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Abstract

Epidemiological surveys show that the incidence of age-related dementia and cognitive impairment is increasing and it has
been a heavy burden for society, families, and healthcare systems, making the preservation of cognitive function in an
increasingly aging population a major challenge. Exercise is beneficial for brain health, and FDNC5/irisin, a new exercise-
induced myokine, is thought to be a beneficial mediator to cognitive function and plays an important role in the crosstalk
between skeletal muscle and brain. This review provides a critical assessment of the recent progress in both fundamental and
clinical research of FDNC5/irisin in dementia and cognitive impairment-related disorders. Furthermore, we present a novel
perspective on the therapeutic effectiveness of FDNC5/irisin in alleviating these conditions.
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Introduction

Dementia is a syndrome characterized by acquired
cognitive impairment, resulting in a notable deterioration in
a patient’s capacity of daily living, learning, working, and
socializing (1). Clinically, dementia can be classified into
two categories based on its etiology: neurodegenerative
conditions, which include Alzheimer’s disease (AD),
dementia with Lewy bodies (DLB), Parkinson’s disease
with dementia (PDD), and frontotemporal lobar degenera-
tion (FTLD), and non-neurodegenerative conditions, which
include vascular dementia (VaD), normal pressure hydro-
cephalus, as well as other conditions such as brain injury,
infection, immune disorders, tumors, poisoning, and
dementia resulting from metabolic diseases (1). Epide-
miological surveys show that there has been a consistent
increase in the prevalence of age-related cognitive
impairment, AD, and dementia (2). In 2017, the global
estimate for the population diagnosed with dementia was
approximately 50 million and a two-fold increase is
expected every two decades, resulting in an anticipated
75 million affected people by 2030 and a staggering 131.5
million by 2050 (3). Maintaining cognitive function in the
aging population is a major challenge as dementia has a

direct influence on the quality of life among older
individuals and places considerable burden on society,
families, and healthcare systems.

Exercise is believed to have a positive impact on brain
health. Epidemiological research demonstrates that phys-
ical activity could reduce the risk of AD and dementia by
45 and 28%, respectively (4). Furthermore, higher levels
of physical activity reduce the cognitive decline of AD, and
these beneficial impacts are partially attributed to exer-
cise’s promotion of neurogenesis and synaptic plasticity,
as well as the ability to reduce neuroinflammation in the
adult hippocampal dentate gyrus (DG) (5). Finding out the
secretory mediators that promote the positive effect of
exercise on cognition holds immense potential for
addressing senile cognitive decline or AD.

Recent studies have revealed that FDNC5/irisin, a
novel myokine produced during exercise, has a positive
impact on cognitive function and plays a crucial role in
facilitating communication between skeletal muscle and
the brain. In 2002, Teufel et al. (6) identified a protein
called FNDC5, which contains a fibronectin type III
domain and plays a role in the differentiation and
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development of myoblasts. Interestingly, Boström et al. (7)
discovered in 2012 that an unidentified enzyme could
cleave the extracellular portion of the FNDC5 protein,
leading to the liberation of a polypeptide consisting of 112
amino acids into the peripheral circulation; this polypep-
tide was subsequently named irisin. Irisin is highly
conserved in structure and is 100% homologous in mice
and humans (7). Irisin is mainly secreted by skeletal
muscles during exercise and it can even cross the blood-
brain barrier. It has been confirmed that irisin can activate
the thermogenesis of brown adipose tissue and alleviate
metabolic disorders including obesity, diabetes, and
cardiovascular disease (7,8). FNDC5/irisin is expressed
in various tissues, such as skeletal muscle, pancreas,
brown adipose tissue (BAT), liver, and brain, especially
hippocampus and hypothalamus, which is closely related
to its important role in memory and cognition (8).

Here, we review the updated basic and clinical research
of FDNC5/irisin in dementia and cognitive impairment-
related diseases and offer a novel perspective on the
therapeutic value of FDNC5/irisin in these diseases.

FNDC5/Irisin in AD

AD, the most prevalent form of dementia, is marked by
a gradual decline in memory. Its pathological character-
istics involve the accumulation of b amyloid protein (Ab)
plaques, nerve fiber tangles (NFTs), and oxidative stress
within the brain (9). Many studies in recent years have
validated the close correlation between irisin and AD (10).

FDNC5/irisin improves cognitive function by inducing
BNDF expression

BDNF (brain-derived neurotrophic factor) is widely
distributed within the brain. It is critical to the survival,
differentiation, migration, dendrization, and synaptogen-
esis of neurons, as well as hippocampal function, learning,
and memory. Mutations in the BNDF gene leads to a
decrease of BDNF secretion, leading to a volume
reduction of a specific brain area, impaired situational
memory function, and higher risk of anxiety and depres-
sion (11). Animal models demonstrate that exercise
enhances cognitive function by boosting the expression
of BDNF in different areas of the brain, such as the
hippocampus (12). By blocking BDNF signaling, exercise-
induced improvements in spatial learning tasks and
expression of neural synaptic proteins are weakened (13).

