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A wide variety of interacting particle assemblies driven by an external force are characterized by a transition
between a blocked and a moving phase. The origin of this deblocking transition can be traced back to the
presence of either external quenched disorder, or of internal constraints. The first case belongs to the realm
of the depinning transition, which, for example, is relevant for flux-lines in type Il superconductors and other
elastic systems moving in a random medium. The second case is usually included within the so-called jamming
scenario observed, for instance, in many glassy materials as well as in plastically deforming crystals. Here
we review some aspects of the rich phenomenology observed in interacting particle models. In particular, we
discuss front depinning, observed when particles are injected inside a random medium from the boundary,
elastic and plastic depinning in particle assemblies driven by external forces, and the rheology of systems close
to the jamming transition. We emphasize similarities and differences in these phenomena.

| Introduction achieved mostly through the use of numerical simulations,
which have been extensively employed in the past in various

Various materials ranging from synthetic nanocrystals, mag- CONtexts. Here we review the results obtained from numer-
netic colloids, charged particles in Coulomb crystals, pro- ical simulations of mteractmg partlcles, in o_rder to provide

teins and surfactants, or vortices in type Il superconduc- & common framework for pinning and jamming phenomena
tors and in Bose-Einstein condensates. form ordered selfthat, despite their similarities, have been traditionally stud-
assembled structures. This topic has attracted much interedgd by different communities.

for various fundamental and tEChn0|OgicaI reasons. In this The transition from a blocked to a moving phase isacen-
reSpeCt, the response of these structures to external forces qfa| prob|em in the theory Of non_equi”brium Critica| phe_
various kinds (optical, magnetic, mechanical) is of particu- nomena. Beside the large body of theoretical work devoted
lar importance [1-3]. In many cases one observes the prestg the depinning transition of elastic manifolds in disordered
ence of blocked phases, where the evolution of the systemmedia and recent theories devoted to jamming in glasses and
is frozen. This behavior can have different OriginS: when CO”OidS, one should also mention the theory of absorbing_
it is due to the presence of quenChEd disorder it is denotedstate phase transitions [4' 5] An absorbing state is a con-
by pinning, while when it is due to intrinsic constraints it is figuration in which the evolution of the system, typ|ca||y
referred to as “jamming”. In both cases, a sufficiently large g stochastic lattice model, is frozen and no longer evolves.
force leads to a moving phase, through a deblocking transi-when a suitable control parameter is changed the system can
tion. eventually be found into an active, statistically stationary,
All these systems can be modeled by a set of inter- phase. The absorbing state phase transition is a second or-
acting particles moving under the action of external forces der non-equilibrium phase transition, characterized by scal-
sometimes in a random pinning field. For instance, super-ing laws and critical exponents, as in ordinary equilibrium
conducting vortices in thin films are pinned by vacancies phase transitions. The same is true for the depinning transi-
and driven by an applied current through the Lorentz force, tion and, in fact, it is sometimes possible to map a depinning
colloids interact replace by via Van der Waals or dipolar transition into and absorbing-state phase transition and vice
forces and are driven by the solvent flow. Despite the dif- versa. While the characterization of pinning-depinning as a
ferences in these systems, one can try to identify some com<ritical phenomenon is based on a firm theoretical ground,
mon features in their dynamic response. This goal has beerthe current theoretical understanding of jamming phenom-
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ena is not so advanced. Similarly, when depinning involves pulsive and attractive in different ranges), long-range inter-
the generation of topological defects, one refers to a plas-actions (i.e.K(r) ~ =<, for larger with 0 < a < d + 2,
tic depinning transition, but the precise meaning of the word anisotropic forces (i_ej: #K (7)), non-central forces (i.e.
transition is not clear at present in this context. f(F} x 7 % 0), or different combinations of the above.

At this stage of the theoretical understanding, however, The external force normally includes a uniform driving
it is possible to draw an extensive common picture of theseforce F, which could be time dependent. Typical exam-

phenomena, in which some parts are depicted in full detail, j|os are the AC drive(t) = Fpsin(wt) or the ramp up
others are less precise, and some are just sketched. We ho (t) = ct, but the possibilities are endless. In addition, one

thﬁt this V\f’f)rg'fbyr']ts own nature mt():omplete, will St'T.‘g".ite should consider position dependent forces due to quenchec
others to find further connections between non-equilibrium impurities that may be present in the system. Here we will

transitions from blocked to moving phase_s and possibly to mainly discuss the effect of a setdf, pinning points placed

formulate a complete theory encompassing all these phe- I .

nomena. randomly at positior?,,, giving rise to a random force field
The paper is organized as follows: in section Il we dis- of the type

cuss the models used to describe the physics of interacting S -

particle assemblies. In section I, we analyze the injection Fy(7) = > fo(F = By) /&), @)

of particles in a random medium and discuss the relations p

with front propagation and with continuum theories. Sec- . o o

tion IV is devoted to the depinning of interacting particles WNere¢, is the range of the individual pinning forces. Nor-

by an external force through a pinning field. We analyze mally, the particular shape of the pinning potential does not

the problem by increasing gradually the level of complex- matter as Io_ng as its range is short. One can also conside
ity, from the pinning of single particle to collective elastic correlated disorder, such as columnar and planar defects, de

and plastic depinning. In section V, we introduce jamming pending on the part.icular situatio_n at hand. In addition, ther-
phenomena and discuss in detail the jamming transition ob-mal effects can be included adding a a random uncorrelated

served in plastically deformed crystals, modeled by a set of GaUssian term(r”, ¢) to the equation.

