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Abstract
Many anuran amphibians deposit their eggs in foam nests, biostructures that help protect the eggs and tadpoles 
from predators. Currently, there are no other identification and description studies of the cultivable microbiota 
role in the nests of the Leptodactylid frogs such as Physalaemus cuvieri, Leptodactylus vastus and Adenomera 
hylaedactyla. This study aimed to isolate and identify the culturable bacteria from these three anuran species’ 
nests, as well as to prospect enzymes produced by this microbiota. Foam nests samples and environmental samples 
were diluted and viable cell count was determined. Bacterial morphotypes from foam nest samples were isolated 
through spread plate technique. Isolates’ DNAs were extracted followed by rRNA 16S gene amplification and Sanger 
sequencing. To evaluate their enzymatic potential, the isolates were cultured in ATGE medium supplemented with 
starch (0.1% w/v), gelatin (3% w/v) and skimmed milk (1% w/v), to verify amylase and protease activity. A total of 
183 bacterial morphotypes were isolated, comprising 33 bacterial genera. Proteobacteria phylum was the most 
abundant in all the three nests (79%). The genera Pseudomonas and Aeromonas were the most abundant taxon in P. 
cuvieri and L. vastus. In A. Hylaedactyla, were Enterobacter and Bacillus. Regarding enzymatic activities, 130 isolates 
displayed protease activity and 45 isolates were positive for amylase activity. Our results provide unprecedented 
information concerning culturable bacterial microbiota of the foam nests of the Leptodactylid frogs, as well as 
their potential for biomolecules of biotechnological interest.

Keywords: culturable, enzymes, prospection, Leptodactylus vastus, Physalaemus cuvieri, Adenomera hylaedactyla, 
amphibian.

Resumo
Muitos anfíbios anuros depositam seus ovos em ninhos de espuma, bioestruturas que ajudam a proteger os ovos e 
girinos de predadores. Atualmente, não existem relatos de identificação e descrição do papel da microbiota cultivável 
nos ninhos de sapos da família Leptodactylidae, como Physalaemus cuvieri, Leptodactylus vastus e Adenomera 
hylaedactyla. Este estudo teve como objetivo isolar e identificar as bactérias cultiváveis presentes nos ninhos 
dessas três espécies de anuros, além de prospectar enzimas produzidas por essa microbiota. Amostras de ninhos 
de espuma e amostras ambientais foram diluídas, e a contagem de células viáveis foi determinada. Os morfotipos 
bacterianos das amostras de ninhos de espuma foram isolados por meio da técnica de spread plate. O DNA dos 
isolados foram extraídos, seguidos pela amplificação do gene rRNA 16S e sequenciamento Sanger. Para avaliar o 
potencial enzimático, os isolados foram cultivados em meio ATGE suplementado com amido (0,1% p/v), gelatina 
(3% p/v) e leite desnatado (1% p/v), para verificar a atividade de amilase e proteases. Um total de 183 morfotipos 
bacterianos foi isolado, abrangendo 33 gêneros bacterianos. O filo Proteobacteria foi o mais abundante em todos os 
três ninhos (79%). Os gêneros Pseudomonas e Aeromonas foram os taxons mais abundantes em P. cuvieri e L. vastus. Em 
A. hylaedactyla, foram Enterobacter e Bacillus. Em relação às atividades enzimáticas, 130 isolados exibiram atividade 
de protease e 45 isolados foram positivos para atividade de amilase. Nossos resultados fornecem informações 
inéditas sobre a microbiota bacteriana cultivável dos ninhos de espuma dos sapos da família Leptodactylidae, 
bem como seu potencial para biomoléculas de interesse biotecnológico.

Palavras-chave: cultiváveis, enzimas, prospecção, Leptodactylus vastus, Physalaemus cuvieri, Adenomera hylaedactyla, 
anfíbios.
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Pseudomonas aeruginosa and the protozoan Trypanosoma 
cruzi.

