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We study ferromagnetic and antiferromagnetic Ising models in contact with a heat reservoir, and
subject to an external source of energy. The contact with the heat bath is simulated by a single-spin

ip Glauber dynamics, while the 
ux of energy is simulated by the two-spin exchange Kawasaki
process. Pair approximation and Monte Carlo calculations are employed to determine the phase
diagram for the stationary states of the model. We report the results we have obtained in one,
two and three dimensions. For instance, in one dimension, while the pair approximation predicts a
phase transition for the ferromagnetic case, this is not corroborated by the Monte Carlo simulations.
We also use Monte Carlo simulations to evaluate the static and dynamic critical exponents at the
transition lines between nonequilibrium steady states. We show that the critical exponents agree
with those of the corresponding equilibrium Ising model, for which detailed balance is obeyed.

I Introduction

The study of thermodynamic properties of nonequilib-

rium systems is a challenging subject because there is

still no complete theory to account for these phenom-

ena. That is, formalisms like that of equilibrium ther-

modynamics, or based on the ensembles of equilibrium

statistical mechanics, are still lacking. The behavior of

systems out of equilibrium may appear quite complex;

many interesting models have been studied. We refer

to the books of Marro and Dickman [1] and Privman

[2] for a survey in several interacting particle systems

on a lattice. For a deeper insight into mathematical

questions, and development of the formalism related

to phase transitions of interacting particle systems, the

books of Ligget [3] and Konno [4] are of fundamental

importance. Kinetic Ising models on the lattice are very

often used to describe the time evolution and the cor-

responding steady states of a great variety of interact-

ing particle systems, as for example catalysis, contact

process, domain growth, phase separation, and trans-

port phenomena. Aside from a few approximate ana-

lytical methods used to investigate these systems, com-

putational methods have been the main tool to study

nonequilibrium steady states. In this work we report

some studies on kinetic Ising spin systems where the

dynamics is dictated by competing stochastic process.

Each of the dynamical process we consider sati�es de-

tailed balance, which drives the system towards equi-

librium states. An interesting situation appears when

the system is under the action of time varying external

�elds, or when two or more dynamical processes act

simultaneously. In these cases, detailed balance is no

longer satis�ed. The physical properties are very simi-

lar to those observed in equilibrium, as for instance the

appearance of ordering and phase transitions, but now

the system is forced into a nonequilibrium stationary

state. The competitive spin dynamics we study here is

a combination of single-spin 
ip Glauber stochastic pro-

cess [5] and a Kawasaki type two-spin exchange dynam-

ics [6]. Gonzalez-Miranda et al. [7] studied a similar

competing system where the Glauber dynamics mimics

contact with a heat bath at a �xed temperature, while

the Kawasaki dynamics simulates contact with a heat

bath at in�nite temperature. In this latter case the

transition rates are assumed independent of the spin

con�gurations, correlations between sites are absent,

and the stationary states are of the Bernoulli type. In

the Kawasaki process, the magnetization is conserved

by the spin exchanges; the number of microscopic states

for a given value of the magnetization is very large.

In their work, Gonzalez-Miranda et al. obtained the

phase diagram in the T -q plane, where T denotes the

temperature and q, the probability of the Kawasaki pro-

cess, represents a \competition parameter." The phase

diagram, calculated through Monte Carlo simulations

in two dimensions, shows a line of continuous transi-

tions between the ferro- and paramagnetic phases up

to the value q � 0:83 of the competition parameter,

where a dynamical tricritical point appears. This re-
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sult con�rmed a previous pair-approximation calcula-

tion by Dickman [8] on the same model. In his mean

�eld pair-approximation treatment, he found the value

q = 0:72 for the tricritical point. Models of combined

Glauber and Kawasaki dynamics were investigated pre-

viously by DeMasi et al. [9, 10] for the particular case

of an in�nitely large value of the Kawasaki transition

rate. In this limit, the fast exchange of spins leads to a

reaction-di�usion equation for the local magnetization

at in�nite temperature.

If the two-spin exchange depends on the spin con�g-

uration, a new behavior emerges from the competition

between Glauber and Kawasaki dynamics: a ferromag-

netic Ising system, depending on the value of the com-

petition parameter, can exhibit three di�erent types

of magnetic ordering: a ferromagnetic, paramagnetic

or antiferromagnetic, as was shown by Tom�e and de

Oliveira [11]. In their model, the Glauber process sim-

ulates the contact with a heat bath at a �xed tem-

perature, and the two-spin Kawasaki exchange simu-

lates a continuous 
ux of energy into the system. They

show that, as the 
ux of energy is increased, the sys-

tem goes continuously from the ferromagnetic to the

paramagnetic state, and, for a further increase in the

energy 
ux, it goes continuously to an antiferromag-

netic stable state. They employed a dynamical pair

approximation in their calculations in two dimensions;

the results show that the model can be seen as a ki-

netic Ising model where ferromagnetic Glauber dynam-

ics at a given temperature competes with an antifer-

romagnetic Kawasaki dynamics at zero temperature.