In 2013, Wrann et al. (14) observed that the level of
FNDC5/irisin in the hippocampus exhibits an increase
during endurance exercise in mice. The overexpression of
FNDC5 in primary cortical neurons results in an elevation
of BNDF expression, whereas the knockdown of FNDC5
leads to a decrease in BNDF expression. The expression
of BNDF and other neuroprotective genes in the hippo-
campus can be induced by augmenting circulating irisin
levels through the overexpression of FDNC5 in the liver.

This study demonstrated that exercise stimulated the
upregulation of BDNF expression in the hippocampus via
the peroxisome proliferator activated receptor gamma
coactivator 1 a (PGC-1a)/FNDC5/irisin pathway, thereby
exerting a beneficial influence on cognitive function.

FNDC5/irisin improves synaptic plasticity and
memory deficit

AD is distinguished by synaptic and memory impair-
ments. A study conducted by Lourenco et al. (15) in 2019
revealed a significant decrease of FNDC5/irisin levels in
the hippocampus of late-stage AD patients compared to
those with early AD or individuals with normal cognitive
abilities. Furthermore, AD patients exhibited lower levels
of irisin in the cerebrospinal fluid (CSF) compared to
patients with mild cognitive impairment (MCI) or subjects
with normal cognitive function. A separate investigation
revealed a positive correlation between irisin levels in the
CSF of patients with AD and their scores on the Mini-
Mental State Examination (MMSE), as well as the levels of
Ab42 and BNDF in the CSF (16).

In C57BL/6 mice, brain-specific knockdown of FDNC5
resulted in impaired long-term potentiation (LTP) main-
tenance of the hippocampus, which indicated the potential
effects of FDNC5 on hippocampal synaptic plasticity and
novel object recognition (NOR) memory. Administration of
recombinant irisin directly into both sides of the hippo-
campus can protect against NOR and memory impairment
caused by Abs. C57BL/6 mice were injected intraven-
tricularly with AdFNDC5 (an adenoviral vector over-
expressing FDNC5) to elevate FNDC5/irisin mRNA and
protein levels in the cortex and hippocampus. Six days
later, these mice received a single lateral ventricle infusion
of Abs, and the results demonstrated that overexpression
of FNDC5/irisin by injecting AdFNDC5 could effectively
protect against Abs-induced impairment of NOR and
contextual fear conditioning (CFC) memory (15).

Ablation of FNDC5/irisin affects the development/
maturation of hippocampal newborn neurons and
alters their morphology, transcription, and function

Islam et al. observed that providing an equivalent level
of exercise to both wild-type (WT) mice and FDNC5
knockout mice (F5KO), the WT mice exhibited enhanced
spatial learning and memory while the F5KO mice did not
have comparable improvements in these cognitive func-
tions. In addition, as mice aged (21–24 months), cognition
of F5KO mice decreased more than that of the WT mice
(17). Pattern recognition is significantly influenced by the
newly generated neurons in the hippocampus (18). In
aging and AD, adult hippocampal neurogenesis of mice
and humans decreases (19,20), and exercise can
promote neurogenesis in the adult hippocampal and
improve learning and memory (21).

Abnormal activation patterns were observed in the
hippocampus of adult newborn neurons in F5KO mice.
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Sholl analysis revealed that the dendritic complexity and
overall dendritic length increased with running exercise in
WT mice. As anticipated, F5KO mice did not exhibit the
same growth in dendritic trees. A more complex dendrite
pattern was observed in the ventral DG (dentate gyrus) of
sedentary F5KO mice compared to WT mice, suggesting
that the absence of FNDC5/irisin could lead to excessive
growth or pruning defects of hippocampal newborn
neurons (17). In addition, compared to WT mice, the
spinal density of newborn neurons in the dorsal hippo-
campus of F5KO was significantly reduced, and the head
of the dendritic spine was smaller (17). According to some
studies, the dorsal hippocampus controls cognitive func-
tions, whereas the ventral hippocampus controls emo-
tional behaviors (22). These findings indicate that FNDC5/
irisin has a specific impact on the growth and maturation
of new neurons in the hippocampus, consequently
influencing cognitive abilities.

FNDC5/irisin not only affects the development/matura-
tion of hippocampal newborn neurons, but also changes
their transcriptome. Regardless of exercise intervention,
the transcriptional profile of newborn neurons in F5KO
mice was significantly abnormal. RNA sequencing of the
nucleus showed more variability, revealing a total of 459
genes expressed differently between F5KO and WT
newborn neurons. Gene enrichment analysis showed that
the knockdown of FNDC5/irisin in hippocampal newborn
neurons could lead to a series of major diseases,
including AD, similar to ‘‘neurodevelopmental interruption
or neurotrophic signal transduction disorders’’ (17).

