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The electron{acoustic-phonon scattering process in spherical II-VI quantum dots is discussed. The
quantized acoustic modes are described in terms of the Lamb's classical theory. We considered
two mechanism for the interaction between electrons and acoustic modes: microscopic deformation
potential, and macroscopic acoustic deformation, also called the ripple mechanism. We also discuss
the in
uence of the glass matrix on the electron-phonon coupling. Our calculations show that the
ripple mechanism scattering rates become dominant by more than an order of magnitude, for small
dot radius. In general, the total scattering rate depends on the acoustical properties of the glass
matrix.

The electron-phonon interaction controls a wide

range of phenomena such as the cooling of optically

excited carriers on the picosecond time scale [1, 2]. In

a quantum dot system, the role of the electron-phonon
interaction on a carrier relaxation process has been dis-

cussed in terms of possible slowing of relaxation rates

due to the e�ects of con�nement, in particular, on the

phonon system. The physical mechanisms underlying
carrier relaxation are yet not fully understood. In par-

ticular there is currently some debate related to the

phonon bottleneck e�ect, especially regarding its ap-

parent absence in small II-VI quantum dots. Therefore,
it is necessary that alternative carrier relaxation paths

should be discussed systematically. In this work, we cal-

culate the electron{acoustic-phonon scattering rates in

CdS1�xSex spherical quantum dots embedded in a glass

matrix. The acoustic modes are described in terms of
the Lamb's classical theory of the oscillations of a con-

tinuous elastic sphere [3, 4, 5]. This model is valid if

the wavelengths of the acoustic phonons are suÆciently

larger than the lattice constants of the semiconductor.
For the Poisson constants considered in this work, this

condition is reasonably valid. We have considered two

mechanisms for the electron-phonon interaction: The

microscopic deformation potential (MDP) and the rip-

ple mechanism (RM) [6, 7], which results from the time
dependent modulations of the interface. The e�ects of

the coupling of the phonons of a quantum dot with the

surrounding matrix are also discussed here.

In semiconductor nanocrystals, the acoustical
modes become discrete due to the size quantization.

Their properties can be described in terms of Lamb's

classical theory of the oscillations of a continuous elas-

tic sphere. If the nanocrystal shape is supposed to
be spherical, Lamb theory predicts the existence of

two elastic oscillations leading to torsional and com-

pressional modes. The purely compressional mode has

special interest since it provides the dominant contri-

bution to the acoustic phonon deformation potential.
We restrict our attention to the Raman active acous-

tical modes. Duval et al. [4] have determined that

only modes with l = 0; 2, can contribute to the Ra-

man scattering of the light in �rst order. The low-
est order spheroidal mode, l = m = 0, is often called

the breathing mode. This mode provides the dominant

contribution in the scattering process. The breathing

mode displacement inside the dot is purely longitudi-

nal and the dot size dependence of their frequencies !k
can be calculated by considering the in
uence of the

surface on the phonon displacements. This in
uence is

addressed by means of two mechanical boundary condi-

tions: i) Stress-free boundary condition, meaning that
the normal component of the stress tensor vanishes at

the surface while the displacements are not constrained,
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ii) Rigid boundary condition which demands that the

components of the displacement vanish on the surface

of the microcrystal. We will follow the work of Ovsyuk

and Nvikov [8] to calculate the in
uence of a surround-
ing glass matrix on the breathing mode. The most

remarkable facts associated with the in
uence of the

glass matrix are: i) The presence of the glass leads to

a decrease of the phonon energy when the values of the
Lame's constants � and � and the mass densities � are

very di�erent between the semiconductor and glass ma-

trix media and, ii) The appearance of a new solution

associated with surface or interface modes.

In our calculations, the usual form of the MDP

Hamiltonian is considered, where the main contribution

is given byDr�u, where D is the deformation potential
coupling constant. Note that, under these conditions,

only longitudinal acoustic modes can couple to the car-

riers. For the RM, we will use the procedure illustrated

by Knipp and Reinecke [6]. By considering that this

electron-phonon coupling mechanism arises from a per-
turbation of the electronic wavefunction due to the mo-

tion of the interfaces, it can be shown that the impor-

tant terms for the ripple modes are those that possess

spatial dependence on the potential energy V (r) and on
the e�ective mass m(r). The interaction Hamiltonian

is calculated separately for each one by using an expan-

sion in Taylor series for small acoustical displacements.

We calculate the transition rate W for an electron

be scattered from an initial state i to a �nal state f ,

accompanied by the emission of an acoustical phonon

characterized by the frequency !k by using the follow-

ing expression

Wi!f =
2�

~
jMi!f (k)j2Æ(Ei �Ef � ~!k);

where M are the matrix elements of the electron-

phonon interaction involved in the transition. We use

the approach proposed by Vurgaftman and Singh [10]
which allow us to include the spectral broadening of the

electronic spectra due to a �nite energy level lifetime.