This model is not symmetric to the antiferromagnetic

Ising case: by employing the same competitive dy-

namics for the two-dimensional antiferromagnetic Ising

model, the pair approximation gives only a transition

line between the antiferromagnetic and paramagnetic

phases at low 
ux of energy [12]. If we increase the

energy 
ux, the only stable states we �nd are of the

paramagnetic type. The ferro- and antiferromagnetic

two-dimensional Ising models with competing Glauber

and Kawasaki dynamics were also studied by Monte

Carlo simulations [13, 14]. The phase diagrams and the

corresponding stationary critical exponents were deter-

mined. The values found for the critical exponents sup-

port the idea that equilibrium and nonequilibrium Ising

models, which both exhibit up-down symmetry, belong

to the same universality class [15]. For the particular

case where the Glauber and Kawasaki dynamics com-

pete at T = 0, in the antiferromagnetic Ising model,

the pair approximation predicts ferro, para and anti-

ferromagnetic phases as the strength of the exchange

between two nearest neighbor spins in the Kawasaki

dynamics changes [16]. Using a quantum formulation

of the master equation, Artz and Trimper [17] studied

the kinetic Ising model with long-range interactions,

subject to competing Glauber and Kawasaki dynamics.

They showed that in the exchange-dominated case the

system is strongly correlated for each value of temper-

ature.

In Section II we establish the equations of motion

for the kinetic Ising model with Glauber and Kawasaki

competitive dynamics, and show some results obtained

within the dynamical pair approximation. In Section

III we present the corresponding results from Monte

Carlo simulations, and in Section IV we present our

conclusions.

II Equations of motion and the

dynamical pair approxima-

tion

We consider an Ising model on a hypercubic lattice

with N sites. The energy of the system in the state

� = (�1; �2; : : : ; �N ), where the spin variable assumes

the values �i = �1, is given by

E(�) = �J
X
(i;j)

�i�j ; (1)

where the summation is only over spins that are nearest

neighbors on the lattice, and the cases J > 0, ferromag-

netic, and J < 0, antiferromagnetic, are considered.

Let P (�; t) be the probability of �nding the system in

state � at time t. The evolution of P (�; t) is given by

the following master equation :

dP (�; t)

dt
=
X
�0

[P (�0; t)W (�0; �)� P (�; t)W (�; �0)];

(2)

where W (�0; �) gives the probability, per unit time, for

the transition from the state �0 to state �. In order

to take into account the two competing processes, we

assume that

W (�0; �) = pWG(�
0; �) + (1 � p)WK(�

0; �): (3)

In this equation,

WG(�
0; �) =

NX
i=1

��0
1
;�1��0

2
;�2 : : : ��0i;��i : : : ��0N ;�Nwi(�)

(4)

is the single-spin-
ip Glauber process, which simulates

the relaxation of the system towards the equilibrium

state at the temperature T , and



60 Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000

WK(�
0; �) =

X
(i;j)

��0
1
;�1��02;�2 : : : ��0i;�j : : :

: : : ��0
j
;�i : : : ��0N ;�Nwij(�)

(5)

is the two-spin exchange Kawasaki process, which mim-

ics the 
ux of energy into the system. In the above sum-

mation, only nearest-neighbor pairs of spins are consid-

ered.

In these equations, wi(�) is the transition proba-

bility, per unit time, of 
ipping spin i, while wij(�) is

the transition probability, per unit time, of exchanging

nearest-neighbor spins i and j. We use the following

prescriptions for wi(�) and wij(�):

wi(�) = min

�
1; exp( �

�Ei

kBT
)

�
; (6)

which is the Metropolis transition rate [18], and

wij(�) =

�
0; for �Eij � 0
1; for �Eij > 0 ;

(7)

where �Ei is the change in energy when spin i is 
ipped

and �Eij is the change in energy after exchanging the

nearest neighbor spins i and j.

From Eq. (2) it is easy to derive expressions for the

evolution of the magnetization, h�ii, and for the corre-

lation function between nearest-neighbor spins, h�j�ki.

They are given by

dh�ii

dt
= pAi + (1� p)Bi; (8)

dh�j�ki

dt
= pAjk + (1� p)Bjk; (9)

where

Ai = �h2�iwi(�)i; (10)

Ajk = �h2�j�kwj(�)i � h2�j�kwk(�)i; (11)

Bi =
X
l

(NN of i)

h(�l � �i)wlii; (12)

Bjk =
X
l6=k

(NN of j)

h(�l�k � �j�k)wjl(�)i +

X
l6=j

(NN of k)

h(�j�l � �j�k)wkl(�)i; (13)

where by (NN of i) we denote a summation over the

nearest neighbors of site i.

