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Abstract

Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune
diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown.
Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired
DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis,
leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on
autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune
exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process.
Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3,
and senescence, including B-galactosidase (b-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely
type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the
mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development
of novel therapeutic strategies.
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Introduction

Innate immunity is involved in inflammatory response
but its uncontrolled activation has been somehow linked to
autoimmunity. As in any other inflammatory pathway, each
innate component is tightly modulated by other redundant
proteins. Therefore, defects in any of these checkpoints
may cause a spectrum of immunodeficiency and auto-
inflammatory or autoimmune diseases (1).

Cellular exhaustion and senescence may also con-
tribute to innate immune tolerance breakdown. Immune
cells become exhausted when unable to adequately
respond after a challenge with specific antigens or stimuli
(2). On the other hand, cell senescence is defined by its
inability to replicate as telomeres reach a critical length or
DNA is irreparably damaged (3). Although exhaustion and
senescence may be considered part of the physiological
cell maturation, they may also impair overall immune
system function and destabilize homeostasis over time,
finally culminating with self-tolerance breakdown and the
emergence of autoimmunity (4).

The innate immune system is particularly affected by
immune exhaustion and senescence, which can be
observed by the constant turnover of effector cells and

soluble factors. Nevertheless, to the best of our knowl-
edge few articles address the influence of innate immune
exhaustion and senescence on autoimmune disorders.
Herein, we aimed to describe the current findings of innate
immune exhaustion and senescence on autoimmunity,
mainly focusing on structural cellular modification and
molecular pathways involved in each process.

Immune exhaustion

Cell surface costimulatory signaling modulators are
hallmarks of immune exhaustion [Table 1, (5–7)] and can
be easily assessed by using different tools like flow
cytometry, immunohistochemistry, and western blot. Pro-
grammed cell death protein 1 (PD1) and its ligands 1 (PD-
L1) and 2 (PD-L2) constitute an important regulatory
pathway that impedes costimulatory signaling during
T cell activation (8). Simultaneous co-expression of PD1/
PDL-1 with other inhibitory receptors on T cells, such as
lymphocyte activation gene 3 protein (LAG3), 2B4/CD244,
CD160, T cell immunoglobulin domain and mucin domain-
containing protein 3 (TIM3), and cytotoxic T-lymphocyte-
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associated protein 4 (CTLA4) is highly suggestive of an
immune exhaustion phenotype. A PD-1/PD-L1 pathway
neutralization-induced bystander effect on NK cells was
observed in an experimental IL-2-dependent exhaustion
mouse model, resulting from the global competition that
exists between NK and CD8+ T cells for IL-2 as a key
regulator of these cells’ activation (9). PD-1 and TIM-3
combined target may be the most efficacious manner to
improve anti-tumor response in vivo as demonstrated in
BALB/c and C57BL/6 mice models (10). Interestingly, the
higher the number of inhibitory receptors expressed by
exhausted T cells, the more severe the exhaustion
process evolves, a pattern apparently also shared by
innate immune cells. Lin et al. (11) showed that LPS
stimulus caused neutrophil exhaustion after TIR domain-
containing adapter molecule 2 (TICAM2) and PD1-
mediated activation of Src family kinases (SFK). PD1/
PD-L1 are also expressed on exhausted murine mono-
cytes/macrophages and dendritic cells (DC) from septic
peritonitis induced by a cecal ligation murine model,
similarly to those derived from septic shock patients (12).
Hence, as PD1/PD-L1 and CTLA-4 are currently important
targets for cancer immunotherapy (13), other exhaustion
markers, such as TIM3, have similarly been considered
(14).

Immune senescence

Cells become senescent when their DNA replication
ability progressively deteriorates, resulting in striking
metabolic modifications and expression of immune senes-
cence markers. There is compelling evidence that immune
senescence plays a significant role in immune dysfunction
and disability in older people (15). Elderly have worse T
cell memory responses than young people, which may
likely be the result of a combination of factors including
reduced TCR repertoire diversity, poor T cell assistance,
and substantial decreased naive T cell count along with

aging, as shown in HIV-infected elders (16). Previous
studies indicate that the ageing process or repeated cell
activation cycles significantly impede the ability of immune
cells to start primary responses against novel antigens,
although immune responses against previously recog-
nized antigens may still be conserved (17). This difficulty
is usually increased by an impairment of innate immune
effector cells, mainly neutrophils and monocytes, and may
result in susceptibility to infectious diseases (18). The
microbicidal function of senescent neutrophils is highly
impaired, mostly because of a reduced chemotactic ability,
which in turn delays tissue recovery as shown in mouse
lungs (19). Moreover, reduced neutrophil phagocytic
activity against opsonized E. Coli and Fcg receptor
CD16 surface expression were previously shown in
elderly humans (20).