The RNA sequencing data obtained from the Mount
Sinai School of Medicine and Mayo (MSSM) study,
comprising a total of 2114 samples derived from 1234
individuals, showed a significant decrease in FNDC5
expression in the parahippocampal gyrus of individuals
diagnosed with AD compared to the control group (17). In
APP/PS1 mice, a well-known transgenic AD mice model,
FNDC5 gene expression in the hippocampus showed a
notable decrease compared to WT mice, and when they
reached 6 months of age, APP/PS1 mice initiated the
formation of amyloid plaques, experienced gliosis, and
exhibited cognitive decline. The cognitive function of APP/
PS1-F5KO mice (generated by hybridization of F5KO
mice and APP/PS1 mice) was decreased following
exercise compared to APP/PS1-WT mice. Furthermore,
APP/PS1-F5KO mice displayed significantly increased
levels of soluble Ab-40 in the cortex, thereby promoting
the formation of Ab plaques. Male APP/PS1 mice aged
8 months with overexpression of irisin in the liver and
increased circulating irisin to pharmacological levels,
despite the absence of irisin overexpression in the
hippocampus, exhibited significant improvements in spa-
tial learning and memory tasks when they reached the age
of 10 months. 5xFAD mice, another type of transgenic AD
mice, upon receiving treatment with AAV8 irisin, showed
an improvement in spatial learning and memory

performance during the Morris water maze (MWM) test
(23). These results suggest that the peripheral adminis-
tration of irisin enhances cognitive abilities in animal
models of AD.

In conclusion, FNDC5/irisin induces BNDF expression
and improves the synaptic plasticity and memory deficit
of hippocampal neurons in the AD model. In addition, it
increases the development/maturation of hippocampal
newborn neurons and changes their morphology, transcrip-
tion, and function, thus playing a pivotal role in the onset
and advancement of AD. Moreover, the above studies
show that the administration of irisin through peripheral
means effectively mitigated the deterioration of cognitive
function, even if substantial pathological changes of AD had
occurred in the mouse brain (23). Therefore, there is
compelling evidence to advocate for the utilization of irisin
as a novel therapeutic intervention for Alzheimer’s disease.

FNDC5/Irisin in Parkinson’s disease with
dementia (PDD) and dementia with Lewy
bodies (DLB)

PD is considered the second most prevalent neuro-
degenerative disorder after AD (24). The pathological
characteristics of PD include the loss of dopaminergic
neurons in the substantia nigra pars compacta (SNpc), the
aggregation of a-synuclein (a-syn), mitochondrial and
lysosomal dysfunction, abnormal synaptic transmission,
and neuroinflammation (25). In addition to motor symp-
toms like stiffness, tremor, and gait disorders, PD also
leads to non-motor symptoms including constipation,
orthostatic hypotension, rapid eye movement sleep dis-
order, depression, and dementia (26). It is common for PD
patients to suffer from dementia, and the time of dementia
onset determines how patients are classified. Patients
who develop dementia before parkinsonism, or during the
first year of PD are classified as DLB. Those patients in
whom dementia develops more than one year after the
onset of motor signs are defined as PD with dementia
(PDD). These two diseases share the same core clinical
features and pathogenesis. Both PDD and DLB are
categorized as synucleinopathies due to the existence
of Lewy bodies and Lewy neurites, resulting from the
accumulation of a-synuclein (a-syn), which give their
distinctive pathological characteristics (27).

Some studies have found that physical exercise can
reduce posture and gait instability in PD patients, improve
overall mobility, and boost cognitive abilities including
processing speed and cognitive control (28,29). However,
the precise molecular mechanisms responsible for the
benefits of physical activity in PD have yet to be fully
elucidated. There are some studies indicating that the
myokine irisin induced during exercise may be the
beneficial mediator and may serve as a future treatment
for PD (30).
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Irisin prevents the formation of pathologic a-syn and
protects neurons against a-syn-induced neurotoxicity

The propagation of pathologic a-syn in the brain of
patients with PD is believed to occur in a manner similar to
prion transmission. This process ultimately results in
neuronal dysfunction and death. When primary cortical
neurons were cultured in vitro and exposed to a-syn PFF
(a-synuclein preformed fibril), endogenous misfolding of
a-syn occurred, which was subsequently toxic to cells
(31). During treatment of cortical neurons with a-syn PFF,
treatment with irisin at a concentration of 5 ng/mL
significantly reduced pathological a-syn, and 50 and 500
ng/mL irisin prevented the formation of syn and cortical
neuron death induced by a-syn PFF (32).

The results of an injection of a-syn PFF into the
striatum of mice and a subsequent injection two weeks
later of AAV8-irisin via the tail vein to induce over-
expression of irisin in the liver and circulation (control
group was AAV8 GFP) showed that the injection of AAV8
GFP resulted in a 60% loss of DA neurons, while injection
of AAV8 irisin resulted in only a 25% loss. Tyrosine
hydroxylase (TH) levels and expression of dopamine
transporter (DAT) decreased by 49 and 45%, respectively,
while with injection of AAV8 irisin only, TH levels
decreased by 6%. Importantly, compared to mice treated
with AAV8 GFP, the administration of AAV8 irisin
effectively inhibited the aggregation of insoluble a-syn
and significantly ameliorated the behavioral impairments
induced by a-syn PFF (32).

