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Abstract - In refinery plants key process variables, like contents of process stream and various fuel properties, 
need to be continuously monitored using adequate on-line measuring devices. Such measuring devices are often 
unavailable or malfunction and, hence, laboratory assays which are irregular and time consuming and therefore 
not suitable for process control are inevitable alternatives. This research shows a comparison of different soft 
sensor models developed from a small industrial data set with soft sensor models developed from data generated 
by a bootstrap resampling method. Soft sensors were developed applying multiple linear regression, multivariable 
adaptive regression splines (MARSpline) and neural networks. The purpose of the developed soft sensors is the 
assessing of benzene content in light reformate of a fractionation reformate plant. The best results were obtained 
by the neural network-based model developed on bootstrapped data.
Keywords:Bootstrap, neural network, multivariable adaptive regression splines, soft sensor, process modeling.

INTRODUCTION

Due to growing demands for better product 
quality but lower product prices and strict safety 
and environmental rules, there is a need for optimal 
control of chemical processes. Process control is based 
on continuously measured process variables in order 
to get satisfactory product quality with minimum 
consumption of raw materials and energy. Many of 
the key process variables which determine product 
quality in the chemical, petrochemical and oil industry 
are difficult or even not possible to be continuously 
measured. With the process knowledge and a lot of 
easy measurable process variables it is possible to 
link the secondary, easily measured variables (like the 

flow, pressure, temperature and level) with variables 
that are not possible to be continuously measured, the 
so-called primary variables.

On-line process analyzers are often not available 
on grounds of malfunction (due to harsh process 
conditions), during regular maintenance and frequent 
need for calibration. This problem can be solved by 
soft sensors application (Zamprogna et al., 2004; 
Qin, 2007). Soft sensors can work in parallel with 
analyzers and measuring devices, allowing fault 
detection schemes.

For the reason of the uncertainty and complexity 
of industrial processes, fundamental models are often 
unavailable or inadequate. In industrial plants large 
quantities of process data are measured and stored 
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in historical data bases which enable identification of 
data driven models (Fortuna et al., 2007).

In the present study, soft sensors for the prediction 
of benzene content in the fractionation reformate 
plant are developed and analyzed. Two linear multiple 
models, two models of multivariable adaptive 
regression splines (MARSpline) and two neural 
network models are developed. Within these models, 
one model is developed using a small experimental 
data set, while the other model is developed using 
bootstrap generated data.

DATA PREPROCESSING

Selection of the representative process data requires 
the cooperation of the designer of the soft sensor and 
plant experts, operators in the control room and process 
engineers. It is necessary to detect missing data and to 
remove unwanted components such as outliers, offset, 
trend and noise.

Since that process analyzers are often inaccessible, 
the key process properties must be determined by rare 
and time-consuming laboratory analysis. In such cases, 
a small number of data is available, so it is necessary 
to collect as much data as possible during regular 
operation of the plant. When developing the model 
with a small number of data there is a strong possibility 
of poor generalization because the developed model 
does not take into account process dynamics and all 
process regimes (Fortuna et al., 2007).

To avoid problems of a small data set several 
strategies have been considered in the literature. Most 
of them are based on injecting noise into the available 
data or by using the bootstrap resampling approach 
(Napoli and Xibilia, 2011). There is also a method 
based on an aggregation of neural models, trained on 
different training data sets, which are obtained by noise 
injection and bootstrap resampling (Lanuette et al., 
1997; Tsai and Der-Chiang, 2008). Injecting noise into 
the training set means adding zero-mean fixed-variance 
Gaussian noise, or adding zero-mean Gaussian noise 
variable variance according to the signal amplitude. 
Application of ensemble learning algorithms for the 
improvement of prediction performance of the system 
can also be found in Caruana et al. (2000), Polikar 
(2006) and Polikar (2012). Li et al. (2013) applied 
injection of Gauss noise to the ensemble of the Least 
Square Support Vector Machine (LS-SVM) model. 
Data set diversity can be increased by integration of 
all mentioned techniques, i.e., bootstrap method, noise 
injection method and stacked neural networks (Di 
Bella et al., 2007).