Impaired intracellular signaling have also been
reported in senescent neutrophils, including reduced
calcium intake, decreased kinase and phosphatase
activities [namely, phosphoinositide-3 kinase (PI-3K),
mitogen-activated protein kinase (MAPK), protein
kinase B, and Src homology region 2 domain-containing
phosphatase-1 (SHP-1)], and impaired Janus kinase
(JAK)-signal transducer and activator of transcription
(STAT) interaction (21). Altered intracellular signaling
in senescent neutrophils may also hamper oxidative
burst and phagocytic activity. For most other aspects
of neutrophil senescence our understanding is still
incomplete.

Other features of immune cell senescence have also
been described, mainly leading to the irreversible pause
of cell growth and development of a proinflammatory
senescence-associated secretory phenotype (SASP;
Figure 1 and Table 2) (22) such as b-galactosidase (b-
GAL) and p16INK4a (23). As a component of the cyclin-
dependent kinase (CDK) inhibitors family, p16INK4a blocks
retinoblastoma protein, ultimately impeding S-phase entry
and cell growth (24). Liu et al. (25) demonstrated a
senescent phenotype in murine peritoneal macrophages
derived from hybrid C57BL6/129SvEv transgenic model.
Clearance of p16INK4a-expressing cells attenuates senes-
cence and improves the healthy lifespan of a progeroid
mouse model and aged control mice, as b-GAL was
upregulated after p16INK4a activation (25).

Another SASP biomarker is lamin B1, a structural cell
nuclear component involved in regulating many nuclear
functions (26). Lamin B1 is downregulated in ultraviolet
radiation (UV) in vitro-induced human senescent cells;
similar evidence was demonstrated upon chronic in vivo
UV exposure and skin regeneration (27). In addition, lamin
B1 gene and protein expression declined in UV-induced
murine senescence (28).

The cell maturation process is also affected by
immune senescence, as human monocytes and dendritic
cells (DC) progressively decline with time. Paradoxically,
while senescent monocyte absolute count increases with

Table 1. Key cell surface costimulatory signaling modulators
associated with innate immunity exhaustion.

Innate cells Exhaustion markers Reference

DC PD1 5

Macrophages PD1 5

TICAM2 14

Mast Cells PD1 and TIM3 6

Neutrophils PD1 and PD-L1 11

TICAM2 11

ICAM1, CD11b 7

DC: dendritic cells; PD1: programmed cell death protein 1; PD-L1:
programmed cell death protein ligand 1; TICAM2: TIR domain-
containing adapter molecule 2; TIM3: T cell immunoglobulin
domain and mucin domain-containing protein 3; ICAM1: inter-
cellular adhesion molecule-1; CD11b: integrin alpha-M.
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ageing, peripheral macrophage number decreases and
they become progressively resistant to Toll-like receptor
(TLR) activation (29). Bella et al. (30) demonstrated that
LPS-stimulated interleukin (IL)-12 and IL-10 in vitro
production by murine senescent monocytes and DC is
impaired. On the other hand, IL-6, IL-8, and IL-1a
production increases as cells become senescent. IL-1a
blockade in senescent cells markedly reduced IL-6 and IL-
8 secretion (31). Similar dysfunction was demonstrated in
senescent neutrophils and monocytes, whose TLR2/6, 3,
5, and 9-stimulated cytokines in vitro production is also
totally defective (21). Moreover, a previous study showed
impairment of TLR gene expression in C57BL/6 mice
splenic and peritoneal senescent macrophages (32).

How exhausted or senescent innate
effector cells may affect autoimmunity
pathophysiology

Cell exhaustion or senescence represents a state of
cellular dysfunction characterized by suppressed cellular
functionality. Within the context of autoimmunity, exhausted
or senescent cells exhibit impaired functionality, thereby
compromising immune system capacity of effectively
eliminating pathogens, neoplasms, and autoreactive cells
(33). Experimental evidence has demonstrated the presence
of exhausted and senescent cells in both human and murine
systems, highlighting their involvement in autoimmunity.