stress-driven interacting dislocations. We conclude briefly ~ Once the interactions of the particle systems have been
in section VI. specified, one should also discuss the boundary and initial

conditions of the model. A common choice is to use peri-
odic boundary conditions, and to place the particles in their
1| |nteracting particle models and zero temperature equilibrium positions (i.e. forming a crys-
. . . . tal). Alternatively, the particles can be placed randomly in
their phyS|CaI realization the system mimicking a sudden quench from a disordered
i ) igh temperature phase. The latter may give rise to an intrin-
Several systems in nature can be modeled by a collection ofje yeometrical disorder. These conditions are appropriate if
interacting particles. H_ere we summarize the main features . is interested in modeling the dynamics in the bulk of
of these models and discuss some concrete examples. Fqfe material, without worrying about surface effects. On the
simplicity, we_W|II restr|qt oursel\(es tq pairwise |nteract|ons other hand, boundary effects are at the core of the phenom-
b?twee” pilrtlcl_es.'ln this case, |dent|fy|n_g the partlcle_ COOM ena in some cases and one should then implement differen:
dinates byr, with 7 = 1,...N, we can write the €quations  jniial and boundary conditions. This case will be discussed
of motion in general as explicitly in the next section. Periodic boundary conditions
need special care when interactions are long-ranged, since
Z J(7 = 7) + Foue (7, 1), (1) in this case one cannot impose a cutoff to the extent of the
J interaction force, as it is often done for short range-forces.
One should instead consider explicitly the interaction of the
wherem is the mass of the particlek, is a damping coef-  particles in a given finite cell with all the periodic images of
ficient, andJ = —VV/(7) is the interparticle force derived the system. The infinite sum over the images can rarely be
from an interaction potentiad’. The last term represents performed exactly and since the sum is slowly converging a
external forces, quenched disorder, or other noise sourcessimple truncation of the series gives a poor approximation
and will be discussed in detail below. In most cases of inter- and may induce spurious effects. To overcome this problem
est, dissipation is so strong that we can safely neglect inertiaone can employ the Ewald summation method, originally
puttingm = 0. Most of the following discussion will be  proposed for Coulomb interactions, after generalizing it for
devoted to thisoverdampedimit, but occasionally we will ~ the appropriate interactions involved [6].
discuss as well the effect of inertia. Finally, we would like to discuss here some physical re-
Depending of the particular system under study, the in- alizations of the generic model we have discussed above.
terparticle potential can have different forms which will af- One of the most studied examples is the flux-line lattice
fect the dynamics of the system. The simplest case is thafin type Il superconductors. In thin superconducting films,
of a short-range repulsive central fordér) = 7+ K (|7]/&,) the system can be really treated as a quasi-two dimensiona
which can be characterized by its peak vaki€d) and its set of interacting rod-like particles. Conversely, for thicker
range¢,. In a series of increasing complexity, one can con- superconductor samples one should study a set of flexible
sider non-monotonic interactions (i.e. the force can be re-lines. In this article, we will only consider the case of rigid

7 |
m —_ =
az " dt
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vortex lines. The interparticle force between rigid flux-lines corresponding dislocation axis, respectively [12]), but that is

in the framework of the London theory is given by generally long-range, decaying 8%, and anisotropic. For
. instance, the force between two edge dislocations at a dis-
J(7) = ®%/ (872N K (|7 /N7, (3) tancer = (x,y), and with Burgers vectors in thedirection
where®, is the quantized flux carried by the vorticds; 's given by
is a Bessel function andl is the London penetration length pb?  x(x? —y?)
[28, 27]. Notice that this is a short-range (sinkg(z) ~ Jo(z,y) = (=) (1 g2 (6)

exp(—x) for largez) repulsive central force, with a diver-

gence of the form:~* at short distances which is cut off by  wherey, is the shear modulus, andis the Poisson ratio of
the vortex core. Instead in two dlmenSIonS, the interaction the host CrystaL We have only considered Mmponent

is long-range . since, differently from flux lines, dislocations move mainly
f(|F]) _ o7 () by gliding along preferential directions, namely the direc-
8m2\2p’ tion of the Burgers vector. Thus, while the particle systemis

decaying ad/r. In addition to interaction forces, a current two dimensional, the motion is confined along several par-

7 flowing in the superconductor produces a Lorentz force ticular directions. This fact, together with the anisotropic

F= j % E/c acting on the vortices. character of the mteractl(_)n, gives rise to meftastable struc-
In the case of complex fluids or soft condensed fcures that act as geometric constrains for their own dynam-

matter materials [7], which usually contain large poly- ics. .In this case,.the driving forcg is oft_en an externally
mer molecules or colloidal particles in a solvent whose applied stress which acts on the dislocations through the

molecules are much smaller in size, a generic model in Peach-Koehler forcé’ = (b-0) x L, whereL is the direction

which inertial terms are neglected often provides an effec- ©f the dislocation line local tangent.

tive approach towards describing such systems. The solvent

is considered as a continuum medium, characterized by its . . .

viscosity, in which energy is dissipated as the suspended parl/l  Gradient driven dynamics: front
ticles move through it. In close correspondence with their invasion

characteristic dissipative motion, the suspended particles ex-

hibit a Brownian dynamics due to the random collisions with
the solvent molecules. This is modeled as a random Gaus
sian forcerj in the equations of motion of the form

