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Abstract

The sensitivity of copper,zinc (CuZn)- and manganese (Mn)-superoxide
dismutase (SOD) to exogenous estradiol benzoate (EB) was investigated
in Wistar rats during postnatal brain development. Enzyme activities
were measured in samples prepared from brains of rats of both sexes and
various ages between 0 and 75 days, treated sc with 0.5 pg EB/100 g body
weightin 0.1 mlolive 0il/100 g body weight, 48 and 24 h before sacrifice.
In females, EB treatment stimulated MnSOD activity on days 0 (66.1%),
8 (72.7%) and 15 (81.7%). In males, the stimulatory effect of EB on
MnSOD activity on day 0 (113.6%) disappeared on day 8 and on days 15
and 45 it became inhibitory (40.3 and 30.5%, respectively). EB had no
effect on the other age groups. The stimulatory effect of EB on CuZnSOD
activity in newborn females (51.8%) changed to an inhibitory effect on
day 8 (38.4%) and disappeared by day 45 when inhibition was detected
again (48.7%). In males, the inhibitory effect on this enzyme was
observed on days 0 (45.0%) and 15 (28.9%), and then disappeared until
day 60 when a stimulatory effect was observed (38.4%). EB treatment
had no effect on the other age groups. The sensitivity of MnSOD to
estradiol differed significantly between sexes during the neonatal and
prepubertal period, whereas it followed a similar pattern thereafter. The
sensitivity of CuZnSOD to estradiol differed significantly between sexes
during most of the study period. Regression analysis showed that the
sensitivity of MnSOD to this estrogen tended to decrease similarly in
both sexes, whereas the sensitivity of CuZnSOD showed a significantly
different opposite tendency in female and male rats. These are the first
reports indicating hormonal modulation of antioxidant enzyme activities
related to the developmental process.
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Antioxidant enzymes such as superoxide
dismutase (SOD), catalase (CAT), and gluta-
thione peroxidase (GPx) reduce levels of
superoxide radicals (O,°7) and H,O,, thus
protecting cells from oxygen toxicity. Data
suggest that estradiol contributes to the physi-

ological modulation of these enzymes in vari-
ous tissues of rats and humans. It has been
shown that erythrocyte GPx activity is higher
in women than in men (1), and that the
activities of SOD and GPx in liver (2) and
SOD and CAT activities in macrophages (3)
are significantly higher in female rats. The
luteal content of SOD changes during the
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ovulatory cycle in humans (4), whereas GPx
activity in erythrocytes is positively corre-
lated with plasma estradiol levels during the
menstrual cycle (5). It has been reported that
estradiol influences the expression of SOD
in the corpus luteum (6) and significantly
alters the activity of CAT (3) and the produc-
tion of O,*~ and H,O, (7) in rat macrophages.

The regulatory role of estradiol on anti-
oxidant enzymes is more intriguing in light
of the hypothesis that reactive oxygen spe-
cies can act as physiological signaling mol-
ecules (8). Namely, there is growing evi-
dence suggesting that O,*~ and H,0, play a
number of significant, diverse roles in repro-
duction (9) and brain development (10). Fi-
nally, estrogens function as radical scaven-
gers and inhibit neuronal peroxidation both
invivo and in vitro (11). The marked antioxi-
dant activity of estradiol makes this steroid
a candidate for the therapy of neurodegen-
erative diseases associated with aging (12).

It is well known that estradiol exerts mul-
tiple effects on morphogenesis, neuroendo-
crine function, sex differentiation and neuro-
transmission during brain development. Also,
the importance of antioxidant enzymes in neu-
roprotection during brain development and
aging has been well documented (13-15). Yet,
we found no data concerning hormonal modu-
lation of antioxidant enzyme activities during
developmental processes. Our previous stud-
ies have shown that estradiol benzoate (EB)
and progesterone modulate the activities of
SOD, GPx, CAT, and glutathione reductase in
brain of adult rats (16-18). The inhibition of
brain mitochondrial manganese-SOD
(MnSOD) activity by EB without affecting
cytosol copper,zinc-SOD (CuZnSOD) activ-
ity was a response of rats of both sexes.