Type 1 diabetes (T1D)

Diana et al. (34) showed that pancreatic beta cell death
increases tissue migration and activation of B lymphocytes,
neutrophils, macrophages, and plasmacytoid DC in young
female non-obese diabetic (NOD) mice. Neutrophils culti-
vated in vitro in highly concentrated glucose medium
developed SASP, however, it is still unclear whether
glucose-induced senescence impairs neutrophil extracellular
traps (NET) release (35), oxidative burst (36), and phago-
cytic activity (37). Although neutrophil exhaustion may
impede T1D progression, it would also increase the risk of
infectious diseases, as observed in diabetic patients (38).

Hyperglycemia-induced SASP amplifies diabetes-
related endovascular and tissue inflammation and insulin
resistance, and inhibits extracellular matrix production, thus
creating a vicious circle. T1D SASP induces proinflammatory
M1 macrophages maturation via NF-kB activation and
increases reactive oxygen species (ROS) production and
intracellular acidosis. Furthermore, histopathological analysis
of diabetic wounds shows a protracted population of M1
phenotype-polarized senescent macrophages and a low
expression of NLRP3, caspase1, and IL-1 (39). Interestingly,
transcriptome of M1 phenotype hyperglycemic medium-
induced THP-1 cells revealed a clear SASP-like signature,
as IL-1a, IL-6, IL-8, PAI-1, TGF-b, TNF-a, MCP-1, ICAM-1,
and IGFBP6 gene expression were strikingly upregulated
(40). The histopathology analysis of diabetic mouse inci-
sional wounds revealed a chronic inflammatory infiltrate
enriched with senescent C-X-C motif chemokine receptor 2
(CXCR2)-positive macrophages (41). CXCR2 is a pro-fibrotic
inflammatory chemokine receptor associated with SASP in
primary human dermal fibroblasts (42). Immune senescence
is a primary determinant of diabetic wound healing failure
and closely linked to diabetic complications, which are a
major cause of morbidity and shortened lifespan (40).

Rheumatoid arthritis (RA)

Monocytes and neutrophils have emerged as key
players in synovial inflammation and cartilage damage.

Figure 1. A, Main variations in senescence intracellular markers
with ageing. B, The senescent stage: innate sensing involves
multiple stressors, such as telomere attrition, oxidative stress,
irradiation, ageing, and oncogene activation. Any stressor may
induce three main senescence responses: i) AKT-dependent
phosphoinositide 3-kinase (PI-3K) downregulation, which triggers
reactive oxygen species (ROS) production, causing DNA damage;
ii) direct double-stranded DNA damage releasing fragments
enriched with yH2AX and repressive histone markers (H3K9me3,
H3K27me3); and iii) lamin B1 downregulation. Upon disruption of
the nuclear envelope favored by loss of lamin B1, yH2AX-,
H3K9me3-, and H3K27me3-enriched DNA fragments are recog-
nized by cyclic GMP-AMP synthase (cGAS), which activates
nuclear factor kB (NF-kB) and interferon (IFN) pathways,
culminating with senescence-associated secretory phenotype
(SASP). SASP reinforces and amplifies senescence in a paracrine
manner, activating immune cells for senescence immune surveil-
lance, which in turn increases mitochondrial dysfunctional ROS
release and upregulates b-galactosidase (b-GAL) and p16INK4a.
Moreover, ROS overproduction is a major lamin B1 downregulator,
feeding back the whole senescent process.
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Senescent monocytes have gained attention due to their
shorter telomere length and mainly develop a non-
classical (CD14dimCD16bright) pro-inflammatory phenotype
(43). Notably, senescent non-classical monocytes express
chemokine receptors that facilitate their migration to
inflamed tissues and senescence-associated b-galactosi-
dase (44).

Neutrophils, on the other hand, may play a crucial role
in inducing a senescent phenotype in neighboring cells,
including monocytes. As their involvement in cartilage
damage and destruction is attributed to the release of
ROS (45) and telomeres are particularly sensitive to
oxidative stress, ROS release by RA neutrophils may
induce neighboring cell senescence by significant telo-
mere shortening (46). When co-cultured with neutrophils,
human fibroblasts rapidly express senescence markers
and shorter telomeres compared with control fibroblasts
cultured alone. Moreover, the rate of dysfunctional
telomeres, characterized by their association with DNA
damage response factors (namely, telomere-associated
foci, p16Ink4a, and p21) were increased in neutrophil-
induced senescent cells. Noteworthy, premature senes-
cence and telomere damage were prevented when
extracellular ROS were scavenged by adding recombinant
catalase (47).