Irisin exhibits a protective effect against apoptosis of
dopaminergic neurons

The progressive deterioration of dopamine neurons in
the substantia nigra pars compacta (SNpc) is a hallmark
characteristic of PD. A PD rat model was established by
Zarbakhsh et al. (33) through intranasal administration of
the toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine). The PD rats were treated with bone marrow stem
cells (BMSCs), irisin, or BMSCs combined with irisin, and
the findings indicated that compared to the control group,
MPTP significantly reduced the apoptosis of dopaminergic
neurons by 77%. However, in the groups treated with
BMSCs, irisin, and irisin+BMSCs, neuronal damage was
63, 56, and 46%, respectively. In addition, compared with
the PD group, all treatment groups showed significant
preservation of TH+ cells (tyrosine hydroxylase-positive
neurons). However, there was a lack of a statistically
significant difference between the irisin group and the
BMSCs group, so it was postulated that irisin could
promote stem cell migration to SNpc and transform them
into dopaminergic neurons. Subsequently, apoptosis was
assessed, and the proportion of apoptotic cells in the
SNpc region of the control and MPTP groups was 20.62±
0.9 and 62.76±1.6%, respectively, 46.8±8% in the
BMSCs group, 39.4±1.1% in the irisin group, and 28.6±
1.5% in the irisin+ BMSCs group. The irisin combined

with BMSCs group exhibited the highest degree of
reduction, while no statistically significant difference
was observed between the irisin group and the BMSCs
group (34).

Irisin prevents mitochondrial damage in PD
Increasing evidence suggests that mitochondrial dys-

function plays a crucial role in PD etiology (35). A recent
study showed that after 12 weeks of regular exercise,
serum concentration of irisin in PD patients increased
notably, and their exercise capacity and balance function-
ality improved. Additionally, the administration of irisin
enhanced motor function and mitigated dopaminergic
neurodegeneration in MPTP-induced PD mice, while
concurrently reducing apoptosis of dopaminergic neurons
(36). Subsequent investigations revealed that irisin,
through the activation of the ERK1/2 (extracellular signal
regulated kinase 1/2) signaling pathway, effectively
mitigated intracellular oxidative stress, suppressed mito-
chondrial rupture, and facilitated mitochondrial respiration
and biogenesis in PD models, ultimately leading to a
reduction in neuronal apoptosis (36).

In summary, irisin demonstrates neuroprotective prop-
erties in PD by inhibiting the formation and accumulation
of pathogenic a-syn, mitigating the apoptosis of dopami-
nergic neurons, and alleviating mitochondrial impairment.

FNDC5/Irisin in vascular dementia (VaD)

VaD is a cognitive disorder resulting from the
diminished cerebral blood flow caused by dysfunction of
the cerebral vascular system. Chronic cerebral hypoper-
fusion (CCH) is a fundamental pathophysiological feature
of VaD, as long term ischemia causes white matter lesions
(WML) and hippocampal atrophy, resulting in cognitive
impairment and memory loss through complex molecular
and pathway mechanisms. In severe cases, patients may
also experience mental disorders, such as depression,
anxiety, and attention and executive dysfunction (37). In
recent years, there has been a notable increase in the
incidence of VaD (38). Tu et al. (39) reported that a
decrease of irisin concentration was associated with poor
functional outcomes in patients with ischemic stroke.
Zhang et al. (40) observed a significant reduction in serum
irisin levels in patients with VaD compared to the control
group. After adjusting for all clinical features, results of
Spearman analysis and logistic regression showed a
significant positive correlation between irisin levels and
Montreal Cognitive Assessment (MoCA) scores in
patients with VaD.

Irisin reduces hippocampal neuron apoptosis and
local inflammation in an ischemia/reperfusion mouse
model through multiple signaling pathways

An ischemia/reperfusion (I/R) mouse model was
created through the surgical ligation of the bilateral
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common carotid arteries (BCCA) for a duration of 20 min,
followed by a 24-h reperfusion. The neurological defi-
ciency scale (NDS) showed that the I/R mice had severe
neurological deficits, while administration of irisin led to a
significant reduction in the NDS score. In vivo and in vitro,
irisin reduced apoptosis of hippocampal neurons. In
addition, irisin significantly inhibited the expression of
inflammatory cytokines, such as interleukin 1b (IL-1b) and
tumor necrosis factor a (TNF-a), while simultaneously
upregulating the expression of Notch1 intracellular domain
(NICD), Notch1, and Hes1. These findings suggest that
irisin exerts a neuroprotective effect on I/R injury by
modulating the Notch signaling pathway (41).

