatesan 
and Kim, 2010). Additionally, chitosan has many biological 
abilities, such as antibacterial (Amato et al., 2018; Wei et al., 
2019), anticancer, and antioxidant properties (Karagozlu and 
Kim, 2014; Ngo and Kim, 2014). Chitosan is widely employed 
in a diversity of biomedical and biological uses, such as 
a platform for genetic manipulation (Islam et al., 2020), 
a drug carrier (Peers et al., 2020), and water purification 
(Das et al., 2020).
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situations, changing one’s lifestyle may not yield the 
optimum results. Therefore, these medications have 
various adverse effects, including myalgia, hypoglycemia, 
and gastrointestinal discomfort. Their restricted use is 
also due to their high price (Ramkumar  et  al., 2016; 
Wang and Hoyte, 2019). Therefore, the search for natural 
remedies to lower the jeopardy and development of 
metabolic disorders has gained more and more attention. 
The antibacterial, immunostimulatory, hypoglycemic, 
anti-inflammatory, anti-obesity, hypolipidemic, 
anti-oxidative, and anti-hypertensive abilities of chitosan 
and its nanoformulations have been the substance of 
numerous research (Naveed  et  al., 2019; Khalaf  et  al., 
2023). Chitosan and its nano formulations may be a 
potential natural product to prevent delicacy metabolic 
disorders.

According to Herdiana et al. (2023), one of the primary 
causes of cancer worldwide, breast cancer, frequently 
results in the creation of reactive oxygen species (ROS) and 
oxidative stress. This emphasizes the need for antioxidants 
to maintain the immune system and cell health. Natural 
antioxidants are crucial in lowering oxidative stress and 
restoring the body’s internal environment equilibrium. 
Due to their weak solubility, 80 percent have limited 
effectiveness when taken orally. Increasing solubility in 
water is one tactic. Systems of chitosan-based nanoparticles 
are investigated because of their consistency and ease of 
manufacture. They can serve as a paradigm for developing 
natural antioxidant oral dosage forms that are effective 
and enhance the efficacy of cancer drugs. Cancer is one 
of the top causes of death, according to ALaqeel (2024), 
but patients are not always fit for current therapies, 
and they frequently have negative effects. The field of 
functional foods has witnessed a surge in the creation of 
natural anti-cancer medications, as several molecules have 
demonstrated both effectiveness and low toxicity. Due to 
their high flavonoid content, citrus peels may be able to 
prevent cancer. These antioxidants enhance apoptosis, 
prevent metastatic chain reactions, reduce the motility 
of cancer cells, and inhibit vasculature.

Body mass index (BMI) values are markedly elevated 
in obese individuals, although a slightly elevated BMI can 
boost overall survival and therapeutic responses (Berger, 
2014). The “obesity paradox” states that when a person’s 
BMI reaches the threshold of morbid obesity, the preventive 
benefits of a moderately elevated BMI disappear. It is still 
unclear how a person’s degree of morbid obesity affects 
how their body reacts to cancer treatment (Lennon et al., 
2016). The increased bulk of adipose tissue could be a sign 
of energy reserves that help certain patients withstand 
the damaging effects of chemotherapy for a longer period. 
Longer lifetimes could be made possible by increased 
adipose storage, which could act as an energy reserve 
(Sánchez-Jiménez et al., 2019).

In this criticism, we will discuss the indication for the 
favorable abilities of chitosan and its nanoformulations on 
obesity, hyperglycemia, diabetes mellitus, dyslipidemia, 
and hypertension based on the in vivo and in vitro tests. 
We will also discuss the promising mechanisms of chitosan 
and its nanoformulations’ avoidance and management of 
the metabolic syndrome.

Moreover, chitosan has special potential that makes it 
safe for usage in biomedical, therapeutics, and wastewater 
remediation, where chitosan and its derivatives are 
considered viable sources for creating efficient and 
secure medication delivery systems because of their 
unique physical and chemical features (Abd El-Hack et al., 
2020). Likewise, in the utmost available investigation, 
many previous investigational data disguised that the 
growth-enhancing properties of chitosan are equivalent 
to those of dietary antibiotics (Kamal  et  al., 2023b, a) 
indicating that chitosan is a practical and operative 
antibiotic additional.

Nano chitosan is a natural molecule with brilliant 
physicochemical and biological actions, constructing 
it a greater naturally friendly substance, and it holds 
bio-competence action that levels safe on a human being. 
In addition, it’s commonly utilized as a controlled-release 
drug transporter for genetic editing in synthetic tissues 
and immune syndromes. Besides, nano chitosan has been 
utilized to impart antimicrobial benefits and increase the 
forte and washability of textiles (Ting and Shen, 2005). 
Nanosized materials are good, but their impacts on natural 
organisms and human organs have been investigated. 
Polysaccharide-coated nanoparticles are recognized to 
be ecologically kind, much less related to physiological 
stability, and concerns over toxicity and biodegradability. 
For instance, chitosan, a natural polysaccharide, is widely 
used in medical preparations (Swierczewska et al., 2016; 
Shariatinia, 2019).

Chitosan has been generally applied for protein 
encapsulation, therapeutically enzymes (Koyani  et  al., 
2018), or as biocatalytic nanoparticles (NPs) (Alarcón-
Payán et al., 2017). Although non-toxic and biodegradable, 
chitosan nanoparticles are recognized to accomplish 
prolonged gradual emancipation of the capacity, escalation 
bioavailability, and enhance therapeutic effectiveness 
(Safdar et al., 2019). To benefit from the affluence usefulness 
of manufacturing, great revenue at squat cost, and greater 
loading capability, the manufacturing procedure for 
nanoparticles such as chitosan NPs might be enhanced 
(Gallego et al., 2019; Kamel and El-Sayed, 2019). According 
to (Quester  et  al., 2022), chitosan-based nanoparticles 
comprising α-lipoic acid could pass the gastrointestinal 
barrier and emancipate their antioxidant consignment 
while remaining stable in stomach-like circumstances.

The incidence of metabolic disorders, a conglomeration 
of metabolic illnesses comprising obesity, insulin 
resistance, hyperglycemia, hypertension, and dyslipidemia, 
is estimated to be 25% worldwide (Eckel  et  al., 2005; 
Saklayen , 2018). Over time, many administrations, 
comprising the World Health Organization, the 
International Diabetes Federation, and the National 
Cholesterol Education Program Adult Treatment Panel 
III, have created varied clinical criteria for various 
metabolic syndromes (Huang, 2009). Thus, the danger 
of metabolic disease for cardiac ailment and type 2 
diabetes is becoming more widely acknowledged 
(Hudish et al., 2019). Pharmacological treatments and 
lifestyle changes are the predominant approaches for 
metabolic disorders (Saboya et al., 2017; Larsen et al., 
2018). Drugs are frequently employed since, in many 
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2. Chitosan Structure

Chitosan is a polysaccharide molecule derivative from 
the chitin compound. It’s a common naturalistic polymer 
present in the cell walls of fungi and many exoskeletons 
such as arthropods, shellfish, and some insects (Nwe et al., 
2009; Ahsan et al., 2018). Different sources of chitosan and 
chitin are depicted in Figure 1. The unique structure of its 
free amino group, chitosan, is more capable of chemical 
changes and has better water solubility and hydrophilicity. 
Chitosan is manufactured by handling chitin with a 
determined NaOH solution, which fulfills N-deacetylation 
(Dutta et al., 2004; Negm et al., 2020).