Although Eqs. (8) - (13) are exact, the mean values

of the right-hand sides of these equations cannot be cal-

culated, because we do not know the exact expression

for the probability P (�; t). Thus we need to consider

an approximate expression for P (�; t). We employ the

pair approximation [19] to evaluate the mean values on

the right hand sides of Eqs. (10) - (13). We �rst di-

vide our lattice into two interpenetrating sublattices,

and look for solutions such that h�ii = m1 for any spin

i belonging to sublattice 1, and h�ji = m2 for any spin

j belonging to sublattice 2. The correlation function

for any pair of nearest-neighbor spins i and j is written

as h�i�ji = r. If we then perform these calculations

employing the pair approximation, we easily obtain ex-

pressions for the time evolution of m1, m2 and r. These

expressions are very lengthy, and can be found, for the

ferromagnetic case, in the work of Tom�e and de Oliveira

[11].

We look for stationary solutions of Eqs. (8) and

(9) characterized by constant values of m1, m2 and r.

We expect three di�erent solutions: m1 = �m2 6= 0

(antiferromagnetic stable states), m1 = m2 6= 0 (ferro-

magnetic stable states), and m1 = m2 = 0 (paramag-

netic stable states). The equation dh�1�2i
dt

= dr
dt

= 0 ,

with m1 = m2 = 0, gives the paramagnetic stationary

states. If we write the order parameter for the fer-

romagnetic phase in the form mF = m1+m2

2 , and for

the antiferromagnetic phase as mA = m1�m2

2 , we can

expand the right-hand side of Eq. (8) for i = 1 and

2. Retaining only terms linear in mF and mA, we can

�nd the linearized equations of motion for these order

parameters: their stationary solutions give the transi-

tions between ordered and disordered states. We ex-

hibit, in Fig. 1, the phase diagram obtained by Tom�e

and de Oliveira [11] for this open ferromagnetic Ising

model. The ferromagnetic state is stable for large val-

ues of p and at low temperatures; as p decreases, which

is equivalent to increase the 
ux of energy into the sys-

tem, the ferromagnetic state disappears, giving place to

the paramagnetic state. But if the 
ux of energy is fur-

ther increased we �nally encounter a new ordered state,

of the antiferromagnetic type. All the transitions are

continuous. A beam of electromagnetic radiation inci-

dent on the magnetic system, where the radiation �elds

interact with the magnetic system through a Hamilto-

nian involving a nearest-neighbor pair of spins and their

neighborhood, can account for the two-spin process we

are considering. In this way, the absorption of energy

by the system will depend on the local environment [20-

23]. Let us consider the system in the stationary state

represented by A in Fig. 1. We want to follow its evolu-

tion toward the new steady state, B, in the same �gure.

The magnetic system, in contact with the heat bath at

temperature T , is bombarded by a 
ux q of radiation

(the parameter q can give us a measure of the energy


ux into the system). Then the system initiates its
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Figure 1. Phase diagram of the two-dimensional ferromag-
netic Ising model with competing dynamics in the pair ap-
proximation. T is the temperature, in units of J

kB
, and

P = 1�p

p
measures the competition between the Kawasaki

and Glauber dynamics. F , P and AF denote the ferromag-
netic, paramagnetic and antiferromagnetic phases, respec-
tively. A, B and C represent selected steady states.

evolution towards the stationary state B, absorbing en-

ergy from the electromagnetic beam, in such a way that,

locally, this favors an antiferromagnetic alignment of

the spins. Despite absorbing energy from the beam, in-

creasing the antiferromagnetic correlation, the station-

ary state B is still a globally paramagnetic state. When,

�nally, the system arrives in the stationary state B, the

system becomes transparent to the electromagnetic ra-

diation of the beam (indeed, there occur small energy


uctuations, the energy of the system sometimes in-

creasing due the absorption, at other times decreasing

due to the presence of the heat bath). If, for instance,

the incident beam is switched o� when the system is in

steady state B, it will return to the initial state A, by

giving up energy to the heat bath; therefore the para-

magnetic states A and B are di�erent, because at the

steady state B, the antiferromagnetic correlations are

higher than in the equilibrium state A. This higher

antiferromagnetic correlation is maintained by the con-

stant 
ux of energy into the system. In order for the

system to arrive at steady state C from state B, we

must increase the 
ux of energy, which in our case is

equivalent to increasing the parameter q: the system

will absorb energy from the beam until it reaches the

state C, when will again become transparent to the

radiation beam, although the antiferromagnetic corre-

lation and energy are now higher than in state B. For

an extremely high 
ux of energy, that is, q almost equal

to 1, the system will reach a fully antiferromagnetic or-

dered state for whatever value of the heat bath temper-

ature. That is, the correlations induced by the single

spin-
ip Glauber transitions are immediately destroyed

by the interaction of the system with the radiation

beam, which returns it to its highest possible energy

state per spin, E = 2J . Thus, for a given stationary

state, characterized by the parameters T and q, the 
uc-

tuation of the energy is due interactions with the heat

bath and with the electromagnetic radiation. There-

fore, in its steady states, the system becomes trans-

parent to the radiation: antiferromagnetic correlations

are created (due the 
ux of radiation) and destroyed

(due the one-spin-
ip Glauber transitions). If p = 1,

the stationary states are the equilibrium ones, and the

critical temperature is given by kBTc = 2:885J , which

is the equilibrium critical temperature in the Bethe-

Peierls approximation.