The theoretical and experimental investigation of the growth
‘dynamics of rough interfaces has became a subject of great
scientific interest in recent years [13-15]. This is clearly
dr: . illustrated nowadays by the large variety of studies deal-
il dl — %) = J(7) + (7, 1), (5) ing with front invasion where roughening processes take
t . .
. . place such as flow through porous media [16-18] or imbibi-
where v is the solvent velocity tha} can be controlled by ion [19], flame propagation [20, 21], deposition processes
an externally applied flow field, and is an elastic or con-  [14, 15], and flux penetration in superconducting materials
servative force on particlé due to deformations of long [32, 33, 45, 46].
molecules or bubbles, or due to other interactions (such  grom a macroscopic point of view, the development of
as Van der Waals, electrostatic, magnetic, and excluded-modeling techniques for the description of these dynami-
volume) among the suspended particles. The amplitude ofcy| systems has been generally based on the traditional ap-
the autocorrelation functiok|7;|*) = 2IkpT 6(t — ') proach to transport phenomena, where the governing ex-
is proportional to the temperatufe of the system. More  pressions are usually differential equations representing lo-
sophisticated algorithms, in which one solves similar equa- ¢ palances of the quantity of interest (e.g., mass, momen-
tions to the one represented above, have been developed tQim flux of superconducting vortices, etc.) ircantinuum
model the rheology of dense spherical particles [8] account-framework. However, it is sometimes unavoidable that the
ing for hydrodynamic interactions, ellipsoidal or rod-like process of front propagation takes place on a particular sub-
particles [9], as well as emulsions [10] and foams [11].  strate whose structural details and/or microscopic irregular-
Another example which is worth considering from this jties cannot be properly described within a standard macro-
general point of view is a collection of dislocations in a thin scopic formalism. On the other hand, it often happens that
crystalline film. Crystal dislocations are topological defects these structural features may represent key factors for the
characterized by a Burgers vecto[12]. As in the case of  development of highly efficient materials. This is the case,
flux-lines, in a three dimensional crystal dislocations are de- for example, in the field of heterogeneous catalysis, where
formable lines. Nevertheless, one often treats them in thethe morphological characteristics of the catalyst pore space
rigid approximation obtaining an effective two dimensional  can have a dramatic influence on the accessibility of the dif-
particle model, which becomes exact for thin samples. Dis- fusion front of reagent towards the active sites in the deeper
locations produce long-range stress and strain fields in theparts of the porous material [23]. In the extreme situation
host crystal, and experience the so-called Peach-Koehleiwhere the porous catalyst has a microscopically disordered,
force due to the overall local stress. This induces an interac-put macroscopically non-homogeneous geometry, even a de-
tion force between dislocations that depends on their characparture from the classical diffusion formalism may be ex-
ter (edge or screw, whehnis perpendicular or parallel to the pected [24]. For example, the so-call@domalougype of
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transport in self-similar (fractal) structures usually occurs in whereT is the effective viscosity, the first term on the right
the form of a subdiffusive regime [25, 26]. hand side represents the particle-particle interaction, and the
The invasion of magnetic flux into a disordered type Il second accounts for the interaction between particles and
superconductor is another problem that has recently been thginning centers. Here we consider thais a short-range
object of intense theoretical and experimental research. As gnteraction, anqi is the force due to a pinning center, mod-
matter of fact, the magnetizgtion properties of type Il SUPEr- gled as a localized trap at the positiéb, with ¢, being the
conductors have been studied for many years, but the mter-range of the wells (typicallg, < X), andp = 1, ..., N,,. For
est in this problem has been renewed with the discovery of g, s mnje the pinning force could be modeled in terms of the
high temperature superconductors [27, 28]. The magnetiza- '

; . . : expression((7) = — foZ(|Z| — 1)2, for |Z| < 1 and zero
tion processis usual_ly d_escr.lbed n terms of the Bean mOdeIotherwise. For completeness, an uncorrelated thermal noise
[29] and its generalizations: flux lines enter into the sam-

, ) oy o
ple and, due to the presence of quenched disorder, give risé’-erm77 with zero mean and variancg”) = k, TTo(t — t')

10 a steadyv flux aradient. While the Bean model provides a ' also added to the equation, but we will restrict ourselves
- y fiux g : o pro to the analysis of the cagé = 0 (see Ref. [43] for the im-
consistent picture of average magnetization properties, such

X : - plementation of thermal noise in simulations).
as the hysteresis loop and thermal relaxation effects [30], it F dient dri A h luti dint i
does not account for local fluctuations in time and space. It or gradient driven Systems, the solution and interpreta-

has been recently observed that flux line dynamics is inter-1oN of the MD mod.el IS essent_lally accomplished by the.S|-
mittent, taking place in avalanches [31], and flux fronts are mul'ganepus humerical integration of Eq. (7) for gach moving
not smooth [32-34]. In particular, it has been shown that the particle in the_system,_ and subsequent ana_llys_|s of the flux
flux front crosses over from flat to fractal as a function of front propagatlon ford|ﬁergnt va!ues Of_ the pinning ;trength
material parameters and applied field [33]. fo. For instance, one typical simulation [46] can involve

A widely used modeling strategy to describe the fluc- up to N, = 800 000 Poisson distributed pinning centers of

tuations around the Bean state consists of numerical simu—Wldth & = A/21in a system of siz¢L, = 800\, L, =

. . - 5 i
lations of interacting vortices, pinned by quenched random ég?;\\zyoi?lrlgisli%%gdégg ;cr)]jsd:;sé%ig{r olr?{r)]\e.bznig:rmcon—
impurities [35-40]. With this approach it has been possible b y y

to reproduce flux profiles [37], hysteresis [37], avalanches dition adopted in the simulation. The injection of particles

