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Abstract

The purpose of this study was to verify the association between angiotensin-converting enzyme (ACE) genotypes DD, DI, and II
and caffeine (CAF) ingestion on endurance performance, heart rate, ratio of perceived exertion (RPE), and habitual caffeine
intake (HCI) of adolescent athletes. Seventy-four male adolescent athletes (age: DD=16±1.7; DI=16±2.0; II=15±1.7 years)
ingested CAF (6 mg/kg) or placebo (PLA) one hour before performing the Yo-Yo Intermittent Recovery level 1 (Yo-Yo IR1) test.
No difference was found among groups for HCI. However, CAF increased the maximal distance covered and VO2max in DI and
II genotype carriers compared to PLA (DD: D=31 m and 0.3 mL�kg–1�min–1; DI: D=286 m and 1.1 mL�kg–1�min–1; II: D=160 m and
1.4 mL�kg–1�min–1). Heart rate of DI and II genotype carriers increased with CAF compared to PLA, while RPE was higher in the
II and lower in the DD genotypes. The correlations between HCI and maximal distance covered or VO2max were significant in
the II genotype carriers with CAF. CAF increased endurance capacity, heart rate, and RPE in adolescent athletes with allele I,
while endurance performance and aerobic power had a positive correlation to HCI in the II genotype group. These findings
suggested that DD genotype were less responsive to CAF and that genetic variations should be taken into account when using
CAF supplementation to enhance exercise performance.
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Introduction

It is well known that caffeine supplementation has a
positive effect on exercise performance (1,2). Its ergogenic
effects are more frequently reported in endurance tasks
(3,4), while they remain controversial in high-intensity and
short-duration efforts, particularly strength-power perfor-
mance (5,6). Caffeine acts primarily on central sites as an
antagonist of adenosine receptors, leading to increased
neural excitability (7). This in turn enhances muscle
recruitment (8) and reduces the perception of exertion
during exercise (9). In skeletal muscle, caffeine reduces
potassium concentrations in plasma (10) and enhances
muscle contractility and oxygen saturation (11). Further-
more, caffeine increases ventilation and heart rate

response, resulting in higher maximal oxygen uptake
(VO2max) (12). These physiological mechanisms help to
construct a paradigm to explain the effects of caffeine in a
broad range of exercises, especially of long duration.

Despite the several physiological mechanisms that
may influence exercise tolerance in both high-intensity,
shorter-duration exercises and longer-duration exercises,
some effects of caffeine are restricted to the latter. In
skeletal muscle, caffeine has been shown to increase the
sensitivity of free-fatty acid (FFA) oxidation specifically in
type I fibers compared to type II fibers during in vitro
contraction (13). This finding may explain the greater
impact of caffeine on endurance exercises (14,15).
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Even though the ergogenic effect of caffeine is overall well
accepted for endurance tasks, its positive responses are
not always present when analyzing individual data
(16,17). Based on this framework, it is worth noticing that
carriers of the I allele in the ACE rs4340 polymorphism,
especially II homozygotes, are more predisposed to
aerobic endurance performance due to predominance of
type I fibers (18). These type I fibers are more suited for
aerobic activities due to their oxidative capacity. However,
it is still unknown whether carriers of the I allele are more
responsive to acute caffeine supplementation.

Inter-individual variability in response to caffeine has
been attributed to genetic polymorphism (19). Several
studies have explored the link between caffeine and
CYP1A2 and ADORA2A (20), which are considered key
genes to the ergogenicity of caffeine during endurance
tasks. However, other polymorphisms may also contribute
to individual responses during endurance tasks. For
example, the presence of the D allele for ACE polymor-
phism is associated with greater activation of the
angiotensin II growth factor, deactivation of the bradykinin
growth inhibition factor, higher muscle strength and power,
and predominance of type II muscle fibers (21). On the
other hand, the association of the D allele with caffeine
(CAF) supplementation has not been investigated yet.
Similarly, the insertion (I) ACE polymorphism (287bp-
intron 16) is more associated with endurance activities
due to predominance of type I skeletal muscle fibers (22),
as supported by muscle biopsy (18) and higher VO2max
(23) than the deletion (D) allele. Previous studies
investigating the impact of genetic variation on sports
performance have been conducted in various populations
(20). Due to the distinctive genomic characteristics of the
mixed Brazilian population and differences in the propor-
tion of ancestry compared to other populations, the
interpretation, transferability, and interchangeability of
genetic data can be challenging (24). Consequently,
studies are needed regarding the association between
ACE genetic variations and their effects on endurance
performance, heart rate, perceived exertion ratio, and
habitual caffeine intake (HCI) in Brazilian athletes.