Because it permits unique biological roles and the 
utilization of alteration responses, the attendance of 
amine clusters in chitosan and chitin is a significant 
benefit (Kumar, 2000). These polysaccharides’ exceptional 
qualities, including their biocompatibility, non-toxicity, 
biodegradability, bioresorptivity, bioactivity, and worthy 
adsorption actions, make them ideal biomaterials and 
attract a lot of industrial interest as potential substitutes for 
synthetic polymers (Tan et al., 2009; Croisier and Jérôme, 
2013). The physicochemical possessions of chitosan are 
restricted by the molecular weight (MW) and further the 
N-deacetylation proportion. The more frequently employed 
expression is DA, which characterizes the percentage of 
N-acetylgluchitosanamine monomers to the whole numeral 
of polymer elements. As recounted by (Benediktsdóttir et al., 
2014), the D-A of a polymer such as chitosan can differ, but 
it is frequently arranged more than <50%

3. Chitosan Derivatives

The biological and physicochemical possessions of chitosan 
can be improved chemically. Chitosan has limited water 
solubility, and another prevalent organic solvent is one of its 
principal problems; however, this can be fixed chemically. 
Additionally, adding additional moieties to the polymer 
chain can enhance chitosan’s other features, increasing its 
employment for medicinal requests (Negm et al., 2020). 
Chitosan derivatives can be produced using diverse synthetic 
approaches comprising direct modification, enzymatic 
processes, and chemical grafting (Nagy, 2018). The focal 
worry is that some functional clusters might obstruct the 
reaction and produce undesirable byproducts. So, they use 
shielding groups that briefly cover the functional clusters 
that would otherwise conflict (Carey and Sundberg, 2007).

Wuts and Greene (2006) reported that the molecule can 
add protective groups and withdraw without affecting the 
result. To provide a stable and sheltered substrate, a worthy 
defensive group must, among other things, react selectively 
with the required efficient cluster to produce an invention 
with a satisfactory yield. Chitosan has three nucleophilic 
functional clusters—the main\\O. H. group at the C-6 position, 
a secondary\\O. H. group at the C-3 position and an -NH2 
group at the C-2 position.

Applying protecting clusters on the extremely reactive 
hydroxyl moieties is sought to create novel moieties on the 
amino responsibility of chitosan abilities. Since organic chemical 
reactions frequently involve hydroxyl protecting groups, 
there are many hydroxyls protective techniques accessible. 

Figure 1. Different sources of chitosan and chitin.



Brazilian Journal of Biology, 2023, vol. 83, e2765304/19

Abd El‐Hack, M.E. et al.

The secondary – O.H. group of chitosan cannot be protected 
because the triphenylmethyl group can only be added 
to the primary\\O. H. group. Three synthesis steps are 
also included in the process, which is done at 100°C 
(Benediktsdóttir et al., 2011).

Wuts and Greene (2006) indicated that TMS (trimethylsilyl) 
and TBDMS (tert-butyldimethylsilyl) ethers of silyl are 
simply formed from hydroxyl groups. In contrast, TBDMS 
ethers are stable and satirically hindered protective groups 
that show promise. Using TBDMS protection groups, 
(Kurita  et  al., 2002; Nagy, 2018) created an artificial 
method to shield the hydroxyl clusters of chitosan. To 
create a completely 3,6-O-TBDMS protected chitosan, the 
TBDMS moiety is added to the mesylate salt of chitosan in 
one phase of the technique. Applying protecting groups to 
the amino group of chitosan is anticipated to create novel 
moieties on the hydroxyl responsibility of the substance 
where chitosan is created when polyamines precipitate 
in alkaline liquids. Even though it offers medicinal 
qualities like ulcer-fighting (Fini and Orienti ,2003), 
wound-healing (Azad  et  al., 2004), and antibacterial 
capabilities as well as the capacity to lower cholesterol 
(Sugano et al., 1988). Chitosan’s R-NH3 

+ group, which 
are cationic, have mucoadhesive properties when it 

interacts with the negatively charged groups on mucosal 
surfaces (Kockisch et al., 2003). Also, protein-associated 
tight junctions endure revocable structural remodeling 
in response to interactions with protonated amine 
groups, which are followed by tight junction openings. 
The simplicity structure of chitosan may be chemically 
altered, notably in the C-2 position, causing derivatives 
with numerous possessions and possible uses, which 
is another feature that sets chitosan apart from other 
polysaccharide polymers (Huo  et  al., 2010). Likewise, 
Bashir et al. (2022) showed that owing to their exquisite 
biological characteristics, extensibility, and efficient 
consumption by intranasal mucosal cells to tumor cells.

Furthermore, chitosan and its nano derivatives could 
participate significantly in metabolic syndromes drug 
delivery. Developing anticancer medications, catalysis, 
gene delivery, sensor requests, packaging and wrapping 
supplies, cosmetic fabrics, and bioimaging is also 
progressing industrially for chitosan and its derivatives. 
The different possessions of chitosan and its derivatives 
make it a brilliant biomolecule for countless biomedical 
uses as revealed in Figure 2.

Figure 2. Biomedical uses of chitosan and its derivatives.
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4. The Production of Chitosan Nanoparticles

Chitosan nanoparticles were initially stated in 1994 
when (Ohya  et  al., 1994) anticipated consuming them 
to deliver the anticancer prescription 5-fluorouracil 
intravenously. These synthesized nanoparticles were 
formed by cross-linking and emulsifying chitosan. 
Meanwhile, these schemes have experienced considerable 
exploration for drug delivery tenacities. The innovative 
formularization has either been modified by utilizing 
various preparation procedures or for other uses, such as 
integrating active ingredients in toothpaste (Calvo et al., 
1997; Erbacher et al., 1998; El-Shabouri, 2002; Liu et al., 
2007a). Furthermore, numerous teams have formed fresh 
chitosan nanoparticle inventions with accompanying 
matrix-shaping machinery (Sarmento  et  al., 2006; 
Grenha et al., 2010).

Frequent approaches have been generated, primarily 
connecting emulsification, numerous coacervations, or 
even tiny variations. More specifically, the devices comprise 
desolvation (Tian and Groves, 1999), reverse micellar 
method (Orellano et al., 2017), ionic gelation, polyelectrolyte 
complexation (Sarmento et al., 2006), emulsion solvent 
diffusion (El-Shabouri, 2002), emulsion droplet coalescence 
(Tokumitsu et al., 1999), and All of these techniques fall 
under the category of bottom-up manufacture manners, 
which entail the gathering of compounds in solution to 
create specific structures, in this instance, nanoparticles 
(Chan and Kwok, 2011).