[36, 39, 40] and plastic flow [35, 40]. One of the aims into the sample is implemented through the concentration at
1 L 1 . _ . - . /
of these studies [37] is to establish precise connections be-t _.O of.all part|c!es In iasmalllsllc.:é < A, parallel t_o_the .
tween the microscopic models and the macroscopic behav? dlreqnonz and imposing periodic bolund.ary conditions in
ior, captured for instance by generalized Bean models Aboth directions. Due to mutual repulsion in the dense zone
dif%erent approach treats the problem at mesoscopic S(.:aleOf th_e slice, the paf“c'es will be pushed |n_3|_de the material,
describing the evolution of interacting coarse-grained units fzrkrgéngsatﬁgjngggrt:jr;g;{grg}; tﬁgﬂ&?;ﬁf;ﬁgfg:ﬁg ?ne
[41, 42], supposed to represent the system at an intermediat e system at different times, or one can divide E)he system
scale. While these models give a faithful representation ofinto ay rid and identify the fro,nt (see Fig. 1) Y
several features of the problem, the connection with the un- 9 9- 4
gslrcljy(l)r;%ergg:;?cs;oplc dynamics still represents a very active g non-linear diffusion

Now we show that the front penetration due to the col-
lective motion of interacting particles in a substrate of pin-
ning centers can be described by a disordered non-linear dif-

ra(ljr:etnrllsc’ir?\?eclil(zjn,ng]rﬁiga(;? tﬁgjf)?/té\;ga:fn t%;?ﬁ(\;\;kt):a;ft?ﬁ fusion equation [51]. The equation can be obtained perform-
g : N dynam X X ing a coarse-graining of Eq. (7), starting from the Fokker-
teracting particles in disordered substrates can display a col-

. . . ) . . Planck equation for the probability distribution of the flux
lective behavior that is typical of front invasion processes line coordinatesP (7 P t)
with roughened interfaces. More precisely, as we show next, Lo TN
the idea is to provide a basic description for these system in oP . B =
terms of a particle model and to indicate how the relevant r— = Z Vi(—fiP + kgTV,;P), (8)
scaling laws relating the front position and the flux profile ot i
to the pinning strength can be consistently extracted from
numerical simulations. The equation of motion for an inter- Wheref:» is the force on the particlé given by Eq. (7).
acting particle performing an overdamped motion in a ran- Next, we introduce the single particle densjiy, t) =
dom pinning landscape can be written as in Eq. 1 (3>, 0%(7 — 7)), where the average is done over the distri-

. L bution P(7, ....,7n,t). The evolution ofp can be directly
Lo =Y J(F =)+ Y fol(By—75)/&]+n(7%,1), (7)  obtained from Eq. (8) and is given by
J p

A. Invading front from an interacting particle simulation
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Figure 1. In the upper panel we show a typical realization of a flux front obtained from a simulation of interacting vortices in a disordered
landscape [46]. In the lower panel, we show the growth of the average front position as a function of time for different pinning force
strengths. The front initially grows a&/% and then is pinned at a distance that scales yijth

0 - - Lo
r=-v ( / (=)@ F ) + Y Bl = 7)/&o(T, t)) + ks TV?p, (9)

|
where p®) (7,7 /. t) is the two-point density, whose evo- Consider for instance the flow between two coarse grained
lution depend on the three-point density and so on. Theregions: short-range microscopic pinning forces give rise
simplest truncation scheme involves the approximation to a macroscopic force that should always oppose the mo-
PP (77 t) ~ p(7,t)p(¥ ',t). We then coarse grain the tion, while the random force derived above could in prin-
equation considering length scales larger thamhis canbe  ciple point in the direction of the flow. In other words,
done expanding’ in Fourier space, keeping only the lowest F.(7) should be considered adriction force whose direc-
order term ing, and retransforming back in real space. The tion is always opposed to the driving fordg (in our case

result reads F,; = aVp) and whose absolute value is given [g§/n| for
D e . |Fy| > |gVn| and to| F;| otherwise [44].
/d (7= 7)p(r, 1) = —aVp(r 1), (10) Collecting all the terms, we finally obtain a disordered

. non-linear diffusion equation for the density of particles
wherea = [ d*r7- J(7)/2.

The coarse graining of the disorder term is more subtle. o =, = . )
A straightforward elimination of short wavelength modes I = V(apVp = pke) + kpTV7p. (11)
would give rise, as in the previous case, to a random force
Fe(r) = —gVn, wheren is the coarse grained version of the Any solution of Eq. (11) is clearly dependent on the par-

microscopic density of pinning centeir) = 3, 0*(" = ticular boundary condition (BC) imposed to the system. It
R,) andg « fo . This method can not be applied for short- is therefore important to study the effect of different BC's
range attractive pinning forces as the one we are investigat-on the dynamics of front propagation and to show that the
ing. In this case, short wavelength modes yield a macro- macroscopic approach based on the coarse-grained expres-
scopic contribution to pinning that can not be neglected. sion Eq. (11) is compatible with the MD model. To be
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specific, we consider the situation in which the front pen- The effect of quenched disorder is first analyzed in a sin-
etration takes place in a disordered type Il superconductorgle particle model, which, although oversimplified, still dis-
and the particles are vortices interacting according to Eq. (3)plays a depinning transition. The effect of the interparticle
[46, 45]. The following BC'’s correspond to different exper- potential on the depinning transition will be first introduced
imental situations [47, 48]: in the framework of the elastic theory, which breaks down
for strong pinning, leading to plastic depinning. Finally, we
briefly discuss the moving phases observed for strong driv-
ing.