Some other models dealing with the small data set 
problem are presented in literature, like Zhou et al. 
(2012) who developed a bootstrap aggregated Partial 
Least Square regression model. Li et al. (2013) applied 
injection of Gauss noise to the ensemble of the Least 
Square Support Vector Machine (LS-SVM) model.

A somewhat different approach which deals with 
dynamic behaviour is considered by Zhu et al. (2009) 
where an output error method for the identification 
of a dual fast rate model directly from fast input and 
slow output data is proposed. A similar approach 
dealing with dual-rate systems is presented by Ding 
and Chen (2004), who applied FIR models to predict 
unmeasurable noise-free outputs, and identify the 
parameters of underlying fast single-rate models.

In this paper, the bootstrap method is applied with 
a view to increase training data set diversity and to 
improve the generalization capabilities of the neural 
network.

Bootstrap method of generated additional data

The bootstrap method is a general resampling 
procedure for estimating the statistical distribution 
on independent observations introduced in Efron (1979). If 
there is a function of distribution, F, with independent 
variables, x1, x2,… xn, there is a need to investigate 
the sampling distribution and variability of a function 
calculated from a sample of size n.

The idea of the nonparametric bootstrap method 
is to simulate data from a cumulative distribution 
function, Fn. Fn is a discrete probability distribution 
which gives probability 1/n for every observed value 
of x1, x2, ..., xn. A sample of size n of a function Fn is a 
sample of size n drawn with replacement from a set of 
x1, x2, ... , xn. In case of a large sample size, n, calculating 
the distribution is very complicated and therefore it is 
recommended to create a bootstrap distribution from 
simple random sampling with replacement.

The basic steps of the bootstrap procedure are 
(Efron and Tibshirani, 1993):

1.	 Construction of an empirical probability 
distribution, Fn, from samples by placing a 
probability of 1/n for each case, x1, x2, ..., xn of 
the sample. This is the empirical distribution 
function of the samples, which is the 
nonparametric maximum likelihood estimate 
of the population distribution, F.

2.	 From the empirical distribution function, 
Fn, random samples of size n are drawn 
with replacement. This procedure is called 
resampling.
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3.	 Calculating some statistical parameter, Tn of a 
resampled sample.

4.	 Repeating steps 2 and 3, B number of times, 
where B is a large number, in order to create B 
resamples. Typically, B is at least equal to 1000 
when an estimate of the confidence interval 
around Tn is required.

5.	 Construction of the relative frequency histogram 
from the B number of Tn by placing a probability 
of 1/B for each case. The distribution obtained 
is the bootstrapped estimate of the sampling 
distribution of Tn.

SOFT SENSOR MODELS

In the case of long output delays, static models are 
usually developed. In many industrial processes, where 
nonlinearity is slightly present and processes are almost 
steady- state, linear static process can be identified. In 
processes where defined or undefined nonlinearities 
are significantly present, nonlinear models must be 
applied and the identification procedure thus becomes 
more complex (Fortuna et al., 2007).

Linear multiple model

The general equation of linear multiple models 
is presented in Equation (1) where parameters bi of 
each input Ui are analogue to the slope, also called the 
regression coefficients.

							       (1)

n is the number of input variables or predictors.

MARSpline model

Multivariate Adaptive Regression Splines, or the 
MARSpline technique has the purpose to predict 
the value of a set of dependent variables from a set 
of independent or predictor variables (Friedman, 
1991). MARSpline constructs a relationship between 
dependent and independent variables from a set of 
coefficients and basis functions that are entirely 
determined from the data. MARSpline algorithm 
operates like a multiple piecewise linear regression, 
where each breakpoint (estimated from the data) defines 
the "region of application" for a particular (simple) 
linear equation. The MARSpline algorithm builds 
models from two-sided truncated functions (t-x)+ i (x-
t)+ of the predictors (x) which serve as basis functions 
for a linear or nonlinear expansion that approximate 
the underlying function f(x). The parameter t is the 
knot of the basis functions defining the "pieces" of the 

piecewise linear regression. The "+" sign next to the 
terms (t-x) and (x-t) denotes that only positive results 
of the respective equations are considered; otherwise 
the respective functions evaluate to zero.