Bottom-up technologies frequently exhibit size 
polydispersity in their delivery systems, which might 
occasionally limit the effectiveness of nanoparticles 
(Wang et al., 2011). Chitosan, or one of its derivatives, is 
employed to make chitosan NPs. Because of chitosan’s special 
non-toxicity, polymeric cationic nature, biodegradability, 
mucoadhesive chitosan, great biocompatibility, and 
absorption-enhancing properties, the N-deacetylated 
derivative of chitin is a desirable biopolymer for making 
nanoparticles (Kunjachan  et  al., 2010). Chitosan is 
advantageous in creating nanoparticles due to its cationic 
character, which permits ionic cross-related with multivalent 
anions (Agnihotri et al., 2004), and its linear polyamine 
structure, which has a diversity of free amine clusters that 
are reachable for cross-linking.

Chitosan NPs have distinct properties that enable 
in vivo site-specific targeting and increased affinity for 
negatively charged biological membranes (Qi et al., 2004). 
As a result, they can be employed for an assortment of 
requests in different industries to load medicines efficiently, 
enzymes, and nucleic acids (Colonna et al., 2007) using a 
controlled release (Corradini et al., 2010). Because of the 
characteristics of the material and the manufacturing 
process, chitosan nanoparticles exhibit excellent chemical, 
morphological, and physical capabilities. Chitosan is soluble 
in acidic solutions like citric, tartaric, and acetic acids 
but insoluble in water (Furuike et al., 2017). It comes in 
low- and high-molecular-weight varieties with weights 
stretching from 3800 to 20,000 Da. Chitosan’s characteristics 
are substantially prejudiced by its molecular weight and 
level of deacetylation, especially when it comes to the 
creation of nanoparticles. Chitosan-based polymeric 

drug carriers, growth factors, anticancer medications, 
anti-inflammatories, antimicrobials, peptides, and other 
therapeutics have all been efficaciously administered 
(Sun et al., 2007).

Othman  et  al. (2018) indicated that the hydrophilic 
L-ascorbic acid and hydrophobic thymoquinone, a myriad of 
greatly effective multifactorial with inferior systemic intake, 
could be encapsulated collected in chitosan NPs schemes 
to escalate their therapeutic competence by indirectly 
participating to the improvement of pharmaceutical and 
medical areas. Also, pharmaceuticals can be delivered 
orally, transdermal, or intravenously using NPs as carriers. 
According to studies, chitosan NPs have been extensively 
employed in the medical and biological fields to remedy 
conditions like cancer (Nayak et al., 2016) and diabetes 
(Wong et al., 2017).

5. Metabolic Syndromes

With modernization and globalization, people’s lifestyles 
have been meaningfully rehabilitated, comprising less 
leisure and more employed hours. Furthermore, the 
persistent usage of electronic gadgets has prepared the 
lifestyle softly and increased the generation of diseases. 
One of the prevalent ailments is metabolic syndrome 
(Azad et al., 2004), which is a cluster of pathologies such 
as insulin resistance, obesity, dyslipidemia, hyperglycemia, 
and hypertension, that make susceptible to cardiovascular 
diseases (Nakhaei et al., 2019; Rossi et al., 2022). Even 
though prevailing international clusters have assembled 
to elucidate a consent characterization of “metabolic 
syndrome,” the identical has not been fulfilled for describing 
“metabolic dysfunction,” a purport demonstrating 
disordered metabolism on a continuum rather than a 
definitive diagnosis. According to the pathophysiology 
reports of MS, augmented insulin resistance, plasma-free 
fatty acids, inflammation indices, and oxidative stress are 
the main underlying features of MS (Rossi et al., 2022). 
Insulin is an indispensable element for tissue uptake of 
glucose, deterring lipolysis and hepatic gluconeogenesis. 
Higher circulatory free fatty acids (FFAs) can conquer 
insulin consent, which is connected with insulin resistance 
in obese persons (Fahed et al., 2022).

Moreover, protein kinase activity is repressed with 
circulating FFAs; this feature can lower muscle glucose 
consumed. Contrariwise, greater hepatic protein kinase 
levels boost the assembly of atherogenic ingredients, 
counting glucose, LDL, and TGs. Furthermore, the resultant 
hyperglycemia activates more insulin releasing, thus causing 
hyperinsulinemia. Oxidative stress is also involved with 
insulin resistance and can prevent adipocytes from producing 
adiponectin (Furukawa  et  al., 2004). The connection 
between belly fat in insulin resistance is considerable as 
lipolysis of belly fat leads to boosted circulation of FFAs to 
the hepatic, triggering the amplified synthesis of TGs and 
LDL (Nakhaei et al., 2019). Besides, visceral adipose tissue 
triggers greater levels of plasminogen activator inhibitor, 
augmenting heparin-binding epidermal growth factor- and 
prothrombotic state that vascular modeling and encourages 
smooth muscle cells (Slate-Romano et al., 2022).
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Previously, the association between MS and inflammation 
has been well documented through visceral obesity, which 
exaggerates insulin resistance. In this regard, the adipose 
tissue macrophages release TNF-α, which encourages the 
inactivation of insulin receptors in the thesis’s tissues, 
instigating lipolysis with the synthesis of FFAs, thus 
preventing the emancipating of adiponectin (Nakhaei et al., 
2019). Based on literature and clinical reports, there is a 
substantial connection between elevated amounts of TNF-α, 
obesity insulin and resistance (Wisse, 2004). The immune 
and adipocyte cells release IL-6 (interleukin-6), and its 
synthesis escalations with adipose tissue mass (Rocha et al., 
2022), which further encourages the hepatocytes to create 
C-reactive proteins, whose raised level has been involved 
with the etiology of MS (Devaraj et al., 2009). Moreover, it 
is also involved in stimulating RSA pathways (Wisse, 2004).

6. Impacts of Chitosan and Its Nanoformulations on 
Obesity and Dyslipidemia

Obesity is a persistently sustained metabolic condition 
described by an extreme buildup of body fat brought on by 
an unbalanced energy intake. Additionally, dyslipidemia 
describes unhealthily high levels of one or more lipid 
types in the blood, including higher levels of triglycerides 
and LDL (low-density lipoprotein) and reduced levels 
of HDL (high-density lipoprotein cholesterol), resulting 
from several abnormalities in structure, metabolism, 
antiatherogenic lipoproteins and biology of atherogenic 
(Srikanth and Deedwania, 2016). Chitosan has been 
established in numerous kinds of research to have effective 
anti-obesity and hypolipidemic properties. Furthermore, 
it has been shown that chitosan successfully suppressed 
hypertrophy and adipocyte hyperplasia in HFD (high-fat 
diet)-stimulated obese rat models (Bai et al., 2018; Pan et al., 
2018; He et al., 2020; Lee et al., 2021). It also decreases 
body weight growth, hepatic fat gathering, blood lipid 
levels, hypertrophy, and adipocyte hyperplasia.