In the present study we determined
whether exogenous EB affects SOD activity
during postnatal brain development in rats of
both sexes. We postulated that the regulatory
role of estradiol as well as its antioxidant
activity in developmental processes could be
expressed, at least in part, by modulation of
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SOD activity and consequently of the levels
of O,*~ and H,0..

Material and Methods

Wistar rats of both sexes and various ages
(0,8, 15, 30,45, 60 and 75 days) were housed
in open colony cages under controlled condi-
tions of temperature (23 + 2°C) and illumina-
tion (lights on from 5:00 to 17:00 h), with free
access to tap water and laboratory chow. Ani-
mals were treated 48 and 24 h prior to sacrifice
with a sc injection of 0.5 pg EB/100 g body
weight (B-estradiol-3-benzoate; Sigma, St.
Louis, MO, USA) suspended in 0.1 ml olive
0il/100 g body weight. To obtain the experi-
mental group of newborn rats (0 days), the
pregnant females received the same dose of
EB 48 and 24 h before delivery (on the 19th
and 20th day of pregnancy). Two groups of
control animals were either sham-injected or
injected sc with 0.1 ml olive 0il/100 g body
weight by the same schedule. Animals were
sacrificed by decapitation with a guillotine
(Harvard Apparatus Inc., Edenbridge, Kent,
UK) and the brains were removed immedi-
ately for homogenate preparation.

Tissue homogenates were prepared by the
method of Rossi etal. (19) and de Waziers and
Albrecht (20) where a freezing/defrosting pro-
cedure was used instead of sonication. Indi-
vidual brains were homogenized in a Teflon/
glass homogenizer (Spindler & Hoyer,
Gottingen, Germany) in 0.25 M sucrose buffer
containing 50 mM Tris-HCland 1 mM EDTA,
pH 7.4 (1 g tissue per 2 ml buffer). Brain
homogenates were vortexed for 30 s three
times, with intermittent cooling on ice, and
frozen at -70°C for 20 h in order to disrupt the
cell membranes and release the MnSOD en-
zyme from mitochondria into crude homoge-
nates. The homogenates were then defrosted
at room temperature, vortexed 1 min and cen-
trifuged in a Beckman L8-80 M ultracentri-
fuge (Beckman Instruments Inc., Palo Alto,
CA, USA) at 124,000 g for 90 min at 4°C.
Supernatants were stored at -20°C until use.
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SOD activity was determined by the
method of Misra and Fridovich (21). The
auto-oxidation of adrenaline to adrenochrome
was carried out in 3 ml of 50 mM Na,CO;
and 100 uM EDTA, pH 10.2, at 26°C. The
inhibition of auto-oxidation was monitored
at 480 nm. After assaying total SOD activity
the samples were treated with 4 mM KCN in
order to inhibit cytosol SOD (22) and sub-
jected again to the enzyme assay as described
above. The values thus obtained were con-
sidered to be due to MnSOD. Protein con-
centration in the cytosol was determined by
the method of Lowry et al. (23).

Data were analyzed using the statistical
packages OriginPro 6.1 and Statistica 5.0.
The differences in enzyme activity (U/mg
protein) between EB-treated and control
groups were determined by the r-test. In
further analysis, relative values for enzyme
activity were used, expressed as percent of
the enzyme activity in controls of the same

age. Departures of relative values from nor-
mal distribution were determined by the
Lilliefors and Shapiro-Wilks test. Since the
observed variables did not show significant
departures from normal distribution, no data
transformation was employed. The effects
of EB treatment on enzyme activity during
development were tested by ANOVA and
the Tukey honest significant difference test.
A linear regression model with replication
was employed in the analyses of the devel-
opmental pattern of the response of SOD
activity to EB. The slopes of the regression
lines for females and males were compared
to determine intergender differences in the
response of SOD activity.

Results
Table 1 shows that olive oil treatment

significantly inhibited the activity of MnSOD
and CuZnSOD on days 0 and 15 in female
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Table 1. The activity of manganese (MnSOD)- and copper,zinc-superoxide dismutase (CuZnSOD) in sham-treated control and olive oil-treated

control rats of different ages.