Comparable to amphibian skin, foam nests are a rich 
environment for prospecting biomolecules, mainly from 
their bacterial community. Among these molecules, the 
enzymes are of great interest. These biomolecules have 
increased participation in the pathogen interactions, in 
various modern industrial processes, providing a promising 
and robust alternative for chemical catalysts (Kamble et al., 
2019). Enzymes of microbial origin are highly effective 
and more stable than plant and animal enzymes (Liu and 
Kokare, 2017). Due to the large enzymatic framework and 
ease of cultivation, the microbial platform has stirred great 
interest from researchers to prospect enzymes with greater 
stability in mild conditions of temperature and pressure, 
to meet industry needs more easily than enzymes from 
plants or animals.

Considering the unknown knowledge of the culturable 
microbiota and its enzyme repertoire from foam nest 
microbiome, this study focused on the identification 
of the culturable bacteria of three foam-nesting frog 
species (Physalaemus cuvieri, Leptodactylus vastus and 
Adenomera hylaedactyla), to assess the relevance of these 
microorganisms in maintaining the health and biodiversity 
of frogs, as well as the biotechnological/enzymatic potential 
of this microbiota. Such studies are crucial to better 
understand all resources from anuran’s biodiversity taking 
into account that anurans are the group of vertebrates 
with the highest extinction rates.

2. Materials and Methods

2.1 - Collection of foam nests

Foam nests from Adenomera hylaedactyla, Leptodactylus 
vastus, and Physalaemus cuvieri, were collected during the 
beginning of the rainy season in January/2019 at the Private 
Reserve of Monte Alegre Natural Heritage (RPPN Monte 
Alegre - Latitude: 03º 95’S & Longitude: 38 54’W), Pacatuba, 
state of Ceará. Collection procedure followed Brazilian 
regulations through authorization SISBIO 8036-1 released 
by the Ministry of the Environment and registration of 
the National Management System for Genetic Heritage 
and Associated Traditional Knowledge (SisGen) A35A5E2. 
The nests were collected from puddles of water or from 
pits with moist soil. The environmental samples from 
the site of the foam nests were also collected for future 
comparison with the bacterial community of the foam 
nests. All samples were kept in sterile tubes and at room 
temperature and later stored in a -20 °C freezer at the 
Genetic Resources Laboratory (LaRGen), in the Department 
of Biology of the Federal University of Ceará (UFC).

2.2. Isolation of culturable microbiota

The foam nest samples were treated beforehand, using 
sterile tweezers for removal of solid residues (leaves 
and branches), and had their weight standardized to 
approximately 4 g. Afterwards, aliquots were diluted in 
sterile saline solution (0.9%) to the concentration of 10-5. 
For the environmental samples, 1 mL of puddle water and 

1. Introduction

Amphibian foam nests are established during the 
amplex, when the female produces a clocal liquid rich in 
surfactant proteins and the male and/or female vigorously 
rotate its legs to incorporate air and create an emulsion. 
This reproduction pattern helps species to overcome 
environmental barriers, by protecting the eggs against 
dehydration, UV light, degradation, predators, pathogens, 
deoxygenation and acting as incubators. Furthermore, 
these structures can act as food reserves during 
offspring development (Cooper et al., 2005; Hissa et al., 
2008; Méndez-Narváez et al., 2015; Pereira et al., 2017; 
Shahrudin et al., 2017). The nest site can vary by species to 
species, being classified as aquatic (puddles or currents), 
terrestrial (construction of pits), or arboreal (Dalgetty 
and Kennedy, 2010).

Anuran foam nests are composed mainly of surfactant 
proteins, carbohydrates, and lectins. The proteins and 
lectins assist the formation and maintenance of the 
nest’s structure during several days (Alcaide et al., 2009; 
Fleming et al., 2009; Hissa et al., 2016). Foam nests also have 
an associated microbiota that are barely known in terms 
of composition, function, and influence on the health of 
these animals (Hissa et al., 2008). Knowing the microbial 
composition and its role in foam nests are a first step in 
the conservation of amphibian’s species.

Anurans are important organisms to the overall 
biodiversity maintenance, and serve as model organisms 
in several studies. They are also bioindicators of climate 
change due to their skin breathing mode, making them 
vulnerable to temperature fluctuations and pollutants 
(Relyea  et  al., 2005; Hopkins, 2007). However, the 
amphibian population has been constantly suffering with 
epidermal infections caused by the fungus Batrachochytrium 
dendrobatidis (Bd) (Vieira et al., 2013). This deadly fungus 
has extinguished 90 species and led to a decline in 501 frog 
populations (Scheele et al., 2019). 