We present in Fig. 2 the phase diagram of the

competing model for antiferromagnetic coupling. This

phase diagram was obtained using the dynamical pair

approximation to solve the coupled system of equations

on the square lattice. It is interesting to note that the

stable antiferromagnetic region is very small compared

with the ferromagnetic case shown in Fig. 1. The an-

tiferromagnetic phase is destroyed by a small input of

energy. The paramagnetic-ferromagnetic transition line

is absent in this antiferromagnetic model. As expected,

the 
ux of energy into the system breaks the symmetry

between the ferromagnetic and antiferromagnetic Ising

models observed in equilibrium.

Figure 2. Phase diagram of the kinetic antiferromagnetic
Ising model in two dimensions. T is the heat-bath temper-
ature and P = 1�p

p
is related to the 
ux of energy. The

system exhibits only the antiferromagnetic (AF) and para-
magnetic (P) phases, separated by a line of continuous non-
equilibrium transitions.

In Fig. 3, we exhibit the phase diagram of the one-

dimensional version of the ferromagnetic Ising model
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with competing Glauber and Kawasaki dynamics [24].

In this pair approximation calculation, we see that the

phase diagram exhibits a continuous phase transition

between the paramagnetic and the antiferromagnetic

phases for the nonequilibrium case (p 6= 1). As is to

be expected, for p = 1, the pair-approximation gives

no phase transition at �nite temperature for the Ising

model. The ferromagnetic ordered state appears only

at zero temperature. Similar calculations performed

for the one-dimensional antiferromagnetic Ising model

show that for any value of p, and T 6= 0, the only phase

that remains is the paramagnetic one. Although this

one-dimensional nonequilibrium Ising model has no ex-

act solution, our Monte Carlo simulations for this model

clearly show that the transition line of Fig. 3 is absent.

The phase transition observed in this �gure is indeed an

artifact of the pair approximation. This approximation

underestimates 
uctuations and can give wrong results

when applied to nonequilibrium one-dimensional situa-

tions.

Figure 3. Nonequilibrium phase diagram of the one-
dimensional ferromagnetic Ising model, as obtained in the
pair approximation. Here � = exp( �4J

kBT
) and P = 1�p

p

is related to the energy 
ux. The stationary states of the
system are represented by the paramagnetic (P) and antifer-
romagnetic (AF) phases, separated by a line of continuous
nonequilibrium transitions. The singular point P = 0 and
� = 0 corresponds to the fully ordered ferromagnetic state.

III Monte Carlo simulations

As we have just seen, Monte Carlo simulations of the

nonequilibrium one-dimensional Ising model gave re-

sults completely di�erent from the predictions of the

pair approximation. In this section, therefore, we

present phase diagrams of the ferro- and antiferromag-

netic Ising model in two dimensions, obtained by Monte

Carlo simulations, in order to compare them with those

of Figs. 1 and 2. We also calculated the static and

dynamic critical exponents at the steady state phase

transitions, and extended the simulations to the three-

dimensional version of the competing model we are con-

sidering.

Let us �rst consider the square lattice. We take lat-

tices with L� L = N sites, with L ranging from L = 6

up to L = 80. We used periodic boundary conditions in

all of our simulations. We started the simulations with

di�erent initial states, in order to guarantee that the �-

nal stationary states we use in our calculations are the

correct ones. For a given temperature T , and a chosen

value of the probability p, we choose at random a spin

i, from a given initial con�guration. We then generate

a random number �1 between zero and unity. If �1 � p

we perform the Glauber process; in this process, we

calculate the value of wi(�). We generate another ran-

dom number �2: if �2 � wi(�), we 
ip spin i, otherwise

we do not. If �1 > p we perform the Kawasaki pro-

cess. We generate another random number �3 in order

to select one of the four nearest neighbors of spin i, say

j. Then we �nd wij, and exchange the selected spins

only if wij = 1. We note that the stationary regime

is established after 104 � N Monte Carlo steps, for all

lattice sizes considered. One Monte Carlo step equals

N spin-
ip or exchange trials. In order to estimate the

quantities of interest, we used 5�104 Monte Carlo steps

to calculate averages.