Age (days)
0 8 15 30 45 60 75
MnSOD
Females
Sham-treated 129 + 1.3 9.4 £ 05 17.4 £ 0.5 1.5+ 2.0 108 + 1.6 120 + 2.7 6.4 £ 1.2
(5) (7) (5) (6) (6) (5) (5)
Olive oil-treated 8.9 + 0.9* 103 + 1.6 11.3 + 1.0* 1.6+ 1.9 127 £ 3.2 96 £ 1.9 169 + 1.2
(5) (6) (6) (7) (5) (5) (5)
Males
Sham-treated 11.4 £ 0.9 149 + 1.6 14.0 £ 0.5 1.7 1.2 20.7 = 2.7 19.0 £ 2.2 19.4 + 2.3
(6) (5) (5) (5) (6) (6) (5)
Olive oil-treated 94 +1.2 122 £ 11 122 + 2.0 1M.7+£19 17.6 = 2.1 15.8 = 2.1 19.6 + 2.6
(5) (6) (7) (6) (5) (6) (5)
CuzZnSOD
Females
Sham-treated 20.1 £ 0.7 255 + 3.6 50.7 + 45 39.1 + 3.6 378 £ 4.2 51.0 + 5.8 363+ 14
(5) (7) (5) (6) (6) (5) (5)
Olive oil-treated 16.2 £ 1.4% 27.4 + 4.2 33.56 + 3.8* 322 + 1.6* 441 + 4.7 410+ 15 442 + 4.4
(5) (6) (6) (7) (5) (5) (5)
Males
Sham-treated 232 £ 2.2 26.9 + 3.5 43.0 £ 35 32.7 = 3.1 51.1 + 5.6 396 + 1.9 34.0 £ 1.9
(6) (5) (5) (5) (6) (6) (5)
Olive oil-treated 5.8 == 15" 271 = 2.4 459 + 3.6 284 £ 2.5 47.8 £ 5.5 37.1 + 3.6 347 + 2.4
(5) (6) (7) (6) (5) (6) (5)

Data are reported as means + SEM U/mg protein, for the number of rats given in parentheses. *P<0.05 compared to sham-treated animals of the

same age (t-test).
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rats, and the activity of CuZnSOD on day 30
when compared to sham-treated controls. In
males, olive oil had no effect on MnSOD
activity and inhibited the activity of
CuZnSOD onday 0. To investigate the modu-
latory role of EB on SOD activities during
brain development and to facilitate the com-
parison between sexes, we report enzyme
activity as percent of the values for olive oil-
treated controls of the same age.

MnSOD activity in the brain of female and
male rats (Figure 1)

In the brain of female rats EB treatment
stimulated MnSOD activity on days 0
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Figure 1. A, Effects of estradiol benzoate on manganese-superoxide dismutase (MnSOD)
activity in female and male rats of different ages. Data are reported as means + SEM as
percent of olive oil control values for the number of rats given in parentheses (*P<0.05, t-test).
B, Scatter-plot of MnSOD activity. P - significance of slope for females (P<0.001) and males
(P<0.001), ANOVA.
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(P<0.001, #-test), 8 and 15 (P<0.01), but had
no effect on the activity of the enzyme dur-
ing further development (P>0.05, #-test). EB
prominently stimulated brain MnSOD activ-
ity immediately after birth both in males and
in females (P<0.001, #-test). This effect dis-
appeared on day 8 (P>0.05, #-test) and on
day 15 of postnatal development it became
inhibitory (P<0.05) and opposite compared
to females. Inhibition was detected again on
day 45 (P<0.05, t-test), while EB seemed to
have no effect on the other age groups (P>0.05).

Time variation in the effect of EB on
MnSOD activity in females (tested by ANOVA
and the Tukey test) was statistically significant
between days 0, 8 and 15, and days 30 and 45
of postnatal development, with the most sig-
nificant effect occurring between days 15 and
30 (P<0.001, Tukey test), when the stimula-
tory effect of this hormone disappeared. In
males, the effect of EB on MnSOD activity
showed a highly significant difference be-
tween day O and all the other time points
examined (P<0.001, Tukey test). The effect of
the hormone significantly changed between
day 8 and day 15 (P<0.05, Tukey test) when it
became inhibitory.