Due to the impact caused by this fungus, several 
strategies aimed at the conservation of amphibian 
species have been developed. One of them is the study of 
skin-associated microbiota, to evaluate microorganisms’ 
potential to inhibit this pathogen. Among this microbiota, 
the main genera of bacteria reported are Pseudomonas, 
Aeromonas, Chromobacterium and Stenotrophomonas, 
presented in bacterial community of several different 
species of anurans (Muletz-Wolz et al., 2017; Rebollar et al., 
2019; Kruger, 2020). However, the knowledge related 
to the foam nests-associated bacteria and its potential 
applicability against Bd are not yet available.

The skin-associated microbiome is inherited from both 
vertical and environmental transmission. Remarkably, 
studies like McGrath-Blaser  et  al. (2021) suggest that 
some key microbes acquired from the initial foam nest can 
persist on the adult skin. This information highlights the 
importance of the foam nest as a carrier of the amphibian’s 
initial microbiome and its ecological role.

For prospection of biotechnological products, amphibian 
skin is the subject of many studies, such as Silva et al. 
(2019), on the skin secretion of Phyllomedusa. This genus’ 
skin secretion has been reported to inhibit the growth of 
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4.04 g of soil were serial diluted and homogenized using 
sterile saline solution (0.9%) until the 10-4 dilution. Finally, 
the last three dilutions of each sample were plated using 
the spread plate method in ATGE medium (15 g/L agar, 
5 g/L tryptone, 1 g/L glucose and 2.5 g/L yeast extract) and 
incubated at room temperature for 32 hours.

Total viable count was then performed, calculating 
the colony-forming units per mL in each of the collected 
samples. Subsequently, each distinct morphotype was 
described according to the morphological characteristics 
(color, shape, margin, elevation, and aspect of the 
colony), then isolated into a new plate, incubated at 
room temperature for 16 hours. After bacterial growth, 
each isolate was transferred to TGE broth (5 g/L tryptone, 
1 g/L glucose and 2.5 g/L yeast extract) and incubated at 
30ºC and 150 rpm for 16 hours. Finally, 900 μl of grown 
culture were added in 600 μl of 50% glycerol (v/v), for 
conservation in final concentration of 20% glycerol (v/v) 
and stored in sterile cryogenic tubes at -20 °C and -80 °C, 
for the establishment of the microbiome collections of 
foam nests.

2.3. DNA extraction, amplification and sequencing of 16S 
gene

For total DNA extraction, two different protocols were 
used. First, a thermolysis protocol based on Sá et al. (2013) 
with temperature modifications. From a fresh culture 
plate, 10 isolated colonies were diluted in 500 μL of sterile 
ultrapure water in 1.5 mL microtubes and homogenized. 
Then, they were placed in the dry bath at 99 ºC for 11 min 
and immediately put in the freezer at - 80 ºC for 4 min. 
After cooling, the tubes were centrifuged at 12,000 rpm 
for 5 min and 300 μL of the supernatant was transferred 
to new microtubes. If the thermolysis protocol failed to 
extract DNA, the total DNA extraction protocol based on 
the CTAB 2X cetyltrimethyl ammonium bromide method 
Warner (1996) was used. The concentration of the genomic 
DNA obtained was verified by measuring the absorbance 
at 260 nm (A260) in spectrophotometer Nanodrop 
ND100 (Nanodrop, Wilmington, DE, USA). The rations 
260/280 nm and 260/230 nm provided the DNA quality. 
Afterwards, the samples were diluted in ultrapure water 
for concentration of 10 ng/μL and stored at -20 ºC.