In order to locate the critical temperature for each

value of p, we plotted the reduced fourth-order cumu-

lant [25] UL(T ) (see Eq.(16) below) as a function of

temperature T, for several values of L. Since this value

is independent of lattice size at the critical temperature

Tc, the crossing point of these curves gives Tc [26]. In

Fig. 4 we exhibit the reduced fourth-order cumulant for

p = 0:5. From this �gure we estimate Tc = 2:42�0:01 in

units of J
kB

. We have also considered other values of p in

our analysis, in order to determine the complete phase

diagram of the model. The resulting phase diagram can

be seen in Fig. 5, where we plot � = exp(� J
kBT

) as a

function of (1�p). Clearly, this phase diagram is rather

di�erent from that obtained through the dynamical pair

approximation, Fig. 1. Here we �nd a very small re-

gion corresponding to the antiferromagnetic phase. The

transition between the disordered paramagnetic phase

and the ordered antiferromagnetic phase, occurs only

for high values of the energy 
ux. This ordered phase

occupies a narrow region of the phase diagram, with

p between 0 and 0:075. Unlike the work of Gonzalez-

Miranda et al. [7], where the transition rate associated
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with the Kawasaki process was independent of the spin

con�gurations, here we do not observe any dynamic tri-

critical behavior. On the other hand, the critical tem-

perature exhibits a slight maximum near p = 0:3. For

p < 0:3, where the Kawasaki process is the dominant

one, the critical temperature approaches zero as p! 0.

For the pure Kawasaki case, p = 0, the evolution of the

system is the same for whatever temperature, that is,

we always go to the state of maximum energy compat-

ible with a given initial magnetization. For instance, if

the initial state is a paramagnetic one, the �nal state

will be the one where the staggered magnetization per

spin reaches its maximum value, that is, 1.

Figure 4. Reduced fourth-order cumulant UL(T ), for p =
0:5, as a function of temperature T for several lattice sizes L.
Circles correspond to L = 6, triangles to L = 10, squares to
L = 20, crosses to L = 40, downward triangles to L = 60,
and diamonds L = 80. We join the data points for each
lattice size by a broken line to guide the eye. The critical
temperature is Tc = 2:42� 0:01, in units of J

kB
.

By employing �nite-size scaling relations [25, 26],

we can evaluate the stationary critical exponents as-

sociated with these transitions. For a system with

L � L = N spins, with periodic boundary conditions,

we de�ne, at the stationary states, the \magnetization"

per spin ML and the \susceptibility" per spin �L as

ML = hjmji; (14)

�L = Nfhm2i � hjmji2g; (15)

where m = 1
N

PN

i=1 �i. We also de�ne the reduced

fourth-order cumulant UL as

UL = 1�
hm4i

3hm2i2
: (16)

The above-de�ned quantities obey the following �nite-

size scaling relations in the neighborhood of the sta-

tionary critical point:

ML(T ) = L
��
� M0(L

1

� �); (17)

�L(T ) = L



� �0(L
1

� �); (18)

UL(T ) = U0(L
1

� �); (19)

where � = (T�Tc)
Tc

, Tc being the critical temperature for

each value of p.

Figure 5. Phase diagram of the two-dimensional competing
ferromagnetic Ising model. � = exp(� J

kBT
), and (1 � p)

is related to the energy 
ux. F, P and AF refer to the
ferromagnetic, paramagnetic and antiferromagnetic phases,
respectively.

Taking the derivative of Eq. (19) with respect to

temperature T, we obtain the following scaling relation:

U 0
L(T ) = L

1

�
U 0
0(L

1

� �)

Tc
; (20)

so that U 0
L(Tc) = L

1

�
U 0
0
(0)
Tc

. We can then �nd the critical

exponent � from the slope of the straight line which is

the best �t to the data points of U 0
L(Tc) for each value of

L. Fig. 6 is a log-log plot of U 0
L(Tc) versus L, for p = 0:5:

from the best �t to the data we �nd � = 1:13�0:04. In

Fig. 7, we exhibit a log-log plot of the magnetization

ML(Tc) at the critical temperature, Tc, versus L, for

p = 0:5. From the slope of the straight line, which is

the best-�t to the Monte Carlo data points, and using

Eq. (17), we obtain the stationary critical ratio �

�
: our

estimate in this case is �

�
= 0:13� 0:01. Another sta-

tionary critical exponent of interest is that associated

with the susceptibility. We can �nd the ratio 


�
by em-

ploying two di�erent approaches based on the scaling
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relation given in Eq. (18). First, we can construct a

log-log plot of �L(T ) versus L, at the critical tempera-

ture Tc; then from the slope of the best-�t straight line

to the data, we obtain, for p = 0:5, 

�
= 1:70� 0:05, as

can be seen in Fig. 8. We can also estimate the same

ratio by a log-log plot of the maximum value of the

susceptibility versus L. It is easy to see that if Tmax
L

is the value of T for which �L(T ) is maximum, then

Tmax
L = Tc +

umax

L
1

�

, where umax is a constant, inde-

pendent of L, which maximizes �0(u). Based on these

arguments, we immediately see that the maximum of

the susceptibility also scales as L


� . In this way, from

Fig. 8, we obtain 


�
= 1:65� 0:05 for p = 0:5.