In our calculations, the electronic levels are de-
scribed following the work of Ekimov et al., [11]. The

material constants employed for this system are ob-

tained through linear interpolation from the CdSe and

CdS bulk parameters. We will restrict our calculations

to electronic transitions between the �rst excited level
and the ground state.

First, we calculate the scattering rates for free-

standing quantum dots considering both the stress-free
and the rigid boundary conditions. Our results, allow

us to establish some qualitative di�erences in the rates

due to the possible choices of the boundary conditions.

A weak dependence of scattering on the mode frequency
is observed in rates associated to MDP. The con�ned

character of the breathing modes produces a reduction

in the oscillations as the dot radius increases. This

scattering process is practically independent of bound-

ary condition, mainly when the spatial con�nement de-

creases. In contrast, the relaxation rates associated to
RM depend strongly on the frequency of the modes.

As it should be expected, the use of the rigid boundary

condition, (meaning rigid interface) neutralizes almost

completely the ripple e�ect, which is essentially based
on an macroscopic perturbation of the interfaces. Our

results reproduce the behavior presented in previous

works for acoustic bulk modes [6, 7], and they show

that the RM is the main channel of carrier scattering

in small size systems. This situation may be under-
stood by making an analogy with the behavior of the

levels in a narrow quantum well, where the position of

the levels is more a�ected by the change in the well

width (macroscopic) than for a change in the gap (mi-
croscopic).

In the Fig. 1, we shown the e�ect of the glass matrix
on the transition rates for RM and MDP. The results

also show rates for concentrations x = 0 (CdS), x = 0:5

and x = 1 (CdSe).

Figure 1. Electron{acoustic-phonon scattering rates in
CdS1�xSex as a function of dot radius R. MDP and RM
contributions are included. The e�ects of Si02 (Ge02) ma-
trix are showed in solid (dashed) lines.

Two important characteristics can be observed for
the RM rate. First, as in the free-standing dots, it is ob-
served that the ripple rates are strongly sensitive to the
variations of the phonon frequencies. Now, the source
of the frequency changes are related with the presence
of the glass matrix. Also, for the whole range of dot
radii considered, we verify that the calculated rates for
dots in SiO2 matrices are larger than the rates for dots
in GeO2 matrices. This last fact is a direct consequence
of the softening of the phonon frequency modes when
the acoustic parameters between the matrix and the
quantum dot di�er to each other.
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The behavior of the rates can be explained by ob-
serving that, due to the phonon normalization, both
the MDP and the RM couplings depend inversely with
the square root of the frequency u � 1=

p
!. Therefore,

a decrease in the frequency produces an increment in
RM coupling and consequently an increase in their cor-
responding transition rates. Note that the parameter c1
measures the degree of decrease of the breathing mode
frequencies [8]. The frequency decreases when the value
of c1 becomes greater than 1. For the GeO2, the value
of the parameter c1 is 0.99, while for the SiO2 it is
approximately 1.3.

Figure 2. Total electron{acoustic-phonon scattering rates
in CdSe quantum dots. Stress-free boundary condition was
used in this calculation. Inset shows the ratio between
the total rate for a CdSe dot embedded in a glass ma-
trix [W T (matrix)] and the total rate for a free-standing dot
[W T (free)].

In Fig. 2 we show the dependence of the total scat-
tering rates as a function of the radius of the CdSe
quantum dot for two di�erent glass matrices (SiO2,
GeO2). The total scattering rate for a free-standing dot
is also represented in dotted lines. Stress-free bound-
ary conditions were used for this calculation. The rapid
increase of the total scattering rates in the small dot
sizes regime is due to the in
uence of the RM. This
e�ect could explain the results of Klimov et al. [13],
who has observed that at small dots (radii less than
40 �A) the measured relaxation times increase linearly
with the radius. This observation cannot be explained
from arguments that include relaxation assisted by op-
tical phonons. The e�ect of the glass matrix can be
better illustrated in the inset of the Fig. 2, where we
display the ratio of the total scattering rate for a CdSe
dot embedded in a glass matrix to the total scattering
rate for a free-standing dot [W T (matrix)/W T (free)]. In
general, absolute variations of the order 75-100% can be
observed. We can also observe that for small dot sizes,
where the contribution of the RM on the total rate is
dominant, the e�ects induced by the glass matrix are

more visible. However, for size dots greater than 80 �A,
the e�ect of the matrix and therefore of the RM be-
comes almost negligible.

Although we considered only breathing modes in
this work, the above considerations can be extended to
other phonon modes. However, we believe that if we
consider acoustic modes with l > 0, the relative im-
portance of the RM should become gradually smaller,
since the acoustic frequencies increase linearly with the
angular moment l. This change in the mode frequencies
would produce a smaller coupling via RM.

In conclusion, we note that the main scattering
channel for acoustic modes arises mainly through the
MDP. Our results also demonstrate that the inclusion
of the RM should be considered mainly in small dot size
systems. Finally, it is clear that the surrounding ma-
terial plays a signi�cant role in the electron{acoustic-
phonon coupling, and its e�ects should be included in
the analysis of the relaxation processes.
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