In the chronic cerebral hypoperfusion (CCH) VaD
mouse model established by bilateral common carotid
artery stenosis (BCAS), FNDC5/irisin levels in the
hippocampus of BCAS mice significantly decreased, and
overexpression of FNDC5 in the hippocampus or injection
of recombinant irisin into the bilateral hippocampus
improved the synaptic plasticity and alleviated hippocam-
pus inflammation, thereby reducing cognitive impairment
of BCAS mice (42).

In another study using a mouse stroke model, which
was established by occlusion of the middle cerebral artery
(MCAO) for 45 min and reperfusion for 23 h, intracerebro-
ventricular (ICV) injection of irisin at doses of 0.1, 0.5, 2.5,
7.5, and 15 mg/kg was performed at the beginning of
MCAO. The results showed that irisin significantly reduced
the infarct area, but only the 7.5 and 15 mg/kg doses
improved clinical outcomes. Irisin (7.5 mg/kg) treatment
alleviated brain edema, significantly reduced apoptotic
cells in ischemic cerebral cortex, and increased the
immunoreactivity of BDNF, but the permeability of the
blood brain barrier was unchanged (43).

Moreover, Li et al. (44) found a negative association
between plasma irisin level and cerebral infarction
volume, neurological deficit score, and TNF-a and IL-6
(interleukin 6) plasma concentrations. Administration of
irisin resulted in an elevation in the phosphorylation levels
of Akt and ERK1/2, and conversely, inhibition of Akt and
ERK1/2 attenuated the neuroprotective properties of irisin.
Consequently, the activation of the Akt (serine and
threonine-specific protein kinase) and ERK1/2 signaling
pathways by irisin may be a mechanism through which
neurons are safeguarded against I/R-induced damage.

Irisin improved cognition in cerebral ischemia mouse
model by regulating Klotho expression

The Klotho gene serves as a regulator of aging (45),
with its associated protein playing a crucial role in the
delay of aging and the enhancement of cognition (46). In
mice with Klotho mutations, lifespan was shortened,
synaptic integrity was impaired, and cognitive function
was compromised (47). Some clinical studies have found
a significant decrease of Klotho concentration in the CSF
among elderly individuals compared to their younger

counterparts. Moreover, these studies also found a strong
correlation between Klotho mutations and the onset of
cognitive dysfunction in the elderly population (48). In
addition, a notable decrease in the concentration of Klotho
protein was observed in the CSF of individuals diagnosed
with AD (49).

Jin et al. (50) found a significant positive association
between irisin levels and Klotho concentrations in CSF of
stroke patients, and CSF irisin levels and MoCA scores
were positively correlated. In the MCAO stroke mouse
model, both physical exercise and exogenous irisin
demonstrated comparable neuroprotective effects on
cognitive impairment. In comparison to the MCAO group,
the irisin treatment group exhibited a notable increase in
the expression of Klotho protein, as well as forkhead
transcription factor (FOXO3a) and manganese superoxide
dismutase (MnSOD). Additionally, DHE staining demon-
strated a reduction in the formation of reactive oxygen
species (ROS). Subsequent investigations revealed that
these protective effects of irisin disappeared in Klotho
knockout mice. These findings indicate that irisin mitigated
oxidative stress by regulating Klotho expression, conse-
quently improving cognitive function and clinical outcomes
in the cerebral ischemia mouse model.

In summary, serum and CSF irisin are positively
correlated with cognitive function in patients with vascular
dementia. In different animal models of VaD, irisin
alleviates inflammation and oxidative stress levels by
regulating Notch and Akt/ERK1/2 signaling pathways, and
Klotho protein protects neurons from apoptosis, thereby
attenuating cognitive dysfunction in vascular dementia.

FNDC5/Irisin in cognitive impairment and
dementia caused by depression

Evidence from clinical and epidemiological studies has
demonstrated that elderly individuals with a prior history of
depression are at a higher risk for developing MCI and
dementia (51,52). In a recent longitudinal study encom-
passing a population of 1.7 million New Zealand citizens
over a span of 30 years, a significant association was
discovered between prior occurrences of mental disorders
and the onset of dementia. This extensive population-
based study provided further support for the notion that
emotional disorders were strongly associated with demen-
tia (53). Moreover, the elderly population exhibited a high
prevalence of depression, which frequently manifested
as a complication of dementia (51,54). Depression is
characterized by various physiological processes, such as
vascular disease, alterations in glucocorticoid signal
transduction, hippocampal atrophy, brain inflammation,
and deficiencies in BDNF (51). There has been a notable
rise in the prevalence of depression in recent years, which
has emerged as a significant global health concern.
Studies have demonstrated that physical exercise is
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beneficial for mental well-being, particularly anxiety and
depression, and it is suitable for all age groups encom-
passing children, adults, and the elderly (55,56). As irisin
is a myokine induced by motor activity and has been
identified as playing a significant role in neurological and
cognitive disorders, many studies had been undertaken
to examine the correlation between irisin and depression,
as well as depression-related dementia.