. A. Single particle pinning

¢ (B) Constant vortex concentration at the boundary.

This case corresponds to an external control of the A first understanding of the dynamics of driven particles
magnetic field. in a disordered landscape can be obtained considering the

) . motion of a single particle [49-51]. We consider a collec-
* (C) Total vortex number increasing at constant rate. tion of parabolic wells for the pinning potentials, so that the
This represents an external control of the flux rate.  equation of motion for a single particle is given by

¢ (D) Boundary concentration increasing at constant da
rate, corresponding to a constant field rate. P =F+ Y folXp —2)8(le — Xyl = &), (13)
p

e (A) Constant total number of vortices. Experimen-
tally this corresponds to an external control of the
magnetic flux.

One should notice that boundary conditions can be more

complicated in reality, due to complex surface barriers that where are the random coordinates of the pinning centers,

oppose flux penetration. which we assume to be non-overlapping. When the particle
For a clean systemf{ = 0) atT = 0, Eq. (11) can be s not interacting with a pinning center, it moves with con-

solved exactly using scaling methods [47, 48]. In this case, stant velocityF'/T", until it enters into the attraction range

the density profiles obey the equation of a pinning center. Considering this as the initial condition

(i.e.z(t = 0) = X, — &), we can solve the equation

pla,y,t) = t7XG(x/t?) (12)
wherey andv satisfyx + 21 = 1. For the BC'’s consid- Fd—x =F+fo(X,—2) z<X,+¢&, (14)
ered: A)xy = 1/3, ¢ = 1/3;B) xy = 0, ¢ = 1/2; C) dt

x =—1/3,¢ =2/3;and D)x = —1,¢ = 1. These ex-  which is given by
ponents are in perfect agreement with the results from MD

simulations reported in Ref. [46]. For instance, the data re- w(t) = X, + F/fo— (F/fo+ gcp)e—t/l“. (15)
ported in Fig. 1 correspond to boundary condition (A) and
correctly scale with) = 1/3. The functionG(u) also de- In the limit ¢ — oo the particle remains trapped as long

pends on the boundary condition and for the case (A) isasF < F. = ¢, fo and escapes otherwise. We can interpret
given byG(u) = (1 — »?)/6 for v < 1 and vanishes for  this behavior as a depinning transition: the particle is pinned
u > 1. The other cases are reported in Refs. [47, 48]. for F' < F. and moves foi" > F..

The presence of disorder (pinning centers) induces sub-  The force-velocity diagram can be computed noting that
stantial effects on the behavior of the system that can befor F' > ¢, f, the particle spends in each trap a time
guantified in terms of the front propagation and/or the shape
of the density profiles of flux lines. Depending on the T =Tlog((F + F.)/(F — F.)). (16)
boundary conditions, it has been observed that the front is _ _ _
either pinned or simply slowed down [45]. Extensive numer- The total timeT" to cross a system of lengihwith IV, pin-
ical simulations have also been performed in Refs. [45, 46] Ning centers is given by
to show the compatibility between the MD model with dis-
order and its coarse-grained representation, Eq. (11). More- T = NpT + (L = 26, N, )T/ F. (17)
over, by varying the parameters of this continuum descrip-

tion of the front propagation, a crossover from flat to fractal The average velocity of the particie is thus given by

flux fronts has been detected, consistent with experimental |, F
observations. The value of the fractal dimension suggestsv = = = — — )
that the strong disorder limit is described by percolation. In T T(Fnplog((F + Fo)/(F = Fe)) + (1 25”?1”52))

the weak disorder limit, we recover the analytical results de-

where = N,/L is the number of pinning centers per
rived in Refs. [47, 48]. nyp 1% pinning p

unit length. Close to the depinning transitiép the veloc-
ity scales logarithmically ~ —1/log(F — F.), while at
; PP higher forces the velocity is proportional to the force. This
IV E)_(ternally driven dynamlcs. de- behavior is characteristic of the depinning transition, but in
pinning and flow generalv ~ (F — F,)?, whereg is a non trivial critical
exponent. Notice that the logarithmic behavior found above
In this section, we discuss the response of interacting parti-is an artifact of the discontinuous pinning force. Using a
cles to an external force in presence of quenched disordercontinuous force, one obtains instead a behavior of the type
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v ~ (F — F,)'/? [50]. We notice that the dependence of the as for instance in a very dilute system. In most situations,
exponents on the pinning potential is a peculiarity of the sin- however, interactions between particles should be explicitly
gle particle behavior and is not observed when interactionstaken into account. In this case we will still observe a depin-
come into play as we will discuss in the next section. ning transition, but its quantitative and qualitative features

Single particle models are also useful for gradient driven will change [52-58]. It is convenient to first study an inter-
dynamics discussed in the previous section [46]. In that acting particle system in thedasticapproximation, in which
case the external forcE is replaced by the density gradi- the pinning forces are not strong enough to break the topo-
ent, which can be approximated with a simple function of logical properties of the particle system. For instance, if the
x. For instance, in the case of boundary condition (B) (see particles are arranged into a crystal, the external force and
section ) F' ~ Vp ~ po/z, wherep, is the boundary den-  the disorder preserve the topological order and no defects
sity. This simple model yields the correct scaling behavior are generated.

for the front position [46]. In the pinned phase we can write the positions of the par-

B. Elastic depinning ticles by their displacement vectai¢R;) = 7; — R;, where

In the previous section, we have only considered the in- 7; are the coordinates in the deformed systemﬁndre the
teractions between moving particles and static pinning cen-equilibrium positions. The particle interaction energy can
ters. We could expect that those results will be valid only then be expanded in terms of the displacement field, which
when the interactions between particles can be neglectedis assumed to be small,