Although the ergogenic effects of caffeine are less
explored in adolescents (16,25), studies suggest an
effect similar to adults (26,27). For example, moderate to
high doses of caffeine (approximately 100–400 mg) led
to increased reports of nervousness and tremors and
decreased reports of sluggishness in children and
adolescents (26,27). Perhaps, the short-term phenotypic
exposure and recommendation of more controlled caffeine
consumption made this sample more homogeneous and
sensitive to treatment compared to adults.

The purpose of the present study was to investigate
the effect of acute caffeine ingestion on aerobic perfor-
mance, heart rate, ratio of perceived effort, and HCI
in adolescent athletes with different ACE genotypes.
We hypothesized that acute CAF responsiveness to

endurance performance, heart rate, and perceived effort
is influenced by the presence of the I allele of the ACE
polymorphism (287bp-intron 16).

Material and Methods

Participants
Seventy-five adolescent male athletes who regularly

trained at least three times a week participated in this
study. The athletes were participants in sports such as
volleyball, track and field, and soccer. Participant’s
characterization is displayed in Table 1. Participants and
their parents were informed about the experimental risks
and signed a consent form before starting the experi-
ments. The study procedures were conducted in accor-
dance with the Declaration of Helsinki (2008) and were
approved by the Federal University of Alagoas Ethics
committee (number 1.541.599).

Experimental protocol
The study was conducted using a randomized, cross-

over, and double-blind design. Participants visited the
laboratory three times with a minimum of a 72-h interval. In
the first visit, a caffeine consumption questionnaire,
anthropometric measurements, blood collection, and
familiarization with all procedures adopted in the experi-
mental trials were performed.

The subjects were weighed on an electronic scale with
0.1 kg precision (Supermedy, Brasil). Height was meas-
ured using a measuring tape placed on the wall. Blood
collection was performed by peripheral phlebotomy in
four-mL vacuum tubes with EDTA (BD Vacutainers, USA).
The tubes were stored at –20°C until DNA extraction.

To assess HCI, a caffeine consumption frequency
questionnaire was applied. Participants indicated the
amount and frequency of each food on the list. To
calculate daily CAF consumption, it was assumed that
150 mL of pure coffee contained 100 mg of CAF; 28 g milk
chocolate, 6 mg CAF; 250 mL of energy drink, 80 mg of
CAF; 350 mL of cola, 46 mg of CAF; 150 mL of tea, 30 mg
of CAF; 150 mL of coffee with milk, 33 mg of CAF; and
350 mL of guarana soda, 2 mg of CAF (28).

On the second and third visits, a capsule containing
6 mg/kg of anhydrous caffeine (CAF) or cellulose (PLA)
with a similar size, weight, and color was administered

Table 1. Anthropometric characteristics of study participants.

DD (n=22) DI (n=40) II (n=13)

Age (years) 16±1.7 16±2.0 15±1.7

Height (cm) 170±8 169±1 167±1

Body mass (kg) 62.4±9.4 59.7±12.3 51.1±9.1

BMI (kg/m2) 21.4±2.4 20.5±2.5 18.1±1.6

The data are reported as means±SD. BMI: Body mass index.
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with 200 mL of water one hour before the tests. The
participants performed a battery of short-duration tests (in
sequence: handgrip strength, agility, push-ups, counter-
movement jumps, spike jumps, sit-ups) followed by the
Yo-Yo Intermittent Recovery test level 1 (Yo-Yo IR1)
(28,29). Participants were instructed to maintain their
regular eating habits and avoid exhaustive exercise,
caffeine, alcohol, or nutritional supplements 24 h prior
experimental trials.

Yo-Yo IR1
Following the protocol by Bangsbo et al. (30), the

subjects performed laps (20+20 m), accompanied by a
sound signal at the start, middle, and end of the race, with
a brief recovery period of 10 s after every 40 m. The
velocity increment was controlled at the end of each
stage. The test starts with four bouts between 10 and
13 km/h (0–160 m), seven bouts of 13.5–14 km/h (160–
440 m), followed by stages of eight shuttle runs with an
increment of 0.5 km/h. The tests were conducted until the
subject’s exhaustion, characterized by missing the signals
three consecutive times or by voluntary exhaustion.
The VO2max was calculated by the formula: VO2max
(mL�kg–1�min–1) = IR1 distance (m) � 0.0084 + 36.4.