Figure 6. Log-log plot of U 0

L(Tc) versus L for p = 0:5.
The straight line is the best �t to the data, which gives
� = 1:13� 0:04.

Figure 7. Log-log plot of the magnetization ML(Tc) versus
L, for p = 0:5. From the slope of the straight line, which is
the best �t to the data points, we �nd �

�
= 0:13� 0:01.

Figure 8. Log-log plot of the susceptibility �L(T ) versus
L. Circles: �L(T ) at T = Tc; triangles: �L(T ) at its max-
imum. The straight lines are best �ts to the data points.
From the slopes we obtain 


�
= 1:70 � 0:05 (circles), and




�
= 1:65� 0:05 (triangles).

Figure 9. Critical exponent � as a function of the parameter
(1� p) at the ferromagnetic-paramagnetic transition line of
Fig. 5.

In Fig. 9 we exhibit the behavior of � as a func-

tion of (1 � p). For this Ising model with competing

Kawasaki and Glauber dynamics, the stationary criti-

cal exponent � is almost equal to 1. This interesting

behavior is in agreement with the arguments given by

Grinstein et al. [15] that equilibrium and nonequilib-

rium stochastic spin systems which present up-down

symmetry fall in the same universality class. In order

to corroborate these arguments, we also calculate the

stationary critical exponent ratios �

�
and 


�
from the

log-log plots of the magnetization ML and of the sus-

ceptibility �L, respectively, as functions of L. For each

log-log plot we calculated ML and �L at the critical

temperature Tc(p), as exhibited in Fig. 5. In Figs. 10
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and 11 we exhibit our results for �
�
and 


�
, respectively,

for several values of p. The exact values for the equi-

librium Ising model exponents are well known: � = 1,

� = 1=8 and 
 = 7=4. As we can see, our estimated

values for �

�
and 


�
, reported in Figs. 10 and 11, are

in accord with the corresponding values at equilibrium.

We have also calculated the critical exponents at the

continuous transition line between the paramagnetic

and antiferromagnetic phases. For p = 0:03, for in-

stance, we found the following values: Tc = 6:82�0:02,

� = 0:97� 0:05, �
�
= 0:13� 0:01, and 


�
= 1:83� 0:06.

Figure 10. Ratio �

�
as a function of the parameter (1�p) at

the ferromagnetic- paramagnetic transition line of Fig. 5.

Figure 11. Ratio 


�
as a function of the parameter (1�p) at

the ferromagnetic- paramagnetic transition line of Fig. 5.

In Fig. 5, at higher temperatures, we only see a

transition between the paramagnetic and the antiferro-

magnetic phases. When the Glauber dynamics domi-

nates, only paramagnetic stationary states are possible.

However, as the internal energy of the system increases,

which is equivalent in our description to the predom-

inance of the Kawasaki dynamics, long-range antifer-

rromagnetic order appears. A detailed Monte Carlo

analysis along with �nite-size scaling arguments, at in-

�nite temperature, shows that the transition occurs for

pc = 0:073 � 0:003, that is, the system is driven al-

most exclusively by Kawasaki dynamics [27]. Within

the accuracy of our Monte Carlo statistics, the value we

found is the same as the one obtained for the isotropic

majority-vote model on a square lattice [28]. In this

model a spin variable �i = �1 is chosen at random

on a square lattice at each discrete time. The chosen

spin adopts, with probability p, the sign of the major-

ity of its four nearest neighboring spins, and the sign

of the minority with probability (1 � p). As the num-

ber of nearest neighbors is even, the chosen spin 
ips

with probability 1=2 when there are equal numbers of

positive and negative spins in its neighborhood. The

only transitions in the isotropic majority-votemodel are

single-spin 
ips. As was shown by de Oliveira [28], this

model can be regarded as composed of two processes:

a noiseless zero-temperature process, and an in�nite-

temperature one, where the spins are distributed at

random. In this sense, our model shows some resem-

blance to the isotropic majority-vote model, where only

single-spin 
ips are considered. The noiseless zero-

temperature process in that model is replaced here by a

spin-exchange Kawasaki dynamics at an in�nitesimally

negative temperature; on the other hand, the e�ect of

the in�nite-temperature process in the majority-vote

model is equivalent in our case to a Glauber dynamics

with a transition rate of 1=2. From the simulation data,

we obtained the critical exponents at the transition line

between the paramagnetic and the antiferromagnetic

phases, at in�nite temperature, for this nonequilibrium

stochastic Ising spin system. The log-log plot of U 0
L(pc)

versus L gives � = 1:0 � 0:1. In addition, the log-log

plot of the staggered magnetization, ML(pc) versus L,

at the critical probability pc, gives us the ratio
�

�
; the

estimated value obtained from the slope of the best-�t

straight line to our data is �

�
= 0:13�0:01. The station-

ary critical exponent associated with the susceptibility

can be found by employing two di�erent approaches, as

was explained before: we can construct a log-log plot

of �L(p) versus L, at pc; then, from the slope of the

straight line, which is the best �t to the data points,

we obtain the value 


�
= 1:71� 0:01. We can also es-

timate this ratio from a log-log plot of the maximum
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value of the susceptibility versus L. It is easy to see that