Basis functions are defined as:

							       (2)

Parameter t defines the “pieces” of the piecewise 
linear regression estimated from the data. The 
MARSpline model for a dependent variable y, and M 
terms can be summarized in the following equation:

							       (3)

where the summation is over the M terms in the model, 
and bo and bm are parameters of the model. Function H 
is defined as:

							       (4)

where xv(k,m) is the predictor in the k'th of the m'th 
product. For the order of interactions K=1 the model is 
additive, and for K=2 the model is pairwise interactive.

Neural network

The full data set was divided randomly into 
three subsets: the training subset, the testing subset 
(in order to prevent overfitting) and the validation 
subset. Weights of the neural network are continually 
calculated using training data. At the end of each 
iteration (iteration refers to each passage of all the 
data for learning through the network), the network 
predicts a set of values on the test data set. If the test 
set error is greater than the specified tolerance, the next 
iteration will be carried out. The process is repeated 
until the error is less than the specified tolerance, or the 
predefined number of iteration is reached. To evaluate 
the model results, a validation data set was used, 
which is an independent data set that was not applied 
in training. Multi-Layer Perceptron (MLP) is a typical 
neural network with a backpropagation algorithm 
which contains of one input and one output layer, and 
at least one hidden layer. While the network is in the 
process of learning, information is propagated back 
through the network, where the weights are corrected 
and updated (Nørgaard et al., 2000).

All developed models are evaluated by the 
comparison of model performance with the 
performance of the real process using the validation 
data set within the considered process conditions. It 
is important to the test model on an independent real 
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data set (not used for model estimation) to approve 
the model applicability and reliability. Validation data 
set common indicators of model performance are the 
Pearson correlation coefficient (5) and coefficient of 
determination (6), defined by the following equations:

							     
							       (5)

							       (6)

The adjusted coefficient of determination, based on 
the number of degrees of freedom, is given by:

							       (7)

Other popular criteria of numerical model 
evaluation reported in practical examples are the root 
mean square error (8) and mean absolute error (9)

							       (8)

							       (9)

PROCESS DESCRIPTION

Catalytic reforming is one of the most important 
processes in the oil industry where refinery crude oil 
with low octane number in the presence of a catalyst 
converts into a high octane reformate (Cerić, 2012). 
Catalytic reformate, as one of the main gasoline 
components, contains a very high concentration of 
environmentally undesirable benzene (5-6 vol. %). In 
order to satisfy technical and legal norms regarding 
the benzene content in fuels, currently less than 1 
vol. %, benzene needs to be removed from reformate. 
European emission standards (such as EURO IV 
and EURO V) for vehicle exhaust emission and 
MSAT (Mobile Source Air Toxics) regulations 
limit the amount of benzene in gasoline, due to the 
hazardous effect of benzene on health and its negative 
environmental impact. It is possible to control the 
formation of benzene by prefractionation of gasoline 
and by adjustment of the end distillation point of 
heavy gasoline or by increasing the end distillation 
point of light gasoline. Unfortunately, it is not possible 
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to completely prevent formation of benzene; therefore, 
the best solution is the removal of benzene compounds 
from reformate by post fractionation in a splitter.

Although benzene has a high octane number and 
high calorific values, its content in light reformate 
needs to be reduced to 1%. This is due to the fact that 
benzene is a precursor for the formation of cyclohexane 
in the process of isomerization, and thus an undesirable 
component of gasoline (low octane number).

Fractionation of the reformate is used for the 
separation of light contents found in the reformate. 
Light reformate contains mostly C5 and C6 
hydrocarbons, i.e., the fraction which contains pentane 
and C6 hydrocarbons with an end distillation point of 
around 85ºC at atmospheric pressure. The benzene-
rich fraction, whose boiling point is between light and 
heavy reformate, is separated from catalytic reformate.