Genotyping
DNA extraction. All genotyping was performed by a

blinded investigator not involved with the experimental
protocol. DNA extraction from 300 mL of blood was
performed by using FlexiGene DNA Kit (Qiagen, USA),
according to the recommendation of the supplier.

DI ACE, rs4340. The analysis of the ACE polymor-
phism was performed as described by Gómez-Gallego
et al. (31). The two alleles of the human ACE gene were
identified by the insertion or deletion of a 287 bp repeat
element in intron 16. The PCR conditions were as follows:
initial denaturation at 95°C for 5 min; 35 cycles at 95°C for
30 s, 57°C for 30 s, 72°C for 1 min, and a final extension at
72°C for 5 min. The fragments were detected on a 1.5%
agarose gel stained in ethidium bromide. To avoid
misclassification, a second PCR was performed on all
samples classified as DD with the specific primer pairs:
5’-TGGGACCACAGCGCCCGCCACTAC-3’ (forward) and
5’-TCGCCAGCCCTCCCATGCCCATAA-3’ (reverse). The
PCR conditions were similar to those described above,
except for the annealing temperature (63°C). Only the I
allele produces a 335 bp fragment, identified on 2.0%
agarose gel stained with ethidium bromide. The ACE
DI fragments with deletion (D allele) and with insertion
(I allele) were identified as 190 and 490 bp, respectively.
The DI genotype has the two forms of fragments.

Patient and public involvement
Patients have been involved in the development

and refinement of the experimental protocol, and the

authorship team includes three subjects who were
managed with the methods.

Equity, diversity, and inclusion
The participants were a cohort of mostly black and

indigenous adolescents. The region of the state of
Alagoas is characterized primarily by a black and
indigenous population. This region has the worst human
development index of the country. The sports program in
which the participants take part is essential for social
inclusion, talent detection, and bringing adolescents
closer to university.

Statistical analyses
The data are reported as means±SD. Statistical

analyses were performed using a statistical package
(Statisticas version 10.0, StataSoft and Social Science
Statisticss, USA). Data distribution was checked by the

Figure 1. Habitual caffeine consumption for DD (n=22), DI (n=40),
and II (n=13) angiotensin converting enzyme (ACE) polymor-
phism groups (A), Pearson correlation between caffeine inges-
tion and total distance covered (m) for the carriers of II in the
caffeine (CAF) group (B), and caffeine ingestion and VO2max
(mL�kg–1�min–1) for the carriers of II in the CAF group (C). The
data are reported as means±SD.
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Kolmogorov-Smirnov test. Once normal distribution was
confirmed, one-way ANOVA for independent groups was
used to compare the HCI among genotypes. Student’s
t-test for 2 dependent means was used for intra-genotype
groups comparisons. Pearson correlation test was used to
calculate the correlation between caffeine intake (mg/day),
VO2max, and total distance covered (m) for DD, DI, and II
genotypes in both conditions (PLA and CAF). Cohen’s
effect size (ES- Y) was also calculated for differences in
endurance performance where thresholds for small, mod-
erate, and large effects were set at 0.20, 0.50, and 0.80,
respectively. The level of significance was set at Pp0.05.

Results

HCI (mg/day)
HCI according to each group of the ACE polymor-

phism is described in Figure 1A. No differences were
found among groups. There was a moderate effect size
between II vs DI (effect size Y=0.5) and II vs DD (effect

size Y=0.5). The effect size among other groups was
considered small.

Total distance (m) and VO2max (mL�kg–1�min–1)
CAF supplementation in the ACE DI and ACE II

groups increased the total distance covered and VO2max
in the Yo-Yo IR1 group compared to PLA (Table 2).

Heart rate and RPE
CAF treatment in the ACE DI and ACE II groups

increased the heart rate (bpm) and RPE only for ACE II
after Yo-Yo IR1 compared to PLA (Table 2).

Correlations
There was a significant correlation between HCI

(mg/day) and total distance (m) for ACE II in CAF
condition (P=0.05, Figure 1B), but not for PLA (P=0.90).
No significant correlations were found in ACE DI
participants who took PLA and CAF (P=0.36; P=0.85),
as well as ACE DD for PLA (P=0.69) and CAF (P=0.76).