For 16S rRNA gene amplification, the primers 
27 F  ( 5 ’ -AGAGT T TGATC M TG G C TCAG – 3 ’ )  a n d 
1525R (5’-AGAAAGGAGGTGATCCAGCC–3’), or 63F 
(5 ʹ-CAGGCCTAACACATGCAAGTC-3 ʹ) and 1389R 
(5ʹ-ACGGGCGGTGTGTGTACAAG-3’) were used. The PCR 
reactions were carried in an Eppendorf Mastercyler thermal 
cycler (Epperndorf, Hamburg, Germany) using the following 
protocol: 95 ºC for 2 min, followed by 30 cycles of 95 ºC 
for 1 min, 55 ºC for 1 min, 72 ºC for 1 min and 72 ºC for 
10 min. In some cases, to improve the amplification of 
reactions, lower concentration of DNA and primers were 
used, as well as a reduction of annealing time from 1 min 
to 30 sec. The specificity of amplification and the size of 
the sequences of interest were verified by electrophoresis 
on 1% agarose gel (w/v), stained by SYBR ™ safe.

The PCR products with confirmed amplification were 
purified and precipitated with potassium acetate and 

alcohol protocol. For that, 72 μL of PCR product were added 
to 7.2 μL of 3 M potassium acetate solution (pH 5.5) with 
twice the solution’s total volume of 100% ethanol. After 
homogenization, the solution was refrigerated at -80 ºC 
for 30 min, then centrifuged at 14,000 rpm, at 4 ºC, for 
15 min, and the supernatant was discarded. The pellet 
was resuspended with 158.4 μL of cold 70% ethanol 
and centrifuged at 14,000 rpm, at 4ºC, for 5 min. After 
centrifugation, the supernatant was discarded, and the 
pellet was dried in a dry bath at 36 ºC for approximately 
20 min. When complete evaporation of the alcohol was 
observed, the purified DNA was resuspended in 30 μL of 
RNase-free and DNase-free ultrapure water. Confirmation 
of the removal of impurities from the samples were 
observed by the final concentration (ng/μL) and by the 
ratios 260/230 nm and 260/280 nm above of 1.8 when 
quantified by Nanodrop ND100 (Nanodrop, Wilmington, 
DE, USA).

DNA was sequenced by Sanger sequencing, using the 
primers 518F (5’-CCAGCAGCCGCGGTAATACG-3’) and 800R 
(5’- TACCAGGGTATCTAATCC -3’) for amplification of the 
16S rRNA gene region, by Macrogen. Sequence treatment 
was done using Geneious Prime 2019 software and the 
extremities bases with Phred quality below 30 were 
removed. The sequences were de novo assembled, forming 
contig sequences. Subsequently, the contig sequence was 
subjected to molecular identification in the local alignment 
tool BLAST (Altschul, 1990), using the nucleotide collection 
database. The isolates that matched with only one genus of 
bacteria, with identity greater than 97%, were considered 
to belong to the genera.

2.4. Enzymatic assays

Each isolate was plated on ATGE medium (15 g/L agar, 
5 g/L tryptone, 1 g/L glucose and 2.5 g/L yeast extract) 
and incubated at room temperature for 32 hours. Then, 
the microorganisms were cultured in plates with ATGE 
+ starch (0.1% w/v) to test for amylase activities, ATGE + 
gelatin (3% w/v) and ATGE + skim milk (1% w/v) to detect 
activities of different proteases. After 16 hours, enzymatic 
activity was measured qualitatively, through the presence 
of degradation halos around the colony. The addition of 
lugol (I2 1%/KI 2%) to reveal amylase activity and of 4.1 M 
ammonium sulfate ((NH4)2SO4) for proteinase activity in 
the medium containing gelatin were necessary.

3. Results

3.1. Culturable microbiota in foam nests

The samples from the foam nests of P. cuvieri and 
L. vastus revealed a culturable bacterial community with 
similar abundance, being estimated, respectively, at 2.82 ± 
0.93 x 107 CFU/g and 2.74 ± 0.57 x 107 CFU/g. The viable 
count of A. hylaedactyla foam nests presented an abundance 
of 8.1 ± 0.76 x 106 CFU/g, approximately 100 times less 
colony forming units than the samples from P. cuvieri and 
L. vastus foam nests.

When compared to the environmental samples, the 
foam nests from P. cuvieri and L. vastus exhibited higher 
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mean viable count than the bacterial communities found in 
the water (1000 times higher) or the soil (10 times higher) 
where the nests were deposited (Table  1). In contrast, 
samples from A. hylaedactyla foam nests exhibited a similar 
mean viable count to the ones from the soil where the nest 
was. From these samples, a total of 183 bacteria from the 
three foam nests were isolated, 98 from P. cuvieri, 55 from 
L. vastus and 30 from A. hylaedactyla.