]

— — 2 — —
U= SV =) 2 U+ 30 3 alF) = ) g (s (B) = ual(Fy), (19)

T Orars

whereU is the energy in equilibrium. One can then take When expanding around a moving state, we obtain the same

the continuum limit expanding in small gradiem(ﬁ) o~ equation with an extra convective ted/u on the left hand
u(ﬁ/) + (R’ _ ﬁ/) . ﬁu@ and obtain [59] side [60, 61]. These elastic equations are still impossible to
solve exactly, but several results have been obtained using
U=t + /dg S E, s 5% 5“[5 (20)  scaling theories and renormalization group calculations [52-
58]. In the case of long-range interactions the gradients are

) . . .
@ replaced by a non-local interaction kernel and the equation

where the elastic tensdf,, g5 can be expressed in terms of becomes
the interparticle pair potential as

Eopys = — Z g 607“ (21) O,
e / A" Ko (r =) (g () =g (1) + F+ fu(r, ),
Clearly this expansion holds as long as the sum in Eq. 21 (24)
converges. If mteractlons are long range, decaying with awith K,s(r) ~ 1/r¢*+° for large distances.
slow power lawV/ (r) ~ r~(@=1%9) with & < 2, the elastic
energy can not be expanded in gradients and we have to live A first insight on the behavior of interacting particles
with a non-local interaction. in a disordered media in the elastic approximation can be

Coming back to the local limit, a further simplification is gained by collective pinning theory, originally due to Larkin
obtained in Eq. (20) if we take into account the symmetries [62]. In this approach, the main energetic contributions en-
of the equilibrium system. In the case of an isotropic system, tering the problem are written as a function of a lengthscale
the elastic tensor has only two independent components and,. Minimizing the sum of elastic and disorder energies,
the energy reduces to one obtains the characteristic length at which pinning

9 9 becomes relevant. Considering a region of sizevhere

U=U+ 1 /d3rK (%) + <aua) . (22) the typical displacements of the elastic medium are of the

2 Oora org order of the range,, of the pinning potential, the elastic

; BS; ~ d—2¢2 im-
where K andp are the compression and shear moduli, re- energy can be estimated el L7, where for sim
spectively plicity we have only considered the shear modylusThe

Using the elastic expression for the interparticle energy, ﬁ:gnm\,%heeme:ﬁg ﬁ;nbgﬁifgrggﬁgsl?r;ﬁ ':Ihnemflﬁl;t\ﬁzglgng?r}
we can rewrite the equation of motion for the particles as 9. o ) ) . .
the disorder: in a region of sizk, the typical fluctuations

Qg 9 0 = of the pinning energy scale ds,;,, ~ —E,+/L%n,, where
or PV U (K"H‘)a (V@) +F+ fa(r,u). (23) = fo&p, nyp is the density of pins. Minimizing the total
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energyuL2¢2 — E,+/L?n, with respect tal, we obtain  not surprising since in = 1 topological order is trivially

the Larkin length present. In two dimensions from the mapping with elastic
, manifold we would expect ~ 0.65 and¢ ~ 0.75 [55] and
. Mig i-d 25) at least the first exponent is reproduced by particle simula-
c N tions [6?].
10

For L < L. the elastic medium is essentially undeformed, —— F=0512
while elastic deformations grow strongly fé&r > L.and ~ + | F=0.515
typically, the system becomes rough on large lengthscales. —— k=032

Notice that the Larkin length decreases with the disorder
strength as long aé < d. = 4. The dimensionl. = 4 en-
ters here for the first time, but has in fact a greatimportance. A_

As can be shown by renormalization group calculatiefs, 1;/10’1 s
is the upper critical dimension: fef > d. the system does \Y

not roughen and the critical behavior at the depinning transi-
tion is essentially mean-field like. Since the physical dimen-
sion is usually lower than four, one is lead to think that this
limit is without practical interest. This is not completely
true, since in presence of long-range interactidngypi-
cally lowers, reaching sometimes the physical dimension. 10 10° 10° 10
In particular, for non local elastic interactions with< 2 t

the upper critical dimension is given by = 2¢.

Since L. represents the characteristic lengthscale atFigure 2. The decay of the velocity féf = 400 interacting par-
which pinning starts to be effective, Larkin estimated the ticles with pinning ind = 1 for different values of the force. For
depinning threshold as the force needed to unpin a region off’ > Fe = 0.514 the velocity crosses over to a steady value. See
length .. This can be done comparing the energy due to Ref[51] for details on the model.
the external forceE.,; = F¢,L? to the pinning energy at
the scalel.., obtaining

o s A
RN
Wyt g il

0.06

(/)4
GV

Collective pinning theory provides a qualitative descrip-
tion of the depinning transition and a good estimate of the
depinning threshold, but does not allow to estimate the crit-
ical exponents and the force-velocity curve. For this, one
needs renormalization group methods, which we do not
want to discuss here. We just quote some results, obtained
for the first order in & = 4 — d expansion: the exponent
for the velocity scaling is given bg = 1 — ¢/9, while the
roughness exponent, ruling the scaling of the typical dis- 0 ‘ ‘ ‘
placements with the system size~ L¢, is estimated as 051 0.52 0'%3 0.54 055
¢ = ¢/3. Other exponents follow from scaling relations.