The fractionation reformate plant with the 
variables used for soft sensor development is given in 
Figure 1. Reformate enters into column C-1 where the 
light reformate is separated from the mixture of heavy 
reformate and benzene fraction. The bottom product 
of column C-1 is the feed for the column C-2, where 
the benzene fraction will be separated from the heavy 
reformate.

In the laboratory the benzene content is determined 
and monitored in accordance with the standard EN 
238:1996/A1:2003 Liquid petroleum products - Petrol 
- Determination of the benzene content by infrared 
spectrometry.

MODEL DEVELOPMENT

In the refinery the continuous measurement of 
benzene content in the reformate is crucial. A benzene 
on-line chromatographic analyzer is frequently under 
maintenance and sometimes faulty. Considering these 
facts soft sensors for the continuous on-line estimation 
of benzene content in light reformate were developed.

During the preliminary test ten input variables 
(temperatures, pressures and flows) that may affect 
benzene content in light reformate are considered. 
Sensitivity analysis, correlation analysis, PCA and 
PLS methods were performed for the selection of 
relevant model inputs.

Also, mutual correlations between inputs as well as 
process engineer experience were taken into account 
during analysis (Ujević Andrijić et al., 2012).

The desired top product composition is determined 
by the column top temperature (TC002) controlled 
by adjusting a pump around flowrate FC-002. 
Temperature (TC001) and flow (FC001) variation on 
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Figure 1. Reformate fractionation plant.

the entrance to the C-1 column (feed) can influence 
the whole temperature column profile and hence 
can also influence the product composition. The 
temperature column profile can also be affected by 
the outlet temperature of heater H-1 (cascade TC018-
FC009) which finally has an influence on top product 
composition. Changes in the temperature profile in the 
column have an influence on column pressure (PI009). 
PI009 and TC 003 are also indicators of possible 
disturbances in the column (fluctuations in top column 
pressure, temperature or flow).

The following continuously measured variables 
were chosen as key input variables for particular soft 
sensor development:

	 -  C1 inlet stream temperature, TC-001 (U1);
	 - C1 column bottom temperature (outlet from 

H-1), TC-018 (U2);
	 - C1 column temperature, TC-003 (U3);
	 - C1 column pressure, PI-009(U4) and
	 - Pump around flowrate, FC-002 (U5).
During the collecting of input and output data the 

period with different process regime (various process 

dynamics) is obtained to enable better training. Process 
data was obtained from the plant history database 
over a continuous period of three weeks, i.e., 6000 
input data with sampling time of five minutes were 
collected. The model output variable was determined 
by laboratory measurement every two hours, thus 251 
output data were obtained. The number of each input 
data (sampled every five minutes) must correspond to 
the number of output data (sampled every two hours); 
therefore, 251 data of each input and output were 
synchronized (Figure 2).

Data preprocessing included detecting and 
removal of outliers and data filtering (Ujević Andrijić 
et al., 2012). The model development and the model 
validation used 80% and 20 percent of the overall data 
set, respectively. By applying the bootstrap method, 
from 6000 input samples and 251 output samples, 
6000 samples of inputs and 6000 samples of output 
were generated. Number of data replications, B, was 
set to 1000.
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Figure 2. Plot of inputs and output data.

Multiple linear models, MARSpline models and 
models of MLP neural networks are developed in two 
ways:

•	 In the first case, the models were developed from 
a small data set, containing 201 measured data 
of every real input and output, while the model 
is validated on the 50 remaining output data.

•	 In the second case, 6000 input data generated 
by the bootstrap method and 6000 generated 
output data were taken for model development. 
The model estimation used 80% randomly 
chosen data, while 20%, i.e., 1200, remaining 
data were used for the model validation. 
Additional model validation was carried out on 
251 laboratory measured output data.

Models were developed in software Statsoft 
Statistica version 12.5.

RESULTS AND DISCUSSION

Linear models

The linear model developed on small data set was 
presented with the following equation:

							       (10). . .

. . .
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1 2

3 4 5

=- - + +

- +

Statistical parameters of the linear model are shown 
in Table 1. Quite high values of correlation coefficients 
and small values of absolute and RMS errors indicate 
good model accuracy.

Table 1. Statistical parameters of the linear model (a small data set).