Systemic lupus erythematosus (SLE)

Similar to RA, neutrophil dysregulation also contri-
butes to SLE pathogenesis. NET release probably
exposes DNA and encrypted nuclear proteins to the
immune system in SLE, culminating with autoantibody
production, such as anti-double stranded DNA and anti-
acetylated/methylated histones (45).

SLE neutrophils usually peak faster and produce
higher ROS levels than those from healthy individuals
(48). Nevertheless, neutrophils from active SLE patients

paradoxically produce lower ROS levels than those from
individuals with inactive SLE, probably due to neutrophil
exhaustion (49). Conversely, peripheral PD-L1-expressing
neutrophil count of SLE patients with active or severe
disease is higher than those with inactive and milder
conditions (50).

Low-density granulocytes (LDG), a specific subset of
neutrophils, have emerged as a captivating area of
investigation in the field of SLE. LDG rely on the lower
density compared to conventional neutrophils, with isola-
tion typically achieved by density gradient centrifugation
techniques (51). LDG can exhibit an enhanced pro-
inflammatory profile, characterized by heightened cyto-
kine synthesis including TNF-a, IL-6, IL-8, and IFN (52)
and are commonly elevated in peripheral blood of active
lupus patients, especially those presenting vasculitis,
cutaneous manifestations, or high anti-double stranded
DNA titers (52). Additionally, LDG display an increased
propensity for spontaneous production of NET (53),
further contributing to the pathogenesis of SLE when
taken together (51). As neutrophil hyperactivation induces
degranulation and NET release, thus reducing cell density
and resulting in exhaustion, one can hypothesize that
LDG may play a role in neutrophil senescence. However,
further comprehensive investigations are warranted to
fully understand the role of LDG in SLE pathogenesis,
particularly regarding their impact on senescence or
exhaustion profiles in innate immune cells (54).

Immune-mediated necrotizing myopathy
(IMNM)

IMNM is a specific form of autoimmune myopathy
distinguished by pronounced weakness in the proximal
muscles, myofiber necrosis, and infiltration of inflamma-
tory cells as neutrophils and macrophages (55). Knauss
et al. (56) showed the high expression of PD-1, LAG-3,

Table 2. Physiologic features of the main components involved in senescence-associated secretory phenotype (SASP).

SASP component Physiology Reference

Phosphoinositide-3 kinase (PI-3K) Regulates cell proliferation, adhesion, survival, and motility. 21

Mitogen-activated protein kinase (MAPK) Regulates cell proliferation, responses against stress factors, apoptosis,

and immune defense.

21

Protein kinase B (PKB) Regulates glucose metabolism, apoptosis, cell proliferation, transcription, and migration. 21

Src homology region 2 domain-containing

phosphatase-1 (SHP-1)

Regulates cytokine signal transduction and modulates cell proliferation, differentiation,

survival, and apoptosis.

21

Janus kinase (JAK) Involved in cell growth, survival, maturation, and differentiation in a variety of cell lineages,

especially immune cells.

21

Activator of transcription (STAT) Regulates cell growth, survival, and differentiation. 21

B-galactosidase (b-GAL) Cleaves terminal b-d-galactose residues, such as lactose, keratin sulfates,

and sphingolipids.

23,25

p16ink4a Regulates cell cycle arrest. 23-25

Lamin B1 Provides stability of intermediate filaments in cytoskeleton and is a scaffolding

component of the nuclear envelope.

26-28
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and TIM-3, a classic T cell exhausted phenotype, in
muscle specimens extracted from 12 IMNM patients.
Moreover, the authors also detected high expression of
PD-L1 on macrophages and PD-L2 on myofibers. Inter-
estingly, PD-L2 staining in myofibers was partially over-
lapping PD1 staining on CD3+ T lymphocytes, implicating
the formation of the so called ‘‘immunologic synapses’’
and a potential role of PD-L2/PD1 interaction in modulat-
ing T-cell activation and macrophages cells.