Reduction in central FNDC5/irisin levels may
represent a shared pathological mechanism between
major depressive disorder (MDD) and AD

A previous study involved 63 elderly subjects (38
individuals had cognitive impairment and 25 individuals
did not have cognitive impairment) from which blood and
CSF were collected. The 15-item Elderly Depression
Scale (GDS-15) was used to screen 39 depression
symptoms. The findings indicated that 41 elderly indi-
viduals were diagnosed with depression, which was
associated with a decrease of irisin and BDNF levels in
CSF, comparable to the observed outcomes in dementia
patients (57). MDD served as both a comorbidity and a
predisposing factor for the onset of AD (58). Regular
physical exercise was associated with reduced incidence
and severity of MDD and AD (59). Lima-Filho et al. (60)
assessed the expression of FNDC5 in postmortem brain
tissue obtained from a mature cohort of individuals
diagnosed with MDD and MDD with psychotic features
(MDD-P), as well as healthy control subjects, sourced
from the Stanley Medical Research Institute brain bank.
They found that the expression of FNDC5 mRNA in the
dorsolateral prefrontal cortex of both MDD and MDD-P
patients exhibited a notable decrease compared to the
control subjects, and no discernible gender-based differ-
ences were observed. Similar results were also obtained
in their MDD mouse model. Moreover, FNDC5 expression
declined in the frontal cortex of male mice with lipopoly-
saccharide-induced depression, while it was unaltered in
the hippocampus. The study also revealed that social
isolation did not elicit any alterations in the expression of
FNDC5 in the frontal cortex or hippocampus of mice.
According to these findings, FNDC5 exerted a regionally
specific regulatory effect on depressive behavior, and the
decline of central FNDC5/irisin may represent a shared
pathological mechanism between MDD and AD (60).

Antidepressant effects of irisin
The study conducted by Pignataro et al. (61) revealed

that administration of irisin by subcutaneous injection at a
dose of 100 mg/kg per day for 5 days resulted in notable
antidepressant and anti-anxiety effects in juvenile mice,
without any observable gender-based distinctions.

Postoperative depression is a topic of significant
concern in the academic community. Previous studies
have indicated that administration of propofol resulted in
depressive symptoms in mice, and irisin has been shown

to have a significant positive impact on the depressive
behavior induced by propofol. Furthermore, irisin mitigated
neuronal death caused by high propofol concentrations
in vitro and inhibited propofol-induced cytokine elevations
in astrocyte cultures (62). EGFR (epidermal growth factor
receptor) has been found to be correlated with the
occurrence of depression in individuals diagnosed with
severe MDD (63), and a significant increase in EGFR
expression was observed in mice treated with propofol,
which can be effectively inhibited by irisin (62). In the rat
depression model induced by chronic unpredictable stress
(CUS), administration of irisin resulted in a significant
increase in glucose transport and phosphorylation levels.
These findings suggest that irisin may have antidepres-
sant-like effects in CUS rats by modulating energy
metabolism in the prefrontal cortex of the brain (64).

In brief, research findings suggest that a decrease in
central FNDC5/irisin may be a common pathological
mechanism underlying both depression and AD. Animal
studies have demonstrated that administration of irisin can
alleviate depressive and anxious behaviors, indicating its
potential as a future therapeutic intervention for depres-
sion and dementia.

FNDC5/Irisin in cognitive impairment and
dementia caused by diabetes

Diabetes is the most common metabolic disorder, and
it has been proven that diabetes increases the risk of
cognitive decline, especially in working memory, informa-
tion processing speed, and executive function (65).
Epidemiological studies have shown a correlation risk
ratio ranging from 1.43 to 1.62 between diabetes and
dementia (66,67). A hierarchical relationship was
observed between the age of onset of type 2 diabetes
and dementia: the younger the onset age of diabetes, the
higher the risk of dementia later (68). The identification of
structural anomalies such as cerebral atrophy in the brain
of individuals with diabetes provides evidence for the
epidemiological association between diabetes and
dementia, which is usually related to cognitive decline
(69). Moreover, a strong correlation was found between
diabetes and other predisposing factors of dementia,
including hypertension and atherosclerosis (65). The role
of irisin in diabetes-related cognitive impairment has also
received extensive attention.

A clinical investigation was conducted in a cohort of
133 individuals who had been diagnosed with diabetes,
consisting of 59 patients with MCI and 74 patients without
cognitive impairment serving as control subjects. The
findings of the study revealed that MCI diabetes patients
demonstrated increased levels of irisin in their plasma and
more pronounced insulin resistance compared to their
cognitively healthy counterparts. Elevated concentrations
of plasma irisin have been associated with impaired
cognitive abilities, particularly in the executive function
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domain. Additionally, linear regression analysis demon-
strated a correlation between irisin and glycated hemo-
globin, and both were independent risk factors for MCI in
diabetes (70).