3.2. Molecular identification of the bacterial isolates

The identification of the foam nests isolates revealed the 
presence of four main phyla: Proteobacteria, Bacteroidetes, 

Firmicutes, and Actinobacteria. The phylum Proteobacteria 
being the most abundant in the bacterial communities 
of all three nests (79%). The remaining isolates belong 
to the phylum Bacteroidetes (10%), Firmicutes (9%), 
and Actinobacteria (2%). However, the abundance of 
each phylum varies according to the nest species from 
which these microorganisms were isolated. The isolates 
from A. hylaedactyla have Firmicutes as the second most 
abundant phylum (31%) and have no Actinobacteria 
representatives (Figure 1).

The microorganisms were classified in a total of 
33 different genera (Figure 2), the most abundant genera 
were represented by the phyla Proteobacteria and 
Firmicutes. Using the 16S ribosomal gene, 85% of the 
isolates were identified at the genus level. Therefore, 
the Operational Taxonomic Unit (OTU) used in this work 
refers to genus.

The genera Pseudomonas and Aeromonas were the 
most abundant in the isolates of P. cuvieri (43.2%; 6.8%) 
and L. vastus (22.9%; 12.5%). In A. hylaedactyla, most 
representative isolates were Enterobacter (34.6%) and 
Bacillus (26.9%). The nest microbiota from the three 
species had 5 OTUs in common (Bacillus, Enterobacter, 
Comamonas, Chryseobacterium, and Serratia). The genera 
Aeromonas, Kurthia, Pseudomonas, Rhizobium, Acidovorax, 
and Citrobacter were represented only in P. cuvieri and 
L. vastus. The genus Stenotrophomonas was found only in 

Table 1. Colony-forming units (CFU/g or CFU/mL) in the different 
samples.

Sample Viable cell count

Foam nest of P. cuvieri 2.82 ± 0.93 x 107 CFU/g

Foam nest of L. Vastus 2.74 ± 0.57 x 107 CFU/g

Foam nest of A. hylaedactyla 8.10 ± 0.76 x 106 CFU/g

Puddle water from P. cuvieri’s nest site 3.33 ± 0.57 x 104 CFU/mL

Soil from L. vastus’s nest site 1.41 ± 0.73 x 106 CFU/g

Soil from A. hylaedactyla’s nest site 2.53 ± 0.61 x 106 CFU/g

Figure 1. Taxonomic distribution of foam nests isolates. (A) Abundance of the phyla represented by the isolates of each foam nest; (B) 
Total abundance of the phyla belonging to the cultivable bacterial community of the foam nests.
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P. cuvieri and A. hylaedactyla. No OTU was found exclusively 
in L. vastus and A. hylaedactyla.

In addition to sharing OTUs, the nests also have genera 
that were only observed in one species of the foam nests, 
referred as exclusive culturable microbiota. Both P. cuvieri 
and L. vastus’ nests presented ten exclusive OTUs, whereas 
A. hylaedactyla’s nest presented only the genus Lysinibacillus 
in its exclusive OTU (Table 2).

3.3. Enzymatic activities

In all analyzed species, the number of foam nest 
isolates that showed protease activity was greater than 
those with amylase activity. Of the 99 isolates of P. cuvieri, 
66 displayed protease activity and 23 amylase activity. 
Of the 55 isolates of L. vastus, 45 were positive for protease 
activity and 14 for amylase. Of the 30 isolates from the 
nest of A. hylaedactyla, 19 displayed positive activity for 
protease and 8 for amylase. Altogether, only 34 foam nest 
isolates showed positive activity for all tested enzymes 
(4 from the nest of A. hylaedactyla, 20 from the nest of 
P. cuvieri and 10 from the nest of L. vastus). The most 
abundant genera able to use all tested substrates were 
Aeromonas (29%), Chryseobacterium (18%) and Bacillus 
(15%) (Figure 3).

