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Very long and thin superconducting cylinders with square cross section are studied using a modi�ed
Ginzburg Landau theory that incorporates the boundary conditions into the free energy expression.

Recent developments in the nanofabrication tech-

nologies brought new interest into the study of meso-

scopic superconductors [1, 2]. Consequently theorists

went back to discuss many problems that could have

been solved long ago if the motivation existed before.

The con�nement of vortices in samples with sizes of the

order of the coherence length produce interesting e�ects

such as the onset of giant vortices and meta-stability,

properties not found in pure systems on the bulk. For

this reason such small scale superconductors have be-

come of general interest [3, 4, 5].

We study here a type II superconductor with the

shape of a very thin and long cylinder with square cross

section. The applied �eld is parallel to the cylinder

and the side of the square is just a few times larger

than the coherence length �0. Because the cylinder is

very long the problem becomes two-dimensional and it

is enough to study a plane perpendicular to the cylin-

der. We assume that the London penetration length is

much larger than the side of the square, L, and con-

sequently, than �0 too. There is no shielding of the

applied �eld and the magnetic �eld is constant every-

where, being equal to the applied �eld. To describe

the equilibrium con�gurations of this system we use

a modi�ed Ginzburg-Landau theory which automati-

cally incorporates the appropriate boundary conditions

into the theory and presents a uni�ed view of both nor-

mal and superconducting regions independently of their

shape [6]. The present treatment of the square shape

cross section shows that this theory is also able to treat

other geometries, although this is not done here. The

method treats superconducting and normal regions on

equal footing through a step-like function �(~x), zero

in the normal and one in the superconducting regions,

respectively, according to the free energy density ex-

pansion below,

F = (1=V )

Z
dvf �(~x)j ~D j2=2m

+ �(~x)�0[T � Tc]j j
2 + �j j4=2g; (1)

where ~D � (~=i)~r� q ~A=c, and ~r� ~A = ~H .

The well-known Saint-James{de Gennes [7] bound-

ary condition,

n̂ � ~D = 0: (2)

is automatically satis�ed at the normal-

superconducting interfaces by this theory. The solution

in the normal region is trivial since Eq.(1) reduces to

F = (1=V )
R
dvf �j j4=2g, with the trivial solution

 = 0.

The solutions of the above modi�ed Ginzburg-

Landau theory in the square geometry are found numer-

ically using a discretized version of the theory. An array

of N2 points is introduced and consequently the �eld

 (x; y) is replaced by �(nx; ny),nx = 1; : : : ; N , and

ny = 1; : : : ; N . The discretized version theory is gauge

invariant. The numerical method used to search for

solutions is the Simulated Annealing method[8]. The

Simulated Annealing method is a Monte Carlo ther-

malization procedure that contains a temperature pa-

rameter, which is automatically lowered until a solu-

tion that meets a convergence criteria is found. In



Mauro M. Doria and Gilney Figueira Zebende 691

our procedure at least 1600 visits are made at each

site for a given Monte Carlo temperature. The sys-

tem undergoes an average of 150 temperature reduc-

tions, though this number depends on how fast the ab-

solute minimum is reached. The new order parameter,

� =
p
�=�0(Tc � T )  is normalized such that the

density, j�(nx; ny)j
2,is bound by one (maximum) and

zero (minimum). The distance between two consecutive

points in the numerical mesh is called a, and physical

results are invariant under di�erent choices of this pa-

rameter. In order that this discrete theory describes

the continuum Ginzburg-Landau theory we must have

the coherence length, �(T ) =
p
~2=2m�0(Tc � T ), �0 =

�(0), larger than a. We choose to do our simulations for

T = 0 and this is equivalent to �xing the parameters

R=�0 and �0=ai to constant values.

The step-like function �(~x) that describes the square

is,

�(~x) =
2

1 + exp [(2jxj=L)
K
]

2

1 + exp [(2jyj=L)
K
]

(3)

where we take K = 8.