if pmax
L is the value of p for which �L(p) is maximum,

then pmax
L = pc+

umax

L
1

�

, where umax is a constant, inde-

pendent of L, which maximizes �0(u). Based on these

arguments, we immediately see that the maximum of

the susceptibility also scales as L



� . In this way, we ob-

tain 


�
= 1:70� 0:01. The values we have found for the

stationary critical probability pc and for the set of crit-

ical exponents are in agreement with those obtained by

de Oliveira [28] for the isotropic majority-vote model

on the square lattice. As we have pointed out, this

fact must be related with the similarities between the

competing processes in the two models.

We have also determined the dynamical critical ex-

ponent z for this competing Glauber and Kawasaki dy-

namics [30]. Following Suzuki [29], dynamic �nite-size

scaling theory asserts that the magnetization of a sys-

tem of linear size L, at its critical point, evolves in time

according to the scaling relation

M (t; L) = L
��

� f(L�zt): (21)

If we consider very large lattices, it is expected that

the magnetization does not depend on the lattice size.

Then, it is easy to see that M (t; L) can be written as

M (t; L) = At�
�

�z ; (22)

where A is a constant that does not depend on L, and

the last equation is valid only for large values of L.

Then, taking into account the last equation, we can

evaluate the exponent z from a log-log plot of M (t; L)

versus t, for a �xed lattice size L, once we know �

�
,

given in Fig. 10.

The Monte Carlo method was used again to follow

the evolution of the magnetization in time for the com-

peting model we are studying. First of all, we select a

given value of competition parameter p. For this value

of p we read in Fig. 5 its critical temperature, corre-

sponding the transition between the ferromagnetic and

paramagnetic phases. After initializing the system in

its ground state, it evolves in time (measured in Monte

Carlo steps); we record the magnetization at intervals

of 10 Monte Carlo steps.

In Fig. 12 we exhibit a log-log plot of M (t) ver-

sus t for two lattice sizes, L = 160 and L = 320, for

p = 0:5. We see that the decay of M (t) is almost in-

dependent of L, which allows us to use Eq. (22) to

evaluate the critical exponent z. In these calculations

we used 100 and 50 samples for the small and large

lattices, respectively. We followed the decay of mag-

netization up to 320 Monte Carlo steps. If we discard

the �rst �fty Monte Carlo steps, we can �t our data

points to a straight line, and we obtain from its slope

the value �
�z

= 0:065 � 0:001. We have discarded the

initial data points because we want to study the sys-

tem in its second regime, where a power-law decay of

the magnetization is expected [31]. Taking (from Fig.

10) our result �

�
= 0:13� 0:01 for p = 0:5, we estimate

z = 2:0� 0:2.

Figure 12. Magnetization as a function of time, measured
in Monte Carlo steps (MCS) for p = 0:5. Measurements
were made every 10 MCS, between 10 and 320 MCS. Lat-
tice sizes: (160� 160) (small circles) and (320 � 320)(small
triangles).

In Fig. 13 we show a plot of the exponent z as a
function of (1 � p). For all values of p we used lattices
of size L = 320, and runs of up to 320 Monte Carlo
steps. As we can see, the values of the dynamical crit-
ical exponent 
uctuate around z = 2. This indicates
that the underlying symmetries of this model are not
a�ected by the energy 
ux. We would like to point out
that since in our simulations the magnitude of our esti-
mated errors can be as large as 0.2, the above assump-
tion can not be taken as a rigorous statement. But we
expect that for whatever value of the energy 
ux, the
critical exponent z must remain the same, because the
intensity of the 
ux of energy cannot change the uni-
versality class of this competing model. For the special
case of p = 1, that is, when the system satis�es detailed
balance, we found z = 2:0 � 0:1. This value must be
compared with the best estimates for this exponent ob-
tained through intensive use of large-scale simulations:
for instance, Stau�er [32] found z = 2:18 for a square
lattice with L = 496640 and Linke et al. [33] found
z = 2:16 for a square lattice with L = 106. For the con-
tinuous transition between the paramagnetic and anti-
ferromagnetic phases, the dynamical critical exponent
can be obtained in a similar manner as we have done
for the ferromagnetic to paramagnetic transition. For
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instance, for p = 0:03, we found z = 2:0� 0:2. In par-
ticular, for the transition at in�nite temperature, where
the critical probability is pc = 0:073, the value of the
dynamical critical exponent z is 1:9� 0:1.

Figure 13. Dynamical critical exponent z as a function of
(1 � p) at the transition line between ferro and paramag-
netic phases. The estimated values of z 
uctuate around
the value 2:0.