4. Discussion

This research unlocks unprecedented knowledge about 
culturable microorganisms residing within the foam nests 
of three amphibian species: A. hylaedactyla, L. vastus, and 
P. cuvieri. The identification of the bacterial community 
in the foam nests will help in understanding important 
correlations between the microbiota and the protection 
of frogs in the juvenile phases. Biomolecules obtained 
from the metabolism of these microorganisms may also 
contribute to the identification of ecological information 
and biotechnological applications.

Nests are fundamental structures for the microbial 
colonization of tadpoles. They constitute the environment 
inhabited by newborns before they are exposed to the 
direct influence of external conditions (Campos-Cerda 
and Bohannan, 2020). Nests differ in form, function, 
parental involvement in their making, and are structured 
to incubate and hatch eggs or to enable birth (Barber, 2013; 
Mainwaring et al., 2014; Campos-Cerda and Bohannan, 
2020). The characteristics of the nest have been reported 
as potentially responsible for shaping the first interactions 
between neonates and microorganisms, functioning 
as a source of microorganisms and filtering those that 
can successfully establish themselves in the nest (Ruiz-

Table 2. Exclusive OTUs in each foam nest.

Exclusive OTUs

P. cuvieri Acinetobacter, Curtobacterium, Empedobacter, Flavobacterium, Klebsiella, Ochrobactrum, Rheinheimera, 
Shewanella, Sphingobacterium, and Vogesella.

L. vastus Brevundimonas, Burkholderia, Dyella, Herbaspirillum, Microbacterium, Niabella, Pandoraea, Pedobacter, and 
Streptomyces.

A. hylaedactyla Lysinibacillus

Figure 2. Relative abundance of identified genera in foam nests (%). Others: OTUs identified in only one of the nests with a single 
representative.
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Castellano et al., 2016; Shukla et al., 2018; Teyssier et al., 
2018; Campos-Cerda and Bohannan, 2020).

Associations between animals and their resident 
microbial community contribute to physiology, 
development, and fitness, often performing essential 
functions for the animal organism. As this microbiota has 
been present since birth, selected by parental transference 
and by the environment, its establishment becomes a 
crucial ecological and evolutionary occurrence (Lynch 
and Pedersen, 2016; Campos-Cerda and Bohannan, 2020; 
Rebollar et al., 2020)

The data on the culturable microbiota present in the 
foam nests strengthen the hypothesis that the nest provides 
an environment for the development of microorganisms, 
results that were also found in other studies from this 
group (Hissa et al., 2008). Supporting this hypothesis, the 
microbial diversity found in foam nests was greater when 
compared to their respective environmental samples, by 
at least 10 times higher for L. vastus. These results are 
supported by the work of McGrath-Blaser et al. (2021), in 
which the diversity of the microbial communities of three 
nest-forming frogs (Polypedates leucomystax, Polypedates 

macrotis, and Polypedates otilophus) was found to be greater 
inside the nest than outside. The work also points out 
differences between inherent nest communities and the 
microbiota of tadpoles’ skin, showing a specific community 
for the foam nests.

The microbial OTU associated with anuran foam 
nests reveals important functions for the host, regarding 
the presence of exclusive OTUs and phyla abundance. 
For example, a metagenomic approach of the microbiome 
from the nests of Bornean foam-nesting frogs evidenced 
the abundance of similar top phyla of Proteobacteria (67%), 
Bacteroidetes (18%), Firmicutes (10%), Actinobacteria (4%), 
and Tenericutes (0.4%), when comparing it to adults and 
tadpoles’ microbiome samples (McGrath-Blaser  et  al., 
2021). Similarly, in this study the phylum Proteobacteria 
(79%) was shown to be the most abundant, followed by 
Bacteroidetes (10%), Firmicutes (9%), and Actinobacteria 
(2%). Several skin microbiome studies designate the 
same percentage placement in amphibians, even with 
variations of habitats, species, and stages of development 
(Vences et al., 2016). Moreover, our group’s metagenomic 
investigations have revealed the prevalence of specific 

Figure 3. Positive enzymatic activities from at least one of the subtract tested on milk, gelatin, and starch. Bacterial with no positive 
activity are not included. Black: with activity. White: no activity.
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bacterial genera, including Pseudomonas, Vogesella, and 
Chryseobacterium, as the most abundant within the nests 
of three distinct frog species (Monteiro et al., 2023). In this 
study, we discovered that, using cultivable isolation 
methods, we are also able to successfully identified 
representatives of these genera.