Administration of irisin via subcutaneous injection
enhances the cognitive function of diabetic mice induced
by streptozotocin (STZ). This effect may be attributed to
the inhibition of astrocyte activation, the reduction of
hippocampal presynaptic vesicle protein synaptophysin
(SYP), and the alleviation of neuroinflammation through
the reduction of IL-1b and IL-6 levels in the brain of DM
mice (71). Furthermore, in SD rats with diabetes induced
by a combination of STZ and high-fat diet, a reduction of
serum BDNF and irisin was observed, and subcutaneous
administration of irisin enhanced the expression of BDNF
in the hippocampus of diabetic rats and adversely affected
the levels of serum GHbA1c and AGEs. The findings of
this study suggest that irisin may have a significant impact
on cognitive function regulation in rats with type 2
diabetes, achieved through the modulation of BDNF
expression and glucose metabolism (72).

However, the role of irisin levels in the CSF of
individuals with diabetes-related cognitive impairment
remains unclear and should be further studied. Further-
more, the potential involvement of irisin in other endocrine
and metabolic disorders, such as cognitive impairment
and dementia associated with hypothyroidism, has yet to
be investigated.

FNDC5/Irisin in cognitive impairment and
dementia caused by brain injury

Acute brain injury (ABI) includes stroke and traumatic
brain injury (TBI). Cognitive impairment is a prevalent and
disabling outcome of TBI. Mild traumatic brain injury
(mTBI), commonly referred to as concussion, is charac-
terized by a minor head injury resulting in a transient loss
of consciousness, subsequently leading to cognitive
impairment, which represents the most frequently encoun-
tered form of TBI (73,74). mTBI has been found to have a
detrimental impact on various cognitive domains, such as
executive function, learning and memory, attention, and
processing speed (75). In a 1-year prospective cohort
study comprising 656 individuals diagnosed with mTBI
and aged over 17 years, it was observed that 13.5% of the
mTBI participants exhibited suboptimal cognitive out-
comes at the end of the follow-up period; this percentage
was notably higher compared to the control group, in
which only 4.5% demonstrated similar cognitive impair-
ments (73). Delaplain et al. (74) found that a significant
proportion of adult trauma patients diagnosed with
intracranial hemorrhage (ICH) and mTBI displayed cogni-
tive impairment during the initial phases. Similar results
were obtained by Keys et al. (76) in their study of a
pediatric TBI cohort. It has been shown that brain injury
could result in a series of interconnected events and

pathological processes, including energy consumption
disorder, cell death, mitochondrial dysfunction, inflamma-
tion, free radical generation, oxidative stress, and apop-
tosis (77). Extensive studies and investigations have
provided substantial validation for the ability of irisin to
enhance neurogenesis, cell proliferation, and neural
synaptic plasticity in embryonic stem cells (ESCs)
(78,79). Importantly, irisin has been demonstrated to exert
a crucial role in mitigating inflammation, alleviating
oxidative stress, mitigating cell apoptosis, and enhancing
impaired mitochondrial function (80). Consequently, the
significance of irisin in the context of TBI is progressively
being recognized.

Irisin mitigates mitochondrial dysfunction via the
PGC1a-dependent pathway

During the acute phase of brain injury, there is a
pressing requirement for an adequate supply of adenosine
triphosphate (ATP) to facilitate the repair of damaged cells
(81). However, the impaired mitochondria lose the
capacity to fulfill this energy requirement, which triggers
a series of detrimental cascading reactions, including
malfunctioning of the electron transport chain, depletion of
ATP, excessive generation of reactive oxygen species
(ROS), injury caused by oxidative stress, neuronal
apoptosis, and neurogenic inflammation (82). Recent in
vivo and in vitro studies have underscored the significant
role of irisin in preserving mitochondrial function and
promoting mitochondrial biogenesis. Treatment with exog-
enous irisin has been observed to mitigate mitochondrial
dysfunction, leading to enhanced ATP utilization (83,84).
Fan et al. (83) revealed that irisin impeded the formation of
free radicals and the escalation of inflammatory factors.
Furthermore, the administration of irisin has been found to
partially sustain mitochondrial potential and cellular ATP
levels through the involvement of AMPK-dependent path-
ways (79). Irisin treatment could stimulate mitochondrial
biogenesis and inhibit mitochondrial division, thereby
compensating for excessive ATP consumption (84).

Irisin alleviates acute brain injury by increasing BNDF
levels

In clinical practice, levels of BDNF have been used as
biomarkers for predicting mortality and outcomes after
brain injury (85). BNDF plays several neuroprotective
roles, including promoting nerve regeneration and adult
neurogenesis, mediating synaptogenesis and synaptic
plasticity, as well as enhancing cell survival and mitigating
apoptosis of neurocytes (86). Therefore, it can be inferred
that BDNF is effective in augmenting the recovery of
neural function and capabilities related to memory,
learning, and perceptual movement (87). As stated
previously in this review, BNDF secretion is regulated by
PGC-1a/ FNDC5/irisin. Elevated serum irisin levels
induced by exercise increase BDNF levels in the
hippocampus (88). Simultaneously, the modulation of
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FNDC5 expression in cortical neurons through siRNA
resulted in the downregulation of BDNF expression (15).
These studies demonstrate that irisin amplifies the
neuroprotective effect of BNDF and is a pivotal factor in
the early stage of brain injury.