One of the major health issues associated with 
modern wealthy society is obesity. In 2015, 2 billion 
adults worldwide—or 38-40% of the global population—
were classified as overweight or obese (GBD, 2017). 
Several persistent illnesses, including breast cancer 
(BC), have greater rates of death and morbidity when 
an individual is obese. The elderly population has a 
rising rate of obesity (Shekhar et al., 2021; Fang et al., 
2022). According to Chen  et  al. (2022), estrogen and 
inflammatory are associated with fat accumulation and 
hypertrophy, which may contribute to the occurrence of 
BC in postmenopausal women. Uncertainty surrounds 
the function of adipose tissue in cancer patients, though. 
Patients who are somewhat overweight fare better from 
treatment, illuminating the “obesity paradox.” Weight 
control and prevention programs should be added to 
current treatments, and a tailored medical strategy should 
consider adiposity reduction. Liu et al. (2023) state that 
mitochondria are essential organelles for synthesizing 
energy, cell metabolism, and signaling. They also play 
a role in the growth and spread of tumors. Biology and 
synthesis in cancer cells can be enhanced by mutations 

in mtDNA and the tricarboxylic acid cycle (TCA) enzymes. 
Because mitochondria rely on glycolysis and oxidative 
phosphorylation for energy, they are the focus of cancer 
treatment. Targeting these pathways and metabolism may 
be a useful treatment approach for several malignancies.

The importance of mitochondria in carcinogenesis 
was highlighted by Kaelin Junior and McKnight (2013), 
who also discussed how their metabolites affect gene 
expression and cell signaling through epigenetic controls. 
The basic function of mitochondria is energy production. 
Furthermore, metabolites in the TCA have been shown to 
promote epigenetic alterations such as DNA methylation 
and post-translational modification of histones (Liu et al., 
2022). These alterations control how histones interact with 
chromatin remodeling complexes and DNA. The tumor 
microenvironment can alter cell fate through epigenetic 
control. Tumors can be targeted by mutations in important 
TCA cycle metabolic enzymes, and cell proliferation can 
be inhibited by inhibitors that target cancer stemness. 
Designing treatments for the diagnosis and treatment 
of cancer can be aided by knowledge of carcinogenesis, 
mitochondrial metabolites, and epigenetics.

According to Abdullah et al. (2024), broiler weight gain 
and feed conversion ratio (FCR) were enhanced by feeding 
copper nanoparticles at a dose of 15 mg/kg. Furthermore, it 
has enhanced the bone and muscular features of broilers.

Chitosan has also been shown to lessen plasma lipids 
and increase body weight in mice (Kumar et al., 2009). 
Furthermore, Kamal et al. (2023a) described that the chitosan 
0.2 g/kg diet enhanced the serum triglyceride and HDL, 
improving the health profile of NZW rabbits in Egyptian 
environments. The suppression of adipogenesis machinery 
is one method for avoiding and managing obesity.

In vitro trials demonstrated that chitosan could 
constrain the differentiation of 3T3-L1 preadipocytes 
and lessen fat gathering by decreasing the transcripts of 
PPAR-γ (peroxisome proliferator-activated receptor γ) and 
CCAAT enhancer-binding proteins α (C/EBP α), which are 
the main adipogenesis-associated transcription features 
(Cho et al., 2008; Kong et al., 2017). Additionally, chitosan 
reduced the transcript of associated elements in 3T3-L1 
adipocytes, comprising leptin, adiponectin, resisting, FAS 
(fatty acid synthase), FABP (fatty acid binding protein), 
and GLUT4 (glucose transporter 4); (Rahman et al., 2008; 
Lee et al., 2021).

Remarkably, Bahar et al. (2013) described that chitosan 
repressed the de-methylation of leptin gene promoter in 
3T3-L1 adipocytes, representing that chitosan decreased 
the differential of adipocytes via epigenetic machinery. 
Additionally, suppression of the PPAR-signaling way 
was one of the methods by which chitosan prevented 
hypertrophy and adipocyte hyperplasia in HFD-fed rats 
by controlling the transcriptomic related to lipogenesis 
in the adipose tissue (Huang et al., 2015; Pan et al., 2018).

According to an in vitro investigation, chitosan stimulated 
the PPAR γ signaling pathway to reduce fat formation in 
HepG2 cells exposed to palmitic acid (Bai et al., 2018). Also, 
chitosan has been shown to be efficient in reducing hepatic 
lipid accumulation, hepatic steatosis, and serum activities of 
both aspartate and alanine aminotransferases in obese rats 
or mice generated by HFD (Liu et al., 2018; Tao et al., 2019). 
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Chitosan enhanced intestinal barrier anomalies and 
dysbiosis of the gastro-microbiota in mice on an HFD, 
according to research by (He et al., 2020). Notably, the 
release of LPS (lipopolysaccharide), a constituent of the 
cellular structure of Gram-negative bacteria, into the 
blood to promote inflammation resulted from intestinal 
epithelium malfunction and dysbiosis of microbiota 
(Cani and Jordan, 2018). Furthermore, chitosan was found 
to reduce inflammatory blood markers, hepatic, fat tissues, 
and colon of HFD-triggered obese rats or mice, according to 
several research (Bai et al., 2018; He et al., 2020). These results 
mention that chitosan and its nano-formulation might 
be utilized to prevent or treat dyslipidemia and obesity.

The potential role of chitosan and its nano-formulation 
may inhibit adipogenesis, control liver lipid metabolism, 
enhance intestinal barrier malfunction, and dysbiosis of 
the gut microbiota (Figure 3). Moreover, Chen et al. (2020) 
found that rosuvastatin-loaded chitosan nanoparticles 
are more effective in depressing blood fat than clean 
rosuvastatin. Its assistance in macerating the calcification 
of different valve tissues in rabbit models. Also, Luo et al. 
(2021) presented that the management of chitosan NPs 
resulted in inferior blood LDL, total cholesterol, and uric 
acid. Furthermore, Abd-Elhakeem et al. (2016) signposted 
that giving rats chitosan and chitosan NPs reduced body 
weight gain and serum cholesterol levels.

In the same context, Oksal et al. (2020) mentioned that 
the chitosan-Pandanus tectorius fruit extract nanoparticles 
could decline the total cholesterol, LDL, and triglyceride 
amounts but also escalate the HDL amounts. Also, chitosan-
Pandanus tectorius fruit extract nanoparticles will likely 
be applied as a novel unconventional management for 

hypercholesterolemia via the SR-B1 path. Additionally, 
Sriamornsak and Dass, (2022) mentioned that chitosan and 
chitosan NPs could be utilized to create various medication 
formulations. They also naturally lower cholesterol. As 
illustrated in Table 1, we summarized some trials on the 
favorable impacts of chitosan and nano-formulation on 
obesity and dyslipidemia.