Table 2. Comparison between effects of placebo (PLA) and caffeine (CAF) intake in different groups of
ACE genetic polymorphisms in the performance of the Yo-Yo IR1 test for total distance covered, VO2max,
heart rate, and ratio of perceived exertion (RPE).

Total distance (m)

ACE DD

Total distance (m)

ACE DI

Total distance (m)

ACE II

PLA 956±340 914±315 871±303

CAF 987±357 1200±404 1031±305

t-value 0.636 3101.002 2053.343

P-value 0.26 0.001* 0.03*

VO2max (mL�kg–1�min–1)

ACE DD

VO2max (mL�kg–1�min–1)

ACE DI

VO2max (mL�kg–1�min–1)

ACE II

PLA 44.4±2.9 44.1±2.6 43.7±2.5

CAF 44.7±3.00 45.2±3.4 45.1±2.6

t-value 0.334575 3068.591 2501.064

P-value 0.37 0.001* 0.01*

Heart rate (bpm)

ACE DD

Heart rate (bpm)

ACE DI

Heart rate (bpm)

ACE II

PLA 189±13 193±14 195±9

CAF 189±9 198±8 199±10

t-value –0.014778 2257.767 2317.731

P-value 0.49 0.01* 0.02*

RPE (6–20)
ACE DD

RPE (6–20)
ACE DI

RPE (6–20)
ACE II

PLA 18±3 16±3 17±2

CAF 17±3 17±3 20±3

t-value 2175.213 121.621 1924.654

P-value 0.01* 0.11 0.03*

The data are reported as means±SD. *Po0.05 between PLA and CAF. ACE: angiotensin converting
enzyme.
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For VO2max, a positive correlation with HCI (mg/day) was
found for ACE II in CAF condition (P=0.05, Figure 1C), but
not for PLA (p=0.87). No significant correlations were
found in ACE DI in both conditions, PLA and CAF
(P=0.39; P=0.79), as well as ACE DD for PLA (P=0.69)
and CAF (P=0.86), respectively.

Frequency distribution for total distance (m)
The frequency distribution for ACE II for delta (D)

between CAF and PLA demonstrated that 84.6% of
group had a positive response of supplementation. For
ACE DI group, 77.5% was positively sensitive to CAF
administration. The frequency distribution for ACE DD
reduced the CAF responsiveness for 66.7% of the
participants (Table 3).

Discussion

To the best of our knowledge, this study was the first
to investigate the association of ACE polymorphisms
and CAF consumption and supplementation on physical
performance in adolescent athletes. Our results confirmed
the hypothesis that carriers of the ACE gene polymor-
phisms (rs4340) II and DI were more responsive to the
ergogenic effect of CAF ingestion than DD carriers
on aerobic power, heart rate, and perceived exertion.
Furthermore, the endurance capacity was positively
correlated to HCI only for the II group.

Evidence of the independent effects of ACE poly-
morphism as well as caffeine supplementation on aerobic
performance is well consolidated (for a detailed summary

of mechanism related to ACE gene polymorphism and
caffeine intake, see Figure 2). However, no studies
regarding the combined effects of CAF supplementation
and ACE polymorphisms on endurance performance have
been carried out.

Athletes carrying the ACE gene polymorphisms II and
DI had improved performance in endurance exercise after
caffeine ingestion. On the other hand, carriers of the ACE
gene polymorphism DD had lower ergogenic effects of
caffeine. Although no previous studies regarding specific II
and DI gene polymorphism are available, the result was
not in line with previous studies with adolescents (28,29).
In these studies, caffeine intake improves endurance,
regardless of the gene polymorphism (28,29). The
difference between our study and the previous study
may be attributed to the gene polymorphism assessed.
Some authors assessed interactions between CYP1A2
(28) and ADORA2A (29) gene polymorphisms and
caffeine intake, which are only reported for caffeine
metabolism. In the present study, the ACE gene poly-
morphisms were assessed, which are related to important
morphological and physiological alterations (e.g., typology
of muscle fibers) regarding endurance exercise perfor-
mance, and thus more susceptible to the ergogenic effects
of caffeine. The distinct responses observed between
carriers (II and DI) and non-carriers (DD) of the I allele
regarding endurance exercise performance may be
attributed to morphological predisposition of these partici-
pants. The carriers of allele I in the ACE polymorphism are
more directed to endurance performance due to the
predominance of type I fibers (18), while the D allele

Table 3. Caffeine responsiveness evaluated from delta (D) distance (m) between
caffeine (CAF) and placebo (PLA) supplementation and the frequency distribution
for II, DI, and DD angiotensin converting enzyme (ACE) polymorphisms.