PD-1 contributes to skeletal muscle regeneration by
facilitating the transition of macrophages from a pro-
inflammatory to an anti-inflammatory phenotype (57). IFN-
g, on the other hand, stimulates the formation of
proinflammatory macrophages, which seem to impede
myogenesis in vitro (57). However, Zhuang et al. (57)
surprisingly revealed that blocking IFN-g signaling of PD-1
knockout models actually exacerbated inflammation in the
injured muscle, impeded muscle regeneration, and inten-
sified muscle fibrosis. This detrimental effect was attrib-
uted to the inhibition of macrophage infiltration and
transition from a proinflammatory to an anti-inflammatory
state, associated with an increased influx of neutrophils
into the muscle tissue.

Taken together, all these pieces of evidence support the
hypothesis that anti-PD-L1 therapy holds the potential to
ameliorate inflammation in IMNM. However, this hypothesis
is currently being investigated, and preliminary data thus far
have yielded discouraging results. Recent advancements
in the field have led to a growing utilization of immune
checkpoint inhibitors (ICI) across a wide range of malig-
nancies. Nevertheless, this therapeutic strategy has
unveiled a novel spectrum of adverse effects, especially in
myositis induced by ICI therapy, which has an high mortality
rate when co-occurring with other autoimmune manifesta-
tions such as myocarditis and myasthenia gravis (58).

Multiple sclerosis

Multiple sclerosis (MS) is the most common chronic
inflammatory, demyelinating, and neurodegenerative dis-
ease of the central nervous system in young adults (59).
The global population of individuals over 65 years old with
MS is on the rise as the life expectancy for those living
with MS has improved (60). With this growing awareness,
the challenges associated with aging, immunosenes-
cence, and MS are also being recognized. These
challenges also include a limited understanding of the
long-term effects of disease-modifying therapies.

Two distinguished phases of MS’s pathophysiology
are recognized: early inflammatory and progressive
phases (61). While during the first phase, the blood-brain
barrier (BBB) is disrupted, allowing peripheral adaptive
immune cell infiltration into the central nervous system
(CNS), during the progressive phase, T and B cells influx
is reduced as the BBB is closed and the inflammation
is sustained by innate CNS-resident microglia and

astrocytes. These cells produce cytokines, such as TNF-a
and IL-6, and release ROS, culminating with myelin
damage. While microglia and astrocytes become primed
into a pro-inflammatory phenotype, their phagocytic activity
is reduced and they progressively acquire a clear SASP.
Improper clearance of myelin debris occurs, and oligoden-
drocyte progenitor cell recruitment and differentiation
become less effective (62). These successive events
become self-sustained and are amplified by senescent
processes, resulting in a significant oxidative burst that
leads to mitochondrial DNA damage-induced dysfunction,
energy failure, and axonal loss. Moreover, cell cycle arrest
and phenotypic changes in senescent cells might affect
their functions and their regenerative capacity (63).

Immune exhaustion and senescence-
blocking factors of innate effector
components

Modern lifestyle with a high-fat diet and excessive
alcohol consumption, obesity, sedentary lifestyle, and
smoking are important causes of low-grade chronic
systemic inflammation, which puts the immune homeo-
stasis in a state called inflammaging (64,65). Obesity,
hyperglycemia (66), and sedentary lifestyle (67) increase
proinflammatory cytokine production, such as IL-6 and
TNF-a, and shift the memory:naive T cell ratio towards
mature forms in humans (68). A similar immunophenotype
has been described in peripheral T cells of mice and other
chordates (69). Fat deposits stimulate neutrophil (70,71),
macrophage, and T cell recruitment into the adipose
tissue, which may dysregulate immune response and
accelerate immune senescence and exhaustion (72).

To investigate the association between obesity and
senescent cell accumulation, Ogrodnik et al. (73) studied
the role of senescence in obesity-related neuropsychiatric
disorders of the INK-ATTAC mouse model, which allows
p16Ink4a-expressing cell elimination. The researchers
found that obesity-induced senescent glial cells in the
vicinity of the lateral ventricle, a region associated with adult
neurogenesis, exhibited excessive fat deposits. Interest-
ingly, neurogenesis was restored by clearing out senescent
cells from leptin knockout mice fed with a high-fat diet.