Parameter Estimation Validation

R 0.881 0.928

R2 0.777 0.862

Radj 0.772 0.859

eMSE, vol. % 0.094 0.071

RMS, vol. % 0.140 0.111

Figure 3 shows the graphical comparison between 
the model output and measured output data using the 
validation data set. It can be noted that the model 
output satisfactorily follows the changes in measured 
output with some minor deviations.

Figure 3. A scatterplot of the linear model vs. validation experimental 
data (a small data set).

Figure 4 represents the histogram of linear 
model residuals (differences between estimated 
and experimental outputs). Residuals are normally 
distributed with a narrow bell shape, centered on zero. 
It can be seen that most of the errors lie between -0.1 
and 0.1 vol. % benzene content, which leads to the 
conclusion that the model satisfactorily matches with 
laboratory results.

The linear model was developed using 6.000 
bootstrapped data (Equation 11).

							       (11)

Table 2 shows statistical parameters of the linear 
model developed on the bootstrap expanded data and 
additionally validated on 251 real output data. From 
the statistical indicators of model quality in Table 2 
it can be concluded that the linear model developed 

. . .

. . .

y U U

U U U

9 644 0 028 0 001

0 094 1 026 0 004
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=- - - +
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on bootstrapped data shows somewhat poorer 
performance than the previously mentioned linear 
model. The same can be concluded from Figure 5 
showing higher dissipation around the y = x direction. 
Histograms of model residuals (Figure 6) show a 
wider bell, i.e., the residuals are somewhat higher 
than the linear model developed on small data. Even 
though the statistical parameters of the linear model 
developed on small data set are unexpectedly better, it 
is not the case with diversity in the results on different 
data sets. Statistical parameters of the linear model 
developed on bootstrapped data calculated on all three 
subsets are very similar, being a good indicator of 
model applicability to different data sets.

Figure 4. Distribution of the linear model residual on validation data (a 
small data set).

Table 2. Statistical parameters of the linear model (generated data set).

Parameter Estimation Validation Real data

R 0.837 0.839 0.838

R2 0.700 0.704 0.702

Radj 0.700 0.704 0.701

eMSE, vol. % 0.119 0.119 0.119

RMS, vol. % 0.167 0.167 0.167

MARSpline models

Several MARSpline models with varying number 
of basis functions and degrees of interaction using 
small datasets were developed. The difference in the 
statistical indicators of these models was insignificant, 
so the parameters of the simplest developed model were 
chosen: eight basis functions, one degree of interaction 
and acriterion penalty of two. In the case of the model 
developed with bootstrapped data, the model with 13 
basis functions, one degree of interaction and criterion 
penalty of two was selected. Statistical parameters of 
the MARSpline model developed on the small data 
set are reported in Table 3. From statistical model 

Figure 5. A scatterplot of linear model vs. experimental validation data 
(generated data set).

Figure 6. Distribution of linear model residuals on validation data 
(generated data set).

properties, Figure 7 and Figure 8, good matching of 
model output with experimental data can be observed.

Statistical parameters of the MARSpline model 
developed using generated data are presented in 
Table 4. As in the case of the linear model developed 
on generated data, the MARSpline model achieved 
approximately same statistical values in all three 
subsets, although somewhat better than the linear 
model. Very good matching of the MARSpline model 
and experimental data on the validation data set can be 
seen in Figures 9 and 10.

By comparing models having the same structure 
types it can be concluded that linear and MARSpline 
models developed on the generated bootstrapped data 
have greater ability for generalizations than models 
developed on small data sets. By comparing the linear 
models with MARSpline models, it is clear that the 
MARSpline models have a narrower distribution of 
model residuals and better graphical comparison of 
model with experimental data. Statistical parameters 
of the MARSpline model are also better compared 
to both linear models; correlation coefficients have 
higher values while the errors have lower values.
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Table 3. Statistical parameters of the MARSpline model (a small data set).

Parameter Estimation Validation

R 0.896 0.954

R2 0.803 0.911

Radj 0.802 0.909

eMSE, vol. % 0.080 0.059

RMS, vol. % 0.126 0.087

Figure 7. A scatterplot of the MARSpline vs. validation experimental data 
(a small data set).