Class Count Percentage

Frequency distribution–ACE II–D Distance (m)

–499 2 15.4

0–499 10 76.9

500–999 1 7.7

Total 13 100

Frequency distribution–ACE DI–D Distance (m)

–400–201 5 12.5

–200–1 4 10.0

0–199 12 30.0

200–399 15 37.5

400–599 2 5.0

600–799 2 5.0

Total 40 100

Frequency distribution–ACE DD–D Distance (m)

–500–251 3 14.3

–250–1 4 19.0

0–249 13 61.9

250–499 1 4.8

Total 21 100
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carriers have a predominance of type II muscle fibers,
which are associated with high muscle strength and power
(21). These morphological differences may explain spe-
cific gains on endurance exercise performance in both the
II and DI ACE gene polymorphisms.

Improvements in endurance after caffeine intake, as
observed in the present study, have been well-document-
ed in a previous study (32). The explanation regarding
these benefits may be associated with the mechanisms of
action of caffeine (32). The main mechanism of action of
caffeine on the central nervous system is antagonist to
that of adenosine (33), maintaining high neuronal excit-
ability during exercise (7). In the peripheral regions,
caffeine may improve the contractile function of skeletal
muscles (34) to meet the physical demands of exercise,
especially endurance performance.

Improved endurance of carriers of II ACE gene
polymorphisms was accompanied by higher heart rate
and RPE. Caffeine effects on heart rate (35) and RPE (9)
have been well-discussed previously. As the II carriers
maintained a longer exercise time in the caffeine con-
dition than in the placebo condition, a higher degree of
internal load, such as higher heart rate and RPE values,
was expected. Elevated heart rate values with caffeine
may be attributed to higher levels of adrenaline released
during exercise (36). Caffeine facilitates adrenaline
release to maintain neuronal excitability and a high
skeletal muscle activity during exercise; however, longer
exercise time that is accompanied by adrenaline release

may also result in an enhanced heart rate response, once
adrenaline binds to the adrenergic receptors in the heart,
and thus, increases its beating rate (37). RPE is generally
lower after caffeine intake, because of the delayed
perception of effort exertion (9). However, in the current
study, the variables were assessed at the moment of
exhaustion, being higher for the CAF group. This may be
explained by the longer distance covered during the
Yo-Yo IR1, possibly causing a high degree of metabolic
disturbances, thus influencing the RPE response. RPE is
also modulated via III and IV afferent nerves during
exercise (38), altering the perceived effort. Therefore, the
longer exercise time after caffeine intake may have
contributed to the increase in the systemic and perceptual
responses.

Another interesting and the first reported result was the
moderate association between endurance performance
and HCI only for the carriers of II ACE gene polymor-
phisms. Previous studies showed associations between
HCI and genetics (39,40). However, this association it not
well understood. Although HCI seems to slightly modulate
exercise performance (4), this response may not be a
determinant for performance improvements.

Limitations
Three main limitations of the present study must be

acknowledged: 1) the test to evaluate the VO2max was
indirect, based on ventilation, O2, CO2 kinetics, and
others. Thus, further studies should measure VO2max

Figure 2. Schematic representation created with BioRender.com of the genetic contribution of angiotensin converting enzyme (ACE)
gene polymorphism and mechanisms of action of caffeine intake. The information in red is a hypothetical synergic mechanism between
genetic polymorphisms and caffeine intake to improve endurance exercise performance based on our data.
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by a direct test; 2) despite the large sample size (n=74),
the rarity of homozygous II genotypes in the population
limited the number of participants for the main group of the
experimental response; 3) the study lacked physiological,
metabolic, and molecular analyses to explain the possible
interactions between the mechanisms of action of caffeine
and the ACE polymorphisms.

Conclusion
In conclusion, 6 mg/kg of CAF increased endurance

capacity, heart rate, and perceived exertion in adolescent
athletes that were ACE I allele carriers, but not in ACE DD
genotype. Furthermore, endurance performance was

associated with habitual caffeine consumption, specifically
in the II genotype group.
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