For J < 0 (antiferromagnetic coupling), the phase
diagram for competing Glauber and Kawasaki dynam-
ics was also obtained through Monte Carlo simula-
tions [14]. The phase diagram is very similar to the
one found in the dynamical pair approximation (Fig.
2). At T = 0, for instance, the critical value of p
is 0:965 while in the pair approximation its value is
0:968. We also evaluated the critical exponents along
the antiferromagnetic-paramagnetic transition line [14]:
as for the ferromagnetic case, the critical exponents
compare very well with the analogous static exponents
of the corresponding two-dimensional equilibrium Ising
model.

Finally, we studied the three-dimensional version of
the competing Glauber and Kawasaki dynamics for the
ferromagnetic Ising model [34]. We used Monte Carlo
simulations to �nd the phase diagram for the station-
ary states and the corresponding critical exponents.
The phase diagram is similar to that observed in two-
dimensions (Fig. 5). Although the stationary states
are mainly ferromagnetic at low temperatures, an anti-
ferromagnetic phase appears for extremely high values
of the 
ux of energy. The region of the phase diagram
occupied by the antiferromagnetic phase is larger than
in the two-dimensional case. For instance, at very high
values of temperature the critical value for the param-
agnetic to antiferromagnetic transition is p = 0:3, while
the value in two dimensions is p = 0:073. At zero tem-
perature, we observe only a ferromagnetic steady state,
for any value of the competition parameter. We have

also calculated the static critical exponents as a func-
tion of the competition parameter p. For p = 0:5, for
instance, we �nd � = 0:67 � 0:04, �

�
= 0:53 � 0:01

and 


�
= 1:93 � 0:03. These exponents are almost

independent of p. We would like to stress that the
values we have obtained for these critical exponents
compare very well with the analogous static exponents
of the equilibrium three-dimensional Ising model. For
instance, numerical investigations of the equilibrium
model by Ferrenberg and Landau [35] yield � = 0:6289
and �

�
= 0:518. As this nonequilibriummodel preserves

up-down symmetry, it is expected that it belongs to the
same universality class as the equilibrium Ising model
[15].

IV Conclusions

We have studied the behavior of ferromagnetic and an-
tiferromagnetic Ising models subject to two competing
stochastic dynamics. The system is in contact with a
heat bath at �xed temperature, and under the action
of an external energy 
ux. The exchange of energy
with the heat reservoir is assumed to be represented
by the single-spin-
ip Glauber process, while the en-
ergy 
ux into the system is simulated by a kind of two-
spin-
ip Kawasaki di�usive process. We considered the
model in one, two and three dimensions, and have em-
ployed the pair approximation and Monte Carlo sim-
ulations in our analyses. In one dimension, while the
pair approximation predicts a phase transition between
the paramagnetic and antiferromagnetic phases for the
ferromagnetic Ising model, the phase transition does
not appear in the simulations. For the square lattice,
in the ferromagnetic case, the predictions of the pair
approximation for the phase diagram di�er from simu-
lation results. For example, at T = 0, the simulations
give only a stable ferromagnetic phase for any value of
the competition parameter, while the pair approxima-
tion predicts a paramagnetic phase, between the ferro-
and antiferromagnetic phases. For T 6= 0, three dif-
ferent phases appear in the Monte Carlo simulations;
however, the antiferromagnetic phase occupies only a
small area of the phase diagram. In the limit of very
large temperatures, the model becomes similar to the
isotropic majority-vote model on a square lattice. For
this ferromagnetic model the static and dynamic critical
exponents were calculated at the steady-state transition
lines; the values we found are in accord with those of
the equilibrium Ising model, where detailed balance is
obeyed. On the other hand, for the competing two-
dimensional antiferromagnetic Ising model, both the
pair approximation and Monte Carlo calculations give
only a continuous transition line separating the anti-
ferromagnetic and paramagnetic phases. At zero tem-
perature, the critical value of the competing parame-
ter is essentialy the same in both calculations. Also,
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the critical exponents along the antiferro-paramagnetic
transition line are those expected for the equilibrium
Ising model in two dimensions. We have also studied
the three-dimensional version of the competing Glauber
and Kawasaki dynamics for the ferromagnetic Ising
model. Our simulations gave a phase diagram which
is similar to that observed for the two-dimensional fer-
romagnetic Ising model. At zero temperature the sta-
ble states are of the ferromagnetic type, regardless of
the value of the competition parameter; the antiferro-
magnetic phase occupies a larger region of the phase
diagram than in the two-dimensional case. The static
critical exponents were calculated along the transition
lines. The values we found are independent of the com-
petition parameter, and agree with the static exponents
of the equilibrium three-dimensional Ising model. As
the Glauber and Kawasaki dynamics preserve the up-
down symmetry of the Ising model, even when both
operate simultaneously, it is expected that the result-
ing nonequilibrium model belongs to the universality
class of the equilibrium Ising model.
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