Although the present theory has no � parameter it

is possible to simulate the limit � ! 1 using the fol-

lowing trick. The magnetization is obtained through

the expression,

~M = (1=V )

Z
dvf ~x� ~J=2cg; (4)

where ~J = (q=2m)[ � ~D + c:c] is the electromag-

netic current. The above expression gives the magneti-

zation just from the spatial distribution of the order

parameter. However Ampere's law is not being im-

posed here and the Meissner regime does not exist in

the present study. It happens that the above magneti-

zation is only proportional to the true magnetization of

the limit � ! 1. The proportionality constant, C, is

determined imposing that B = H + C � 4�M = 0 for

very small H values.

Let us discuss the results of our numerical mini-

mization of the free energy, described by Eq.(1), whose

results are shown in the �gures.

Figure 1 shows two curves on a single plot, namely

the free energy versus the applied �eld and the magne-

tization versus the applied �eld for a square with side

L = 2�0. In the small applied �eld regime the magne-

tization is approximately linear and this is associated

to the Meissner phase. For increasing �eld the magne-

tization reaches a maximum after the Meissner region

and then decreases �nally disappearing for a maximum

applied �eld. No vortices enter the superconductor for

L = 2�0. These two curves are also shown in Fig. 2 for a

square with side L = 3�0. In this case there is a discon-

tinuity in the magnetization as the applied �eld changes

fromHA toHB . At this point the free energy undergoes

a slope discontinuity indicating a �rst order transition.

It corresponds to the entrance of the �rst vortex inside

the square. Thus we have just determined here that the

critical side of square where the entrance of a vortex be-

comes possible should be between 2�0 and 3�0. Fig. 3

shows the free enrgy and magnetization curves for a

larger square, that is, of side L = 8�0. Several transi-

tions are observed in this case, each occuring at special

values of the applied �eld. From zero �eld to HA there

are no vortices inside the system. HB marks the en-

trance of the �rst vortex, HC of the second, HD of the

third, and HE of the fourth. For �elds larger than HE

more vortices enter the square, although a more accu-

rate curve than the present one is necessary to charac-

terize these transitions. We have observed that individ-

ual vortices tend to collapse into a single giant vortex

as the �eld increases, until a new vortex enters when

they again are individually seen. For instance, the �eld

value imediately before HE corresponds to just a sin-

gle giant vortex with vorticity three. Next we show the

normalized order parameter for each point of our mesh,

taken with N = 60 and lattice parameter a = �0=5.

Figs. 4, 5, 6, 7, 8 correspond to the applied �eld values

HA, HB , HC , and HD, respectively. Each depression of

the order parameter correspond to a vortex inside the

system.

In conclusion we have studied here a long super-

conducitng cylinder with a square cross section using a

modi�ed Ginzburg-Landau theory that naturally incor-

porates the appropriate boundary conditions of normal-

superconducting interfaces. We numerically solve a dis-

crete version of this theory using the Simulated Anneal-

ing method. We showed that this method gives a good

description of the present square geometry. The en-

trance of vortices produce jumps in the magnetization

showing that they induce �rst order transitions in the

system, as shown for the cases of squares with sides

L = 2�0, L = 3�0, and L = 8�0 studied here.
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Figure 1. The free energy and the magnetization versus the applied �eld are shown here for the case of a square with side
L = 2�0. The magnetization has no discontinuities indicating that no vortices penetrate in the system.

Figure 2. The free energy and the magnetization versus the applied �eld are shown here for the case of a square with side
L = 3�0. The magnetization undergoes a jump from A to B indicating that a vortex has penetrated into the system.
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Figure 3. The free energy and the magnetization versus the applied �eld are shown here for the case of a square with side
L = 8�0. The jumps in the magnetization characterize entrance �elds for vortices. From no �eld until HA there is no vortex
inside the system and at HB a vortex enters the system. The other �elds are associated with new number of vortices inside
the system, namely HC two vortices, HD three, and HE four.

Figure 4. The normalized order parameter j�(nx; nyj2 is
shown here for L = 8�0 and �eld value HA.

Figure 5. The normalized order parameter j�(nx; nyj2 is
shown here for L = 8�0 and �eld value HB .
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Figure 6. The normalized order parameter j�(nx; nyj2 is
shown here for L = 8�0 and �eld value HC .

Figure 7. The normalized order parameter j�(nx; nyj2 is
shown here for L = 8�0 and �eld value HD.

Figure 8. The normalized order parameter j�(nx; nyj2 is
shown here for L = 8�0 and �eld value HE .
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