For instance, one can analyze the transient behavior of therigure 3. The force velocity curve obtained from the steady state
average particle velocity, which initially decays as a power velocity shown in Fig. 2. with pinning id = 1. The best fit yields
law (v) ~ t=<, and then crosses over to a constant value 8 = 0.22 andF. = 0.514 [51].

whenF' > F,, or goes exponentially to zero otherwise (see
Fig. 2) [51]. The exponent can be obtained by a scaling
relation asy = (3/vz, wherez is the dynamic exponent and When pinning forces become stronger and/or pinning
v is the correlation length exponent [51]. centers more dilute the topological order of the system typi-

Simulations have been widely used in the past to obtain cally breaks down. In this case, it is not possible to describe
numerically the value of the exponents. We should distin- the deformation in terms of a displacement field as we did in
guish here the vast body of work pertaining to elastic mani- the previous section, and plastic deformation should be ex-
folds, in which the elastic approximation is enforced directly plicitly considered. Due to these difficulties, a complete the-
in the model simulating variants of Eq. 23 [55], from particle oretical understanding of plastic depinning is still not avail-
simulations in which the original system is studied. In one able and one should rely on numerical simulations. A sim-
dimension the elastic approximation works well and the ex- ple estimate of the conditions for the occurrence of strong
ponents measured in particle models reproduce with a goodpinning effects can be gained in the framework of collective
accuracy the results obtained for elastic manifolds, namelypinning theory. Wheri.. ~ aq, whereq, is the interparticle
[ ~ 0.25 and¢ ~ 1.25 (see Fig. 3) [51,63-65]. This is distance, the particles are pinned individually. One can

Fer~ Epvan;d/2/§p = (26)

0.04 -

<v>

0.02 -

C. Plastic depinning
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Figure 4. (a) The force velocity curve fo¥ = 270 interacting particles in the strong pinning limit ih= 2. The fit is a power law#"®

with 5 = 2.7. (b) The velocity distribution for the same system for different values of the force. Notice the bimodal structure that can be
used to set a threshold and identify moving particles. (c) The average number of moving particles scaling with the applied fondthas
v=1.8.

elaborate these type of arguments and draw phase diagramtées of particle trajectories [35, 40, 71]. In Fig. 5 we report
in terms of disorder and applied force [67]. an example of the trajectories in the plastic regime, showing

Here we discuss the main features of plastic depinning asthe separation between pinned and moving particles. It is
observed in numerical simulations. Typically the force ve- also possible to analyze the tearing of the lattice studying its
locity curve differs drastically from the one observed when topological properties (i.e. the presence of defects, such as
depinning is elastic, which is upward convex (see Fig. 3). dislocations) [67, 71, 72].

In plastic depinning, the curve is convex downward imply- ] " B @ .
ing that3 > 1. For instance Ref. [66] find§ = 2.2 in a B, Rl R R
simulation of colloids. Others do not provide a value for W 8 ® 5 & a a ¥ 5 @ L@ @
since it appears that a precise estimate of the exponent is not o @ ® R & ] o
straightforward [67]. The main reason is that the depinning % ® @ W\b ® ® J
force I, is small and one could as well believe that= 0 ® % B @ o B g
for a large system, and that the pinning seen in simulations @ = '@ ®_e @ ®

reported in Fig. 4 can be reasonably fitas~ F7, with
[ ~ 2.7. A small value of F, would not change signifi-

could be an artifact of finite sizes. For instance, the curve ® & f Sl o ®
e L Co @ 8
cantly this fit but it is difficult to discriminate between the & W\@ & e=® ¥ QK@L/@\@
’ . &
&

two cases.

. : : : 7 Yo o ®%e

The important differences between plastic and elastic g / & g ® g © % &
depinning can be highlighted computing the velocity dis- v@;_,@ = o o i o
tribution of the moving particles. In plastic depinning the w B - E & ‘B ® 5 g 4
solid breaks apart: some particles are pinned by the strong b ® @ . oy B g
defects while others move, typically in channels. Thus the 8 o & & e "“-@__@ A " L
velocity distribution develops two peaks: one around zero b B gy @ m',@“@ & ® :@ o\ )

- ; ;

corresponding to pinned particles, and one at higher veloc-
ities [67]. Using this bimodal distribution, it is possible to
identify the fraction of moving particle&:,,,), using a ve-
locity threshold situated in the middle of the two peaks (see
Fig. 4). Again the data are reasonably fit by a power Fiw To understand theoretically plastic depinning several au-
with v ~ 1.8. thors have introduced simplified lattice models, which are
The channel structure of the dynamics has been studiedoossibly amenable to analytical treatment. For instance,
thoroughly in the literature analyzing the statistical proper- Refs. [73, 74] propose a model in which particles flow in

Figure 5. An example of particle trajectories in the plastic regime.
Particles are depicted by circles, pinning centers by stars and tra-
jectories by lines.
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a two dimensional rotated square lattice. When the numberln a first approximation the pinning force becomes effec-
of particles present in a site is larger than a threshold, onetively a thermal like noisef,(r,u) ~ f,(¢t,Vt), with an
particle is transferred to a neighboring site. The flow is di- effective dynamic temperature decreasing with velocity as
rected and the outlet of each site is random but fixed. ItisT; ~ 1/V. Thus one would expect that beyond a certain
interesting to note that this model is equivalent to a sand- velocity the elastic system would reorder since the effect
pile model [76, 77], namely a random (quenched) directed of pinning forces disappear. The discreteness and period-
Manna model [78, 79]. It should be possible to use the re- icity of a particle system modifies considerably this picture:
sult obtained for the directed Manna model to solve exactly while the displacements along the direction of motion do
this model [80, 81]. The model displays a plastic depin- not feel the disorder due to the high velocity, this is not the
ning transition: some particles are trapped and others flowcase for transverse displacements. Taking into account this
in channels. The number of particles belonging to the flow effect, Giamarchi and Le Doussal [60] show that the sys-
basin scales as,, ~ (F' — F.)", with~v ~ 0.5. The average  tem should decouple in elastic channels and predict the ex-
particle current (or velocity) scales insteadvas (F— F.)” istence of threshold for transverse depinning. These features
with 8 = 1.5. It was conjectured tha® = 1 + ~, implying have been then observed in simulations [72]. For an exten-
that the velocity exponent is due to the combination of the sive discussion of other aspects of the dynamics we refer to
scaling of the velocity of the flowing particle: and the one  Ref. [82]

of the channel size.