7. Impacts of Chitosan and Its Nanoformulation on 
Hyperglycemia and Diabetes Mellitus

Diabetes mellitus is distinguished by chronic 
hyperglycemia caused by unbefitting secretion or 
incompetent uptake of insulin (Kharroubi and Darwish, 
2015). The anti-diabetic action of chitosan has been 
presented using different diabetic models. The management 
of chitosan enhanced the broad state and diabetic 
indications, diminished the amounts of glucose in the 
blood and urine, as well as regularized decreased glucose 
tolerance in newborn STZ (streptozotocin)- triggered type 2 
diabetic in rats, a model of non-insulin- entrusted diabetes 
mellitus (Liu et al., 2009). Ju et al. (2010) demonstrated 
that in insulin-resistant rats produced by a high-energy 
diet combined with STZ, chitosan administration for eight 
weeks led to diminished fasting insulin amounts and 
fasting blood glucose, further elevated insulin sensitivity 
directory and enhanced oral glucose tolerance.

According to Katiyar et al. (2011), chitosan significantly 
improved renal dysfunction and blood glucose control in 
alloxan-induced diabetic rats. Chitosan has also been shown 
to be inferior to blood glucose in mice (Zheng et al., 2018). 

Figure 3. Medical role of chitosan nanoparticles.
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In Korean patients between the ages of 20 and 75, a chitosan 
addition of 1.5g per day for three months effectively lowered 
the postprandial serum glucose amounts, according to 
Kim et al. (2014a). Additionally, Yuan et al. (2009) described 
that chitosan reduced the damage of pancreatic islets, nuclear 
pyknosis of pancreatic cells, and atrophy of pancreatic cells in 
STZ-triggered diabetic rats. Additionally, in vitro research has 
demonstrated that chitosan can enhance pancreatic cell line 
apoptosis caused by STZ and stimulate cell growth (Ju et al., 
2010). Yuan et al. (2009) indicated that chitosan increased 
the levels of superoxide dismutase and total antioxidant 
capability and depressed the amount of malondialdehyde 
(MDA) in the serum of STZ-triggered rats.

Karadeniz et al. (2010) also showed that chitosan could 
have free radical scavenging properties to defend against the 
oxidative stress that hydrogen peroxide (H2O2) causes in 
cells. These results imply that chitosan may serve as a free 
radical scavenger or improve the antioxidant competence 
to protect pancreatic cells. It can be inferred that chitosan’s 
ability to lower oxidative stress and prevent human islet 
amyloid polypeptide aggregation makes it an effective 
antidiabetic medication (Meng et al., 2020).

Insulin resistance is one of the first signs of diabetes. 
Chitosan has decreased insulin resistance, which is 
mentioned to lower sensitivity and responsiveness to 
insulin in board tissues such as the hepatic, adipocytes, 
and skeletal muscle tissues (Czech, 2017). Ju et al. (2010) 

revealed that chitosan supplementation increased the 
insulin sensitivity marker and glucose tolerance in 
high-energy diet-paired STZ-triggered diabetic mice. 
Additionally, mouse research found chitosan dramatically 
reduces insulin resistance (Zheng et al., 2018). Numerous 
essential elements of the insulin signaling pathway, 
comprising the insulin receptor substrate, insulin receptor, 
phosphoinositide 3-kinase, and Akt, have been identified 
(James et al., 2021). By blocking the actions of glucoamylase 
and intestinal sucrose and decreasing the mRNA transcript 
of the sucrase-isomaltose complex in mice, long-term 
supplementation with chitosan dramatically diminished 
the amounts of glycated hemoglobin A1c and blood 
glucose (Kim  et  al., 2014b). A study by Jo  et  al. (2013) 
described that chitosan diminished the SI multifaceted 
mRNA transcript and hindered the glucosidase activities 
in human intestinal cells.

Chitosan is suitable for use because of its precautionary, 
biodegradability, biocompatibility, strong adhesiveness, ease, 
and permeability in the intestinal region (Souto et al., 2019). 
Additionally, it is known that chitosan-based nanoplatforms 
can deliver anti-cancer medications (Jaiswal  et  al., 
2021). There are signs that chitosan-based nanoparticles 
containing oleic acid can protect insulin from being 
degraded by enzymes (Elsayed et al., 2010). Also, applying 
a complexing manager in chitosan nanoparticles improved 
insulin absorption (Lin et al., 2007; Chuang et al., 2013). 

Table 1. Summary of some studies on the beneficial effects of chitosan and nano-formulation on obesity and dyslipidemia.

Study Mode Additive/dose Findings References

In vitro model COS (1-3 kDa) COS decreased lipid accumulation. Cho et al. (2008)

Inhibited adipocyte differentiation.

Mice 200 mg/kg of COS COS can control diet intake, body weight gain, blood 
glucose, and lipid profiles.

Kumar et al. (2009)

In vitro model 1, 10, 100, 500 and 1000 µg mL-1 COS inhibited the differentiation of 3T3-L1 
preadipocytes.

Kong et al. (2017)

Rates COS capsules COS capsules can regulate body weight gain, lipids, 
and serum alanine aminotransferase.

Pan et al. (2018)

Mice L MW COS(400 mg kg−1) COS regulated the dysfunctional gut microbiota and 
alleviated low-grade inflammation

He et al. (2020)

Rats GO2KA1 (200 to 800 µg/mL) GO2KA1 may prevent diet-induced weight gain. 
Inhibited adipogenesis.

Lee et al. (2021)

Rabbits 0.2 g/kg of chitosan Chitosan increased triglyceride and HDL, improving 
the health status of NZW rabbits.

Kamal et al. (2023a) 

chickens 14-28 g/kg of COS COS increased the relative weight of the liver. 
Increased HDL and decreased abdominal fat.

Zhou et al. (2009)

Rates 5% chitosan /kg Chitosan reduced the absorption of dietary fat and 
cholesterol in vivo.

Zhang et al. (2008)

Improve hypercholesterolemia.

Rates 450 mg/kg/day of CHNPs CHNPs decreased body weight gain and serum lipid levels. Abd El-Hack et al. (2020)

Rabbits TPP Tween-80 Drug-loaded NPs significantly lowered blood lipid 
levels compared to pure drug

Chen et al. (2020)

Chitosan Ionotropic gelation

In vivo Selenium Chitosan Chemical 
reduction

Reduced atherosclerotic lesions in ApoE-/-mice. Xiao et al. (2021)

Inhibited hyperlipidemia.

in vivo NaTPP+Tween Reduced triglycerides and LDL. Oksal et al. (2020)

Chitosan powder Increased HDL.
COS = chitosan oligosaccharides; GO2KA1 = the supplementation of low molecular chitosan oligosaccharide; CHNPs = chitosan nanoparticles; 
TPP = tripolyphosphate; NaTPP = chitosan and sodium tripolyphosphate; NZW = New Zealand white rabbits; NPs = Nanoparticles; 
HDL = High density lipoprotein; LDL = Low dinesity lipoprotein; MW = Molecular weight.
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To increase hydrophilicity, mucoadhesiveness, and 
permeability in an alkaline media, chitosan derivatives 
such as thiolated chitosan, trimethyl chitosan, carboxylated 
chitosan, etc., were utilized in the production of nanoparticles 
(Wong et al., 2017). Additionally, at a pH of 7.4, it was found 
that trimethylated chitosan nanoparticles linked with 
insulin were steadier with constant insulin statements 
(Mi et al., 2008).