Irisin protects neuronal damage and prevents
apoptosis by the integrin aVb5/AMPK pathway

Within 24 h of the occurrence of ICH, the levels of irisin
and its receptor, integrin aVb5, reach their peak. Sub-
sequent treatment with irisin results in notable enhance-
ments in both short-term and long-term neurological
function, alongside a reduction of brain edema sub-
sequent to ICH. Notably, integrin aVb5 is predominantly
localized in microglia, and the administration of irisin
effectively suppresses the pro-inflammatory polarization of
microglia/macrophages while facilitating their anti-inflam-
matory polarization. Moreover, the administration of irisin

effectively hindered neutrophil infiltration following ICH
and mitigated the apoptosis of neuronal cells. Mecha-
nistically, irisin notably upregulates the expression of
integrin aVb5, p-AMPK (phosphorylated adenosine phos-
phate activated protein kinase), and Bcl-2 (proteins of the
B-cell lymphoma-2), while downregulating the expression
of IL-1 b, TNF-a, MPO (myeloperoxidase), and Bax (Bcl-2-
associated X protein). This study by Wang et al. provides
evidence that irisin treatment ameliorates neurological
dysfunction, reduces brain edema, and alleviates neuro-
inflammation and neuronal apoptosis through the integrin
aVb5/AMPK signaling pathway (89).

Irisin effectively mitigates the permeability of the
blood-brain barrier subsequent to TBI

TBI places a significant global burden in terms of its
high prevalence, mortality, and morbidity rates. A crucial
determinant of its unfavorable clinical prognosis is the

Figure 1. The beneficial effects of irisin on diverse forms of dementia/cognitive impairment and the underlying multiple mechanisms.
PDD: Parkinson’s disease with dementia; DLB: dementia with Lewy bodies.
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occurrence of brain edema resulting from blood-brain
barrier impairment after the injury. The potential mecha-
nism underlying this phenomenon may be associated with
the morphological and functional abnormalities of neuro-
nal mitochondria in the affected brain tissue, a reduction in
uncoupling protein 2 (UCP2) activity, and an elevation in
inflammatory response and oxidative stress. Guo et al. (90)
found a correlation between the extent of cerebral trauma
and the concentrations of irisin in the CSF. Additionally, they
discovered that both endurance exercise and the adminis-
tration of irisin were successful in alleviating the impairment
of the blood-brain barrier in the mouse model of brain injury.
Furthermore, in the UCP2 knockout mouse model, irisin
exhibited the capacity to ameliorate the impairment of
mitochondrial structure and function by augmenting the
expression of UCP2 on the neuronal mitochondrial mem-
brane. This led to a reduction in inflammatory responses
and oxidative stress, thereby improving the blood-brain
barrier and alleviating brain edema from TBI.

In short, irisin exerts a protective effect on cognitive
function following TBI by inducing BNDF expression,
mitigating mitochondrial damage, promoting mitochondrial
occurrence, reducing neuronal apoptosis, and preserving
the blood-brain barrier.

Conclusion

This review provides a comprehensive overview and
updated analysis of the role and mechanisms of FNDC5/
irisin in different forms of dementia and cognitive impair-
ment. Irisin demonstrates a favorable impact on nearly all
forms of dementia and cognitive impairment. The potential
mechanisms can be summarized as: 1) Inducing the
expression of BNDF; 2) Modulating hippocampal neurons
to enhance synaptic plasticity, influencing the development

and maturation of newly generated hippocampal neurons,
and modifying their morphology, transcription, and function-
ality; 3) Safeguarding the integrity of the blood-brain barrier;
4) Reducing the accumulation of pathological a-syn in the
brain; and 5) Attenuating inflammation and oxidative stress
levels in the nervous system, mitigating mitochondrial
dysfunction, and reducing neuronal apoptosis through the
involvement of Notch, Akt/ERK1/2, aVb, and AMPK
signaling pathways, and Klotho protein; and 6) Attenuating
depression (Figure 1).

FNDC5/irisin is upregulated during physical activity,
however, implementing regular exercise regimens for
individuals with dementia and cognitive impairment may
be challenging and potentially dangerous. Additionally,
enhancing cognition through elevated irisin levels from
exercise may not be a feasible approach in this
population.

Many studies have demonstrated the ability of irisin to
traverse the blood-brain barrier, which suggests that
administration of exogenous irisin medication holds
promise as a viable therapeutic approach for addressing
dementia and cognitive impairment in the future. Never-
theless, there is a lack of comprehensive research on the
utilization, dosage, and efficacy of exogenous irisin in this
specific disease.

The safety and feasibility of administering irisin to
humans are still uncertain, and additional clinical research
is needed to establish and evaluate its potential efficacy in
the treatment of dementia and cognitive impairment.
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