In addition, adipocyte hyperplasia and hypertrophy
increase adipocyte hypoxia, fatty acid metabolic dysregu-
lation, chemokine secretion, adipocyte cell death, and
inflammatory cell recruitment (74), ultimately inducing
inflammaging and cell SASP, and generating a positive
feedback loop that contributes to local and systemic
inflammation. Studies demonstrated that both obese mice
and human adipose tissues recruit pathogenic autoanti-
bodies-secreting B cells (75) and favor proinflammatory
cytokine secretion during aging, generating SASP senes-
cent cells (76). Furthermore, a high-fat diet also upregu-
lated p16INK4a in cortical and hippocampal mouse neurons
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(77) and hepatocytes (78). Interestingly, possible func-
tional impairments in adipose tissue neutrophils induced
by aging are still unclear.

Sedentarism also induces inflammaging (79), but may
be reverted by moderate physical activity (80). Recently,
a 10-week program of regular walking increased neutro-
phil phagocytic and chemotactic activity after bacterial
stimuli in elderly adults with rheumatoid arthritis (81).
Moreover, neutrophil chemotactic activity of healthy
elderly individuals who walked at least 10,000 steps per
day was higher than that of age-matched adults who
walked only 5000 steps per day (82). Similarly, corrective
lifestyle interventions that prevent sedentarism and
improve diet quality have the potential to prevent obesity,
inflammation, aging, and the exhaustion process (72).
Regular moderate-intensity physical activity suppresses
IL-6, TNFa (83), and IL-1b (84), increases telomere length,
and downregulates p16INK4a (85), thus attenuating the
hallmarks of aging.

New approaches for anti-senescence
therapy

Two distinct therapies targeting senescence have
been identified: senolytic agents, a promising experimen-
tal class of drugs that selectively induce senescent cells
to undergo apoptosis, like navitoclax, dasatinib plus
quercetin, 17-DMAG (17-dimethylaminoethylamino-17-
demethoxygeldanamycin), and senostatic agents, like
ruxolitinib, rapamycin, and metformin, which inhibit SASP
signaling pathways (86). On the other hand, probiotic
bacteria in humans seem to present beneficial effects as
anti-senescence therapy (87). A 4-week high-fiber diet
with 5% inulin program suppressed IL-1b, TNFa, IL-6,
NLRP3, and TLR4 gene expression, induced IL1RN anti-
inflammatory microglial gene expression, improved aging-
associated neuroinflammation, and altered microbiome by
reducing Ruminococcus spp and Rikenellaceae spp in
adult and aged BALB/C mice (88). However, more studies
in the area are still needed, focusing especially on anti-
innate immunity senescence treatment.

New approaches for anti-exhaustion therapy

Checkpoint inhibitors emerged as a transformative
anti-tumor therapeutic strategy in oncologic patients by

facilitating adaptive immunity activation but have also
been considered an anti-exhaustion alternative therapy
lately. A mouse model of cancer with B16F10 cell
transplant demonstrated SASP with PD-1, TIM3, and
LAG3 overexpression on CD8+ and CD4+ T cells, which
were reversed after PD1 blockade (89). Anti-TIM3 also
reversed SASP from a cecal ligation mouse model of
sepsis by upregulating TLR4-induced NF-kB pathway
activation in LPS-stimulated peritoneal macrophages (90).
Certainly, additional studies are still needed to determine
whether these agents could be critical in cell recovery.

Conclusion

Here we have briefly described the current state of the
research on immune senescence and exhaustion, uncov-
ering the main pathways affecting innate immunity in the
context of autoimmune diseases. We highlighted key
SASP-induced components such as PD1, TICAM2,
TIM3, B-galactosidase (b-GAL), p16ink4a, and lamin B.
NF-kB and IFN pathways also play a pivotal, though
intricate, role in driving cell SASP. In addition, we
discussed possible targeted interventions able to block
immune senescence (senolytic agents like navitoclax,
dasatinib plus quercetin, and 17-DMAG; and senostatic
agents like ruxolitinib, rapamycin, and metformin) and
exhaustion (especially checkpoint inhibitors). Innate
immunity is our first line of defense and is mainly
composed by short-lived cells, which may pose chal-
lenges in studying exhaustion and senescence due
to their gradual nature, but the field holds significant
untapped potential. Much remains to be explored in
this domain, and it is evident that further studies are
imperative to unravel the pathophysiological intricacies
associated with these molecules and pathways. These
endeavors may in turn contribute to the identification of
novel therapeutic targets and improve our understanding
of autoimmune diseases.
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