According to Abd El-Hameed (2020), the new 
polydatin-coated (POL) chitosan-nan nanoparticle 
formulation is biocompatible. It may gradually improve 
diabetic rats’ nephropathy compared to free POL. 
The research also found that POL-nanoparticles have 
nephroprotective activity on diabetic nephropathy may 
be owing to its antidiabetic capability via the elevation 
of insulin secretion, regulation of HbA1c and blood 
glucose, (1) blocking oxidative stress synthesis through 
its antioxidant upshot and dropping AGEs creation, (2) its 
function as an anti-inflammatory mediator, and (3) The 
greatest beneficial effect of POL chitosan nanoparticles 
may be accredited by improving absorption and 
prolonged-release possessions.

The study of Salem  et  al. (2021) informed that 
chitosan nanoparticles could enhance the deficiency of 
fat metabolism as powerfully related to transcriptomics 
alterations correlated with lipogenesis and oxidative 

markers. Additionally, camel yogurt with 2% chitosan 
nanoparticles had good sensory and microbiological quality. 
Likewise, according to a study, 20 mg/kg of chitosan and 
nano-chitosan in guinea pigs dramatically decreased fasting 
blood glucose and enhanced renal function (Sami et al., 
2022). According to Zhang et al. (2021), nano chitosan-
zinc supplementation can enhance piglet small intestine 
antioxidant capacity and growth performance, reducing 
weaning stress. Chandrasekaran et al. (2020) reported that 
both G- and G+ bacteria are inhibited by the biological use 
of chitosan nanoparticles, alone or in combination with 
other chemicals. Also, Zhang et al. (2012) reported that 
cationic chitosan might increase the strong adhesiveness 
of polylactic-co-glycolic acid nanoparticles in the GIT.

Additionally, Adetunji  et  al. (2022) showed that 
nanoparticles significantly function in drug delivery to 
delicacy various metabolic syndromes. In the remedy 
of different sicknesses, including cancer and metabolic 
disorders, nanomaterials can potentially reduce the 
dosage of medications or their negative side effects. All 
these findings might suggest that chitosan and chitosan 
NPs can prevent diabetes by preventing the enzymes that 
break down carbohydrates in the intestine. According to 
in vivo and in vitro investigations, the beneficial effects of 
chitosan and nano-formulation on diabetes mellitus and 
hyperglycemia are illustrated in Table 2.

Table 2. Summary of some studies on the beneficial effects of chitosan and nano-formulation on diabetes mellitus and hyperglycemia.

Study Mode Additive/dose Findings References
Pigs 1000 ppm chitosan Chitosan exhibited anti-obesogenic potential through alterations 

to appetite and feeding behavior affecting satiety signals.
Egan et al. (2016)

Man chitosan capsules (500 mg) Reduced the mean body weight by up to 3 kg during the 90-day 
study period.

Trivedi et al. (2015)

Improvement in body composition, anthropometric 
parameters, and improvement in quality-of-life score.

Pigs 1000 ppm chitosan Chitosan has affected potent anti-obesity/body weight control. Egan et al. (2015)
Mice COS (1.0 mg/mL, dissolved in 

water, about 200 mg/kg/d)
Improved glucose metabolism. Zheng et al. (2018)

Reshaped the unbalanced gut microbiota of diabetic mice.
Mice COS Reduced the aggregation of hIAPP. Meng et al. (2020)

COS protected -cells from cytotoxicity of amyloidogenic hIAPP.
Mice GO2KA1 (MW< 1000 Da) GO2KA1 may prevent diabetes type 2, via the inhibition of 

carbohydrate hydrolysis enzymes.
Kim et al. (2014b)

Rats COS, (125-250 µg/25 µl, 
daily)

COS has antidiabetic. Katiyar et al. (2011)
COS has antihyperlipidemic and antioxidative activities.

Rats COS, 500 mg/kg COS reduced fasting blood glucose. Ju et al. (2010)
COS increased the insulin sensitivity index and improved oral 

glucose tolerance.
In vitro chitosan NPs (100-500 nm) Enhanced the general situation and diabetic symptoms. Liu et al. (2007a) 

Reduced the levels of blood and urine glucose.
In vitro Insulin loading on NPs with 

chitosan.
Reduced the blood glucose level in a diabetic. Lin et al. (2007)

Rats CN (3 mg kg–1)/day CN improved the impairment of lipid metabolism. Salem et al. (2021)
Pigs 2% of nano-chitosan Nano-chitosan reduced fasting blood glucose. Sami et al. (2022)

Chitosan and nano-chitosan improved the function of the kidney 
(urea and creatinine) in diabetic nephropathy.

Piglets CP-Zn 
(5-10% zinc and 50-60% chitosan)

CP-Zn increased the activity of carbohydrate digestion-related 
enzymes and mRNA expression.

Zhang et al. (2021)

CP-Zn improved the antioxidant capacity of the jejunum by 
activating the Nrf2 signaling pathway.

CP-Zn = nano chitosan-zinc complex; CN = chitosan nanoparticles; COS = chitooligosaccharides; GO2KA1 = the supplementation of low molecular 
chitosan oligosaccharide; hIAPP = human islet amyloid polypeptide; NPs = Nanoparticles; MW = Molecular weight; Nrf2 = nuclear factor erythroid 
2-related factor 2.
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8. Impacts of Chitosan and Its Nanoformulation on 
Hypertension

Cardiovascular illness, chronic renal disease, and 
cognitive impairment are all conditions that are thought 
to be significantly increased by hypertension (Iadecola and 
Gottesman, 2019; Fuchs and Whelton, 2020). Heredities, 
the stimulation of the RAAS (renin-angiotensin-aldosterone 
system), the stimulation of the sympathetic nervous 
scheme, endothelial dysfunction, vascular remodeling, 
insulin resistance, and defective ion channels are specific 
the elements linked to the pathophysiology of hypertension 
(Oparil et al., 2003). According to one of the investigations, a 
single oral dosage of chitosan trimer (2.14 mg/kg) effectively 
lowered blood tension in impulsively hypertensive rat 
models. Chitosan’s ability to lower blood pressure may 
be connected to its ability to suppress RAAS and alleviate 
endothelial dysfunction.

Chitosan reduced ACE (angiotensin-I converting enzyme) 
activities at different polymerization levels (DP), ranging 
from 1 to 10 (Park et al., 2008). The chitosan trimer (DP = 3) 
displayed all the oligosaccharides’ strongest inhibitory 
action. Additionally, the MW (molecular weight) degree of 
DD (deacetylation) of chitosan affects its ability to inhibit 
ACE. Chitosan with a regular MW of 1-5 kDa has greater ACE 
restrained action than chitosan with a regular MW of <1 kDa 
or 5-10 kDa (Park et al., 2003).