Figure 8. Distribution of MARSpline model residuals on validation data 
(a small data set).

Table 4. Statistical parameters of MARSpline model (generated data set).

Parameter Estimation Validation Real data

R 0.915 0.918 0.915

R2 0.838 0.843 0.836

Radj 0.838 0.843 0.836

eMSE, vol. % 0.076 0.076 0.078

RMS, vol. % 0.113 0.112 0.115

Neural network models

The overall data set is randomly divided into three 
subsets: a training set which contains 60 % of the 
data, while the remaining 40 % of data are allocated 
to the testing (20%) and validation sets (20%). In 
order to choose the optimal number of neurons in the 

Figure 9. A scatterplot of MARSpline vs. validation experimental data 
(generated data set).

Figure 10. Distribution of MARSpline model residuals on validation data 
(generated data set).

hidden layer and adequate transfer functions, the five 
best ones out of 1000 preliminary developed neural 
networks have been selected. The number of hidden 
neurons varied from 3 to 8. Exponential, sigmoid, 
hyperbolic tangent and linear transfer function were 
tried. In the development of neural network on the 
basis of the small data set (251 data), the bootstrap 
subsampling method was used for the selection of 
learning data. The bootstrap method of subsampling 
randomly chooses data with a possibility of repeating 
the same data (i.e., reusing them) an unlimited number 
of times. It is common that the data set has the same 
size as the original data set, but with regard to the 
nature of a method, all data will not be selected. In 
the preliminary research, using the small data set, the 
structure of a 5-3-1 network with hyperbolic tangent 
transfer functions in the hidden layer was chosen. This 
network contains five neurons in the input layer, three 
in the hidden and one in the output layer.

In the MLP model developed on 6000 generated 
data, a 5-8-1structure of the network with logarithmic 
transfer functions of both layers was chosen.
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Table 5. Selection of the best network developed on the small data set.

MLP structure Training Perf. Test Perf. Validation Perf. Training Error Test Error Validation Error

5-3-1 0.957 0.948 0.710 0.006 0.004 0.026

5-3-1 0.944 0.922 0.934 0.007 0.005 0.005

5-3-1 0.909 0.857 0.941 0.011 0.011 0.005

5-3-1 0.965 0.892 0.821 0.004 0.008 0.018

5-3-1 0.807 0.878 0.938 0.023 0.013 0.005

There are plenty of possible combinations of 
the train-test-validation data set regarding random 
initialization of network weights and random 
sampling of data to each subset. Therefore, with the 
aim to improve generalization, 1000 networks of given 
topology were developed using the small data set, 
from which five best networks were selected (Table 5). 
Five best neural networks were chosen using statistical 
criteria like correlation coefficients and mean square 
errors of each subset and small diversity in errors of 
each subset.

Using data generated by the bootstrap method, 
1000 networks of given topology were developed from 
which the five best ones were selected and, among 
them, the best neural network was chosen, Table 6.

Statistical parameters of the neural network models 
developed on the small data set are shown in Table 7. 
High values of correlation coefficients and small errors 
point out that the model very well describes the actual 
data. Such good matching with minor deviations is 
also observed in Figures 11 and 12.

In Table 8 statistical parameters of the neural 
network developed on the generated data set are 
presented. Improved statistical parameters with almost 
the same values for the estimation and validation 
data sets show high model accuracy, which is better 
than the MLP model developed on the small data set. 
From Figure 13, it can be seen that deviations from 
the direction y = x are minimal on the entire dataset. 
In Figure 14 for the histogram, it is clear that most of 
the errors lie between -0.1 and +0.1 vol. % of benzene 
content.

When all developed models are compared, it can 
be concluded that the best results are achieved by 
the neural network models developed on generated 

Table 6. Selection of the best network developed on the generated data set.