As shown in Figure 1, the sensitivity of
MnSOD to estradiol administration differed
significantly between sexes during the neona-
tal and prepubertal period (females vs males
for0, 8, 15 days, P<0.01, z-test). During further
development this sensitivity followed a simi-
lar pattern in female and male rats (P>0.05).
Regardless of the sex differences found for the
above mentioned time points during early de-
velopment, regression analysis (Figure 1B)
showed a similar decreasing tendency of
MnSOD sensitivity to EB in both sexes during
the entire period examined (comparison of
regression slopes: # = -1.06, P>0.05).

CuZnSOD activity in the brain of female and
male rats (Figure 2)

The stimulatory effect of EB on
CuZnSOD activity in newborn females
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(P<0.05, r-test) changed to a markedly inhib-
itory effect on day 8 of postnatal develop-
ment (P<0.01), and disappeared by day 45
when strong inhibition of enzyme activity
was detected again (P<0.001). At the age of
60 and 75 days estradiol had no effect on this
enzyme (P>0.05, t-test). In the brain of males,
the inhibitory effect of EB on CuZnSOD
activity was observed during the early post-
natal development, i.e., on days 0 (P<0.01, -
test) and 15 (P<0.05), and then disappeared
until day 60 when a stimulatory effect was
observed (P<0.05). Atthe age of 75 days EB
treatment had no effect on CuZnSOD activ-
ity (P>0.05, t-test).

The variation with time of the effects of
EB on CuZnSOD activity in females showed
highly significant differences in inhibition
oractivation between days 0 and 8 (P<0.001,
Tukey test), 8 and 15 (P<0.01), and 15 and
45 (P<0.001), when the effect of the hor-
mone was inverted, disappeared and was
reestablished again. In males, the effect of
EB on the same enzyme was significantly
different between days 0, 8 and 15, and day
60 (P<0.001, P<0.05, P<0.001, respectively,
Tukey test).

Contrary to MnSOD, for which both in-
hibition and activation were restricted to the
period of early postnatal development, these
diverse effects of EB seemed to dominate
during the entire period examined in the case
of CuZnSOD activity (females vs males for
0, 8, 15, 45, 60 days, P<0.02, ¢-test). Oppo-
site and significantly different tendencies in
the response of this enzyme activity to EB
between sexes were also shown by regres-
sion analysis (Figure 2B, comparison of re-
gression slopes: # = -3.69, P<0.001).

Discussion

We used exogenous EB to investigate
different developmental periods when modu-
lation of SOD activity by this hormone might
be relevant to processes of estradiol-regu-
lated brain differentiation.

We observed that olive oil alone, used as
the conventional solvent of EB, reduced SOD
activity (24) at certain times during early
development (Table 1). This reduction may
be related to growing evidence demonstrat-
ing the powerful antioxidant properties of
olive oil phenolics both in vitro and in vivo
(25). In healthy men, ingestion of virgin
olive oil increases the incorporation of oleic
acid, phenols and vitamin E into low-density
lipoprotein (LDL), which increases LDL re-
sistance to oxidation (26). Olive oil phenol
hydroxytyrosol reduces H,O, generation,
H,0,-induced DNA damage and mRNA lev-
els of GPx in oxidative stress-sensitive hu-
man prostate cells (27). It has also been
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Figure 2. A, Effects of estradiol benzoate on copper,zinc-superoxide dismutase (CuZnSOD)
activity in female and male rats of different ages. Data are reported as means + SEM as
percent of olive oil control values for the number of rats given in parentheses (¥*P<0.05, t-
test). B, Scatter-plot of CuZnSOD activity. P - significance of slope for females (P<0.01) and

males (P<0.001), ANOVA.
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shown that polyphenol mixtures prepared
from olive oil decrease the production of
O,°~ in cultured human promonocyte (28)
and that olive oil-fed rats have lower liver
CuZnSOD, CAT and GPx activities com-
pared to fish oil-fed rats (29). The reduction
of SOD activity by olive oil stopped after day
30 of development and was not observed in
adult rat brain (30). This could be due to the
marked perturbations in oxidative metabo-
lism and lipid composition during differen-
tiation. Namely, the increased degree of li-
pid unsaturation demonstrated early during
development has been suggested to provide
antioxidative protection at the time when
antioxidant enzyme defenses are low (31).