Liu  et  al. (2007b) stated that chitosan decreased 
intracellular oxidative markers, suppressed the construction 
of MDA, restored the actions of cellular antioxidants, 
increased levels of NO (nitric oxide) and NO synthase, 
and decreased cell apoptosis to decrease H2O2-triggered 
oxidative stress in endothelial cells. Also, Li et al. (2014) 
demonstrated that chitosan reduced the O-GlcNAc 

transferase-dependent NF-B’s O-GlcNAcylation, inhibiting 
LPS-induced vascular endothelial inflammatory response. 
These results demonstrated that chitosan might ameliorate 
endothelial dysfunction and exhibit an anti-hypertensive 
effect by reducing inflammation and oxidative stress.

Accordingly, Tao et al. (2021) mentioned that chitosan 
has useful impacts on different metabolic syndromes 
constituents, including hyperglycemia, diabetes mellitus, 
obesity, dyslipidemia, and hypertension. According to 
Sharma  et  al. (2018), the study’s encouraging findings 
validated the possible use of chitosan in preparing 
nebivolol-loaded chitosan NPs. Additionally, chitosan-coated 
polymers are recommended to facilitate oral management 
by enhancing the drug’s solubility (Niaz et al., 2016). Like 
other polymeric nanoparticles (PNPs), Chitosan-based 
polymers have extended-release capabilities that can 
boost medicinal efficacy without increasing drug dosage, 
preventing negative side effects. Also, Chadha et al. (2012) 
presented that chitosan PNPs could treat hypertension 
caused by deoxycorticosterone acetate salt in rats in vivo. 
Additionally, Auwal et al. (2018) reported that chitosan 
PNPs protecting food-based antihypertensive biopeptides 
against gastrointestinal degradation are a secure and 
possibly appealing source of nonpharmaceutical treatment 
of treatment-resistant hypertension. Furthermore, 
Chinh  et  al. (2018) demonstrated that polylactic acid/
chitosan nanoparticles carried the Ca2+ channel blocker 
nifedipine to inferior animal blood tensions.

In the other study, Auwal et al. (2017) found that ACE-
inhibitory biopeptides stabilized by chitosan nanoparticles 
can successfully lower blood tension in hypertensive people 
for a protracted duration. In Table 3, we demonstrated the 
main findings of some investigations on the valuable effects 
of chitosan and nano-formulation on hypertension in Table 3.

Table 3. Summary of some studies on the beneficial effects of chitosan and nano-formulation on hypertension.

Study Mode Additive/dose Findings References
Rats chitosan trimer 

(2.14 mg/kg)
Chitosan reduced blood pressure in spontaneously hypertensive 

rat models
Hong et al. (1998)

In vitro COSs with different MW 
and DD

The DD value and MW of COSs are important factors affecting 
renin-inhibitory activity.

Park et al. (2008)

Mice COS Chitosan might ameliorate endothelial dysfunction and exhibit 
an anti-hypertensive effect.

Li et al. (2014)

Rats 5% high-MW chitosan Used as pharmacotherapies or as a dietary fiber against 
hypertension, dyslipidemia, and obesity

Chiu et al. (2017)

Mice chitosan oligosaccharide Chitosan has useful effects on various components of metabolic 
syndrome, including obesity, dyslipidemia, diabetes mellitus, 

hyperglycemia, and hypertension.

Tao et al. (2021)

Rats Lecithin/CHNPs loaded 
with HCT

NPs increased the onset and duration of antihypertensive activity in 
DOCA-salt-induced hypertensive rats conclusively demonstrating 

the improved therapeutic efficacy of HCT when formulated as NPs.

Chadha et al. (2012)

Mice CHNPs Loading Nifedipine The polylactic acid/CHNPs loading nifedipine is suitable to apply 
in the treatment of hypertension.

Chinh et al. (2018)

Rats CHNPs fabricated by 
ionotropic gelation

The ACE-inhibitory biopeptides stabilized by chitosan 
nanoparticles can effectively reduce blood pressure for an 

extended period in hypertensive.

Auwal et al. (2017)

In vitro Captopril loaded CHNPs Reported antihypertensive nano-cuticles based on chitosan 
improved the oral administration of currently available 

hydrophobic drugs while providing an extended-release function.

Niaz et al. (2016)

SBs loaded Chitosan The nanoparticles revealed sustained cumulative release for 12 h 
and improved efficacy with ACE-inhibitory.

Auwal et al. (2018)

Humans 
In vitro

Nebivolol loaded CHNPs Chitosan nanoparticles enhanced the oral bioavailability of 
nebivolol and other lipophilic drugs. Sharma et al. (2018)

CHNPs = chitosan nanoparticles; ACE = angiotensin I-converting enzyme; SPs = the stone fish biopeptides; HCT = hydrochlorothiazide; 
DOCA = Deoxycorticosterone acetate; DD = degree of deacetylation; MW = molecular weight; COSs = chitooligosaccharides; NPs = Nanoparticles; 
SBs = Stone fish biopeptides.
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9. Effects on Molecular and Genetics Perspectives 
(Crispr-Cas9 Delivery)

Mutations instigate most hereditary metabolic 
syndromes in genes that code for enzymes; enzyme 
deficiency or inactivity leads to scarcities of the enzyme’s 
product or aggregation of material precursors or metabolites 
(Groop, 2000). Discovering and treating during the early 
stages of these syndromes focuses on emergency attention 
and certainty, improving organ function. Recently, gene 
editing or therapy has been a hopeful approach for treating 
challenging diseases, including metabolic syndromes. The 
fruitful delivery of genes is a perilous step for gene therapy. 
The utmost updated developed approach of gene editing 
is CRISPR-Cas9 (Clustered regularly interspaced short 
palindromic repeats- CRISPR associated 9) technology 
that, a competent gene-editing implemented according 
to the anti-viral mechanism controlled by some naturally 
occurring bacteria (Abdelnour et al., 2021). This technique 
could allow for the deletion or insertion of a causative 
genetic component, paving a probability for the whole 
cure of the syndrome.

Viral delivery is the main gene editing choice and 
has been widely applied. However, it exhibits some 
drawbacks, such as replication competence, transduction 
efficiency, integration, small insert size, inactivation 
by the accompaniment path, and restricted host range 
owing to the necessity of cell division for transduction 
(Kay  et  al., 2001). Based on the above drawbacks, 
searching for a biocompatible and safe delivery system 
is urgently necessary. In this era of biotechnology, 
numerous nanoparticles encompass lipid-based, glycolipid, 
inorganic polymers, gold nanoparticles, alginate, and 
chitosan nanoparticles are expansively used currently 
for preclinical and clinical investigations (Mout and 
Rotello, 2017; Abdelnour  et  al., 2021). Regarding the 
potential application of chitosan in the delivery system 
of gene editing, the study of (Saberi et al., 2009) reported 
that siRNA delivery policy includes polyethylene glycol, 
chitosan lactate, conjugated with glycyrrhetinic acid and 
contains the CRTC2 gene as a target. This CRTC2-siRNA 
conjugate system effectively silences the CRTC2 gene that 
regulates hepatic gluconeogenesis in T2DM (Saberi et al., 
2009). Jean et al. (2012) researched the silence of DPP-4, 
an antagonist of incretin, GLP-1 that encourages insulin 
relief and sustains glucose homeostasis.