MLP structure Training Perf. Test Perf. Validation Perf. Training Error Test Error Validation Error

5-8-1 0.976 0.971 0.974 0.002 0.002 0.002

5-8-1 0.976 0.973 0.975 0.002 0.002 0.002

5-8-1 0.976 0.971 0.973 0.002 0.002 0.002

5-8-1 0.962 0.953 0.959 0.003 0.003 0.003

5-8-1 0.969 0.961 0.966 0.003 0.003 0.003

Table 7. Statistical parameters of the neural network model (a small data set).

Parameter Estimation Validation

R 0.932 0.934

R2 0.868 0.872

Radj 0.867 0.869

eMSE, vol. % 0.071 0.073

RMS, vol. % 0.101 0.104

Figure 11. A scatterplot of neural network model vs. validation experimental 
data (a small data set).

Figure 12. Distribution of MLP model residuals on validation data (a 
small data set).
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Table 8. Statistical parameters of the neural network model (generated 
data set).

Parameter Estimation Validation Real data

R 0.975 0.975 0.973

R2 0.951 0.951 0.947

Radj 0.951 0.951 0.947

eMSE, vol. % 0.044 0.011 0.002

RMS, vol. % 0.062 0.031 0.015

Figure 13. A scatterplot of the neural network model vs. validation 
experimental data (generated data set).

Figure 14. Distribution of MLP model residuals on validation data 
(generated data set).

data. The presented results are in accordance with the 
previous similar researches dealing with nonlinear 
relationships with the limited and small data set 
problem, using a bootstrapping-based approach (Yuan, 
1999; Ivanescu et al., 2006; Tsai et al., 2008; Napoli, 
2011).

Residuals of the neural models show narrower 
distributions of errors than the residuals of linear and 
MARSpline models.

It is also very important to discern a slight 
difference in the correlation coefficients between the 
model applied to training data and to validation data 
(unlike the linear and MARSpline models developed 
on small datasets) which, in this case, promises more 
reliable application of neural network models.

CONCLUSIONS

This article presented the development and 
comparison of soft sensor models for the estimation of 
benzene content in reformate. Models were developed 
on a small data set as well as on data generated using 
the bootstrap resampling method. Multiple linear 
regression models, multivariable adaptive regression 
spline models and MLP neural network models have 
been developed.

According to the statistical parameters and 
diagrams, models developed with neural network 
achieved the best results, particularly the one developed 
with generated data.

Multiple linear regression models and MARSpline 
models gave quite similar and still satisfactory results.

By comparing models developed on the small data 
set with the ones developed with generated data, it can 
be observed that the models developed on the small 
data set show significantly different statistics for the 
estimation and validation data. It makes the models 
developed on the small data set less reliable in the 
comparison with their bootstrapped version.

By additional validation of neural networks models 
on real-plant data it had been shown that the bootstrap 
method can be successfully applied to generate 
additional output data in order to get an improved 
model performance.

The overall results indicate that the developed soft 
sensors can be used for continuous analysis of benzene 
content in reformate at a real plant instead of rare off-
line laboratory analyses. Finally, the developed soft 
sensors can be successfully implemented and applied 
in an advanced process control system.

NOMENCLATURE

B Number of resamples
bi Regression coefficients
eMSE Mean absolute error
F Function of distribution
FC-002 Pump around flowrate
Fn Discrete probability distribution
H Function defined in Equation (4)
K Order of interactions
LS-SVM Least Square Support Vector Machine 
model
M   Number of terms in Equation (3)
MARSpline Multivariable adaptive regression splines
MLP   Multi - Layer Perceptron
MSAT   Mobile Source Air Toxics
n  Sample size
PCA  Principal Component Analysis
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PI-009  Pressure in C1 column
PLS Partial Least Squares
R  Pearson correlation coefficient
R2       Coefficient of determination
Radj     Adjusted coefficient of determination
RMS  Root mean square error
t   Knot of the basis functions
TC-001 Inlet stream temperature in C1 column
TC-003  Temperature in C1 column
TC-018  Temperature of bottom in C1 column
Tn 	Some statistical parameter
Ui 	Inputs
xi	  Independent variables
xv(k,m)Predictor in the k'th of the m'th product
 y	 Dependent variable
Greek Symbols
β	 Parameters of Eq. (3)
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