When examining the sensitivity of brain
SOD to exogenous EB during postnatal de-
velopment we applied the hormone dose
used in studies of its feedback effect on
neonatal and infantile rats of both sexes
(32,33). EB treatment of the pregnant female
rat immediately before delivery increased
the activity of both SOD in the brain of
female neonates, particularly MnSOD. In
the brain of male neonates, strong stimula-
tion of MnSOD activity significantly ex-
ceeded the reduction of CuZnSOD activity,
representing the most intensive SOD response
to EB during the examined developmental
period. This indicates that the stimulating
effects of EB on brain SOD activities in
newborn pups coincided with the high se-
rum estradiol levels found in the neonates
(aged 0 and 1 days) of both sexes, which
were significantly higher than the maximal
values observed in adult rats (34). Since the
increased SOD activity in the brain and other
tissues of rats during the perinatal period is
often related to the transition of newborns
from a relatively hypoxic to a hyperoxic
environment (10,35), these data suggest a
possible influence of estradiol on the SOD
response to antioxidant stress induced by
delivery.

Although there was a difference in the
effects of EB on MnSOD and CuZnSOD

S. Peji¢ et al.

activities at the same age, the intragender
developmental profile of both SOD responses
showed similar increases, stagnations and
falls, with the exception of day 8 in females
and day 0 in males. This indicates a different
mechanism of mitochondrial and cytosol
enzyme regulation by exogenous EB during
most of the developmental period examined,
with a certain degree of time synchroniza-
tion in their regulation. Previous findings
also indicated that during the postnatal de-
velopment of rats, MnSOD and CuZnSOD
activities often do not correlate with one
another or with activities of other antioxi-
dant enzymes, and do not synchronously
follow the increase of aerobic brain metabo-
lism (13,14,36). Mavellietal. (13) concluded
that two types of SOD respond with a dis-
tinct “time constant” to brain differentiation,
pointing to a distinct mechanism of regula-
tion.

In contrast, the sensitivity of both SOD to
EB significantly differed between sexes dur-
ing the infantile and early pubertal period of
development, and then, beginning on day
30, it acquired a similar general pattern. This
shift in SOD response to EB coincides with
the stabilization of plasma estradiol levels
around day 30 to the values similar to those
of adult rats, after significant oscillations
during the first four weeks of postnatal life
(34). Also, high levels of endogenous estra-
diol on days 0, 8 and 15 and significantly
lower levels on days 30 and 45 (34) corre-
spond to a decreasing sensitivity of both
SOD to EB in females and of only MnSOD
in males during the same period of develop-
ment. However, different effects of exog-
enous EB on SOD activity in females and
males, as well as opposite tendencies in
MnSOD and CuZnSOD sensitivity in males,
are less probably the consequence of changes
solely in serum estradiol level, since there is
a similar developmental profile of this hor-
mone in rats of both sexes (34). If these
effects of EB are mediated by estradiol re-
ceptors (ER), asynchronous expression of
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ERa (37) and possibly ERB forms in the
brain of female and male rats during devel-
opment, as well as the possibility of differen-
tial transcription activity of ERa and ERB
through the same regulatory site (38) could
be the cause of the observed sex difference
in SOD response to EB. On the other hand,
different neuroprotective effects of pharma-
cological and physiological doses of estra-
diol on H,0,, glutamate and B-amyloid pep-
tide toxicity (mediated by H,0O,) operate
through ER-independent mechanisms (12).
It is possible that estradiol by the same
mechanisms influences not only the neuro-
toxic, but also the physiological levels of
H,0,, thus modulating SOD activities by
changing the enzyme product level. Still, we
found no data concerning sex dependence in
the ER-independent mechanisms of the neu-
roprotective and antioxidant effects of estra-
diol.

Some of the activities of antioxidant en-
zyme are synergistically coordinated in their
response to increased aerobic metabolism
during brain development, while others are
independently regulated (36). Similar find-
ings, together with the observation of in-
creased transcriptional activity of NF-xB by
increased H,O, levels, led de Haan et al. (10)
to postulate a role of reactive oxygen species
in normal development. Namely, nonsyn-
chronization of antioxidant enzyme activi-
ties during development could be related to
the tissue’s need to produce reactive oxygen
species for the selective gene transcription
via activation of transcription factors, rather
than solely for its antioxidant defense re-
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