The formulated chitosan-DPP-4-siRNA nano-complexes 
exhibited substantial silence of DPP-4 in cultured situations 
without seeming cytotoxicity Jean et al. (2012). Moreover, 
Sharma et al. (2021) developed nano micelles incorporating 
chitosan that targets adiponectin, conjugated to the oleic 
acid and adipose homing peptide to ease the delivery 
of pADN (plasmid adiponectin) to adipocytes. This 
nano micelle of chitosan (112 nm) is cationic due to the 
presence of chitosan that shows a protective modulator 
for genes against enzymatic degradation with a highly 
encapsulated rate of around 93%. The outcome revealed 
betterment of insulin sensitivity for up to 6 weeks with 
single subcutaneous administration of pADN-chitosan-
oleic-AHP in vivo and in vitro using a diabetic rat model 
(Banerjee et al., 2020).

Commercial drugs used as anti-inflammatory mediators 
have numerous side effects and are inappropriate for long-
term usage. A research group by Luo et al. (2018) targeted 
two such factors, e.g., monocyte chemoattractant protein-1 
(MCP-1) and tumor necrosis factor-α (TNF-α) that are 
pro-inflammatory adipocytokines, existing in adipocytes 
macrophages (ATMs) and adipocytes and lead to knockdown 
by applied shRNAs against these features. The chitosan 
nanomicelle/pDNA polyplexes were subcutaneously treated 
in an obese-diabetic mice model. The outcome showed 
decreasing levels of numerous classes of pro-inflammatory 
cytokines such as IL-6 IL-1, TNF-α, and MCP-1, whereas 
the insulin-sensitizing adipokine, adiponectin levels were 
augmented. After the literature screening, limited works 
incorporate CRISPR-Cas9 (Luo et al., 2018; Banerjee et al., 
2020; Sharma et al., 2021), nanoparticle-based delivery in 
treating metabolic syndromes. This strategy is indisputably 
a commanding policy, as per the recent study and it 
can proficiently silence the specific causative genes 
related to some metabolic syndromes. In the upcoming 
investigations, modulations of the transcriptomics of the 
causative genes were prepared and potentially applied to 
the miracle molecules, CRISPR-Cas9, delivered by chitosan 
nanoformulations.

10. The Potential Challenges of Utilizing Chitosan and 
its Nanoformulations

According to Yadav  et  al. (2023), advances in 
nanotechnology have created nanocomposites based on 
chitosan with better qualities. These nanocomposites 
have excellent thermal, mechanical, conductive, and 
antibacterial qualities. They are efficient in delivering 
drugs and aid in the healing of wounds. Biomedical sectors 
hold great promise for chitosan-based nanocomposites, 
notwithstanding obstacles related to toxicity and in vivo 
assessments. In vitro testing and fabrication have been 
the main topics of previous research, but more work is 
required to address these issues.

According to Kaur  et  al. (2023), nanoscience and 
technology were used more and more in targeted 
drug administration to increase therapeutic efficacy 
and safety over the previous 20 years. Biodegradable 
polymers, such as those found in CS drug delivery 
systems, provide an alternative to controlled drug 
release through the nose. These carriers represent a 
new paradigm in medication delivery because of their 
ability to treat neurodegenerative illnesses. Nasal drug 
delivery (NDD) is a non-invasive technique that shows 
great promise for efficiently administering a wide range 
of pharmaceuticals, including high molecular peptide 
and protein therapies and low molecular polar chemicals 
(Weyers et al., 2022). Therefore, the nasal mucosa serves 
as the main portal through which various therapeutic 
drugs are directed to specific disease-causing locations 
that enter the body (Kurono, 2022). As a result, in 
contrast with parenteral and oral administrations, the 
nasal cavity’s high vascularity expedites regional and 
systemic pharmaceutical absorption via the nasal mucosa, 
enabling fast therapeutic action (Chavda  et  al., 2022). 
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Additionally, its ability to get past the hepatic first-pass 
metabolism and blood-brain barrier (BBB) is another 
important benefit (Nojoki  et  al., 2022; Khatri  et  al., 
2023). Because of this, lower pharmaceutical doses may 
be needed to produce more beneficial effects with fewer 
negative effects.

By necrotic biofilm construction, decreasing its 
significant components, and preventing microbial 
proliferation, El-Naggar  et  al. (2023) suggested that 
the encouraging findings of the research study in 
biofilm inhibition motivate usage as a natural, safe, and 
biocompatible anti-adherent covering in antibiofouling 
membranes, medical bandages/tissues, and packaging for 
food. According to Virmani et al. (2023), chitosan and its 
modified derivatives are employed in pharmaceuticals to 
produce nanoparticles, medication delivery, and cancer 
site targeting. These nanoparticles are desirable for many 
anticancer medications due to their increased potency, 
efficacy, cytotoxicity, and biocompatibility.

Chitosan is widely used in biotechnology, medicine, 
and agriculture due to its unique properties. However, its 
insoluble nature and poor mechanical properties limit its use 
in biomedical fields. Modifications can increase solubility, 
creating new derivatives with enhanced properties. Chitosan 
is also used in wound dressings, speeding up healing and 
protecting against infection. On the other hand, chitosan, a 
versatile drug delivery system, has been studied extensively 
over the past 20 years. However, cytotoxic impacts are still 
present, and further research is needed to reduce toxicity. 
Despite numerous studies, there are still few uses for chitosan 
in the medical field. Further investigation into drug delivery 
methods, toxicology, and security concerns is crucial.

11. Conclusions

Chitosan is one of the utmost discovered bio-based 
polymers. According to WHO reports, chitosan is commonly 
approved and recognized as safe eminence as a food element. 
Due to its biodegradability and biocompatibility, chitosan has 
a variety of multifaceted uses, with a distinctive prominence 
on therapeutic uses and drug delivery schemes. Moreover, 
the new form of chitosan nanoparticles or chitosan alone has 
numerous proposes in non-parenteral drug management 
for metabolic syndromes such as insulin resistance, 
obesity, diabetes mellitus, dyslipidemia, hyperglycemia, 
and hypertension due to their physical structures and 
absence of toxicity. In addition, chitosan nanoparticles 
have been considered in the pitch of nanomedicine for 
the formation of novel therapeutic drug schemes due to 
their enhancement of the bioavailability of drugs and their 
inferior toxicity, sensitivity, and specificity. Recently, the 
chitosan nanoparticle-based delivery of CRISPR-Cas9 has 
been applied in treating metabolic syndromes. Furthermore, 
the wide range of chitosan NPs has revealed therapeutic 
likely in various metabolic syndromes.
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