The Chryseobacterium group, belonging to the order 
Flavobacteriales, is present in all three foam nests (8% in 
A. hylaedactyla, 6.25% in L. vastus, and 2.27% in P. cuvieri) 
and has several notable characteristics. Some species of 
Chryseobacterium are known for their protective role in the 
skin of amphibians, being able to inhibit up to three different 
genotypes of Bd (Muletz-Wolz et al., 2017). The genus is 
also reported as a promoter of growth in plants (Sang et al., 
2018), on top of having antifungal (Wang et al., 2012) and 
antimicrobial activities (Dahal et al., 2021). Therefore, the 
presence of this OTU is very promising for applications in 
the biotechnology market.

Another frequent group was Serratia (20% A. hylaedactyla, 
2% in L. Vastus, and 1.3% in P. cuvieri). Individuals in this 
group are often found on the skin of anurans and stand out 
because of the production of prodigiosin, a red pigment 
with antifungal (Berg, 2000; Woodhams et al., 2018) and 
antibacterial activity (Lapenda et al., 2015), being able to 
inhibit the growth of Bd in vitro in minimal concentrations 
(Woodhams et al., 2018). The presence of this genus in the 
nests may provide evidence of its role in defense against 
pathogens.

Bacteria belonging to the genus Pseudomonas are 
quite common in nature, acting as bioindicators of metal 
contamination in soils (Brandt et al., 2006), producers of 
biosurfactants (Kuiper et al., 2004) and of enzymes with 
industrial applications (Hasan et al., 2006; Furini et al., 
2018). Although not frequent in animals, this genus proved 
to be part of the resident microbiota of the amphibian skin 
(Jiménez and Sommer, 2017), and in the cultivable foam 
nest microbiome of P. cuvieri (43%) and L. vastus (22.9%). 
In addition, several amphibian skin isolates belonging to 
this genus were able to inhibit the Bd fungus (Lam et al., 
2010), concluding that the presence of this OTU may carry 
a similar protective role in the nest.

Aeromonas are also present in the associated foam 
nest microbiota of P. cuvieri (6%) and L. vastus (12.5%). 
This genus is known by production of several secreted 
enzymes (Peixoto et al., 2012). In the present study, ten 
of the 12 stains were able to use all substrate tested. 
In addition, some strains were able to grow in crude oil 
and produce biosurfactants (Ilori et al., 2005). This genus, 
however, is known for having species that cause disease in 
frogs (e.g., Aeromonas hydrophila). Furthermore, this specie 
is not inhibited by antimicrobial peptides present in the 
skin of anuran (Hird et al., 1983; Tennessen et al., 2009). 
The abundance of this OTU on the foam nest associated 
microbiota needs to be investigated.

There was a high abundance of the genus Enterobacter 
(36%) in the foam nest of A. hylaedactyla (less frequent in 
L. vastus and P. cuvieri). This genus is mainly present in 
the intestinal microbiota of female anurans and has an 
important role in the hydrolysis of chitin, the most abundant 
component of the insect carapace. An increase of this OTU 
in the intestine may also be related to nematode infection 

(Shu et al., 2019). Thus, the abundance of the genus in the 
foam nest of A. hylaedactyla may be related with cloacal 
transference during the amplex.

Besides the microbial ecological role, the presence 
of hydrolases in foam nest microbiome enzymatic 
repertoire could potentially be justified due to the nest’s 
nutritional environment, rich in proteins and carbohydrates 
(Fleming et al., 2009; Hissa et al., 2016). In this study, ten 
hydrolase producers were identified as members of the 
Bacillus group, and half were able to use all tested substrates 
(milk, gelatin, and starch). The Bacillus group is one of the 
most representative bacterial genera in the production of 
industrial enzymes and earned relevant biotechnological 
interest. Bacillus stands out as it produces a diversity of 
extracellular proteases, mainly alkaline, comprising mostly 
serine proteases, cysteine proteases, and metalloproteases 
(Contesini et al., 2018). Bacillus produces alpha-amylases, 
capable of hydrolyzing the starch present in dextrin, 
maltose, and glucose. These amylases are also critical in 
the detergent, food, pharmaceutical, and textile industries 
(Simair et al., 2017) , and are necessary for the enzymatic 
hydrolysis of biomass used in the production of bioethanol 
(Wood et al., 2016).

As for Chryseobacterium, its representatives are 
also known as producers of proteases. Here, 88.8% of 
Chryseobacterium strains were able to use all tested 
substrates. The ability of these organisms to produce 
extracellular amylases using organic kitchen waste has 
also been reported and proved to be of great interest to the 
industry (Hasan et al., 2017). However, the high protease 
activity may be involved as virulence factors in pathogenic 
strains of humans (Pan et al., 2000) and even in hydrolysis 
of melanin and keratin in bird feathers (Gurav et al., 2016).

The two Rheinheimera strains had positive activity for 
all tested enzymes. This OTU is exclusive of P. cuvieri and 
has shown potential for biotechnological applications. 
This genus has been reported as belonging to the resident 
microbiota of amphibian skin (Hernández-Gómez et al., 
2020) and provides antimicrobial proteins capable of 
inhibiting the growth of gram-negative and gram-positive 
bacteria, yeasts, and algae (Chen et al., 2010). In addition, 
it produces extracellular pigments in media supplemented 
with arginine (Grossart et al., 2009).

Some of the most abundant OTUs have already been 
reported for their production of biosurfactants, which 
could contribute to the stability of these biofoams. 
Bacteria of the genus Pseudomonas are known to produce 
rhamnolipid biosurfactant, used in liquid detergent 
formulations (Jadhav et al., 2019) to improve the degradation 
of hydrocarbons co-contaminated with toxic metals 
(Maier and Soberón-Chávez, 2000), and in skin care 
products(Sekhon Randhawa and Rahman, 2014) . Bacteria 
of the genus Bacillus are kwon producers of lipopeptide 
biosurfactants, whose applications range from biological 
control in plants (Geissler et al., 2019), reduction of biofilm 
formation of pathogens in equipment in the food industry, to 
antimicrobial additives in toothpaste (Bouassida et al., 2017). 
Biosurfactants are molecules of biotechnological interest due 
to their several applications, including cleaning, cosmetics, 
food, agricultural, pharmaceutical, coal processing, and 
bioremediation industries (Fakruddin, 2012).
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The description of an exclusive community in these 
foam nests with a diversity of characteristic genera 
provides evidence of the potential of these organisms to 
defend against pathogens and predators, and to maintain 
the micro-habitat through the production of secondary 
metabolites and the availability of nutrients. In addition, 
it represents a great potential for the biotechnology 
industries. However, the role of microbial enzymes in foam 
nests is still unknown, and further studies that focus on 
investigating these pathways and their relationship with 
newborn development are crucial. A possible function of 
these enzymes is to assist the tadpoles in the digestion of the 
foam nest, as it has been shown that the supplementation 
of foam nest solution significantly promotes the growth 
of the tadpoles (Tanaka and Nishihira, 1987).

It is noteworthy that Brazil is the country with 
the greatest richness of anuran species and it is still 
estimated that 25% of anuran species in Brazil are yet 
to be discovered; containing, therefore, a great amount 
of diversity not yet described. Considering that 41% of 
amphibian’s species are categorized as threatened, part 
of amphibian’s biotechnological repertoire may be lost 
even before studied, showing the importance to value 
studies that access this biodiversity(Guerra et al., 2020; 
Rocha et al., 2008).

5. Conclusion

This work contributed to the understanding of the 
culturable microbiota associated with the foam nests 
built by the three anuran species Adenomera hylaedactyla, 
Leptodactylus vastus, and Physalaemus cuvieri. The diversity 
of characteristic genera in the foam nests provides 
evidence about their importance to the development of 
the tadpole. The enzymatic potential of this community 
was also highlighted, with emphasis on the production of 
amylases and proteases by strains of the genera Aeromonas 
(29%), Chryseobacterium (18%) and Bacillus (15%). However, 
further analyses are needed to identify their biochemical 
potential, as well as their importance for nest maintenance, 
nutrient availability and larvae development.
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