A similar reasoning was proposed in Ref. [75] for plas-
tic depinning in a disordered XY model. In this model each
spin depins as a single particle in a smooth pinning potential
asv, ~ (F — F.)'/2. The number of spins depinning also
scale with the applied force as,, ~ (F — F..)7, yielding
8 = ~+1/2. The exponeny was found to be close § the
dimension of the lattice, which suggests that a simple geo-
metrical description could be possible. We notice that the
results presented in Fig. 4 satisfy approximately the relation
8 =1+ ~, althoughF, ~ 0.

Recently, a different approach for plastic depinning was
discussed in Refs. [68, 69] through a model of a viscoelastic
medium. In this model, depending on the parameter val-
ues, one observes first order type or continuous depinning.

The model can be approached by mean-field theory [68] and D{du/dt) = (Fysin(wt) — Fc)ﬁg(p —F,). (27)
renormalization group [69], but at present the connections

with plastic depinning in particle systems is not clear. It is

interesting to notice that a first order depinning transition, Finally, Ref. [88] shows that the velocity force curve also
with hysteresis, is also expected in presence of inertia [70]. displays hysteresis, but only in the dynamic regime (i.e. hys-
Raising the force from the pinned phase towards the movingteresis is lostin the limi — 0 when one recovers the usual
phase is different than decreasing it when the system is al-force velocity depinning curve).

ready moving. In the latter case inertia will keep the system
in motion even beyond the “depinning threshold”, resulting
in an hysteretic force velocity curve.

To summarize, plastic depinning is characterized in gen-
eral by the tearing of the elastic medium through the produc-
tion of dislocations. Only a fraction of the particles move
along channels, while the others are pinned, suggesting to
interpret the force velocity curve by a combination of scal- P(s)=s""f(s/s%), (28)
ing of single patrticle velocities and channel size. However,
the wide fluctuations of the numerical values for the expo-
nents present in the literature and the lack of a theory doeswhere the cutoff size grows as a power law with the dis-

not allow a clear quantitative picture of the phenomenon.  tance from the critical poing* ~ (F. — F)~"". Herev
is the correlation length exponent afdlis the fractal di-

mension of the avalanche (i.e* ~ ¢ ) where¢ is the
When the external driving force is large enough, parti- correlation length. The connection with self-organized crit-
cles enter into a moving phase which can be of several kindsicality is more apparent when the elastic system is driven at
depending on the type of disorder and the structure of the“constant velocity” [65]. This can be achieved coupling the
particle system. All these aspects are reviewed in Ref. [82]. system elastically to a slider moving at constant velocity, or,
A first understanding of the dynamics of an elastic system in other words, replacing’ by k(Vt — [ d?rdti(r,t)). In
for strong driving forces comes from a high velocity expan- the limit of V — 0 andk — 0 the system is driven precisely
sion [83]. When the system flows rapidly one can write atthe depinning transition [65, 77]. For a general review on
u(r,t) ~ Vi + éu, whereV is the average flow velocity. avalanches and self-organized criticality see Ref. [77].

So far we have only discussed the dynamics of interact-
ing particles in random media occurring under a constant
applied force. When the applied force is time dependent
we observe other interesting phenomena. In particular, an
AC drive leads to hysteresis, which has been studied in de-
tail for domain walls in ferromagnetic materials [85, 86], it
should be possible to carry over these results to a generic
elastic system with disorder [87]. Hysteresis is expected in
the quasistatic limit already at the level of a single particle
model driven by an elastic spring [44]. Close to the depin-
ning transition, the hysteresis loop of the average displace-
ment as a function of the force can be obtained analytically
solving the equation [85]

It is now well established that when the force is raised
slowly towards the depinning threshold the dynamics of an
elastic system takes place in the form of avalanches as in
self-organized criticality [76]. In particular, the avalanche
size distribution scales as

D. Moving phases, hysteresis and avalanches
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V Kinetically constrained dynamics: A common nonlinear rheology is also observed for
: : - - higher stress values, or shear strain-rate values in the case of
Jamming and shear yleldmg constant strain-rate experiments which are in most cases per-
formed in this class of systems. The stress-strain relation-

In this section, we will discuss the flow behavior of a wide ships in the steady state are often described by phenomeno-
class of physical systems whose dynamics is governed by;

the presence of kinematical constraints induced by both in-Ioglcal equations of the formr = o, + aj" [101, 102],

teractions and geometry. One of the main features shared by\évr? elg: Isrt?g:%/ ?a’? ; nllzlg:e:r’\? :v?ne()nncggr? %?S%fetrr;?(;’;rigg} atr:lg

their dynamics is the presence of jamming, a new conceptn — 1, resulting in a constant viscosity coefficient= o /4
recentl_y proposed to refer to the supp_ression ofthe Femporallf instéado #+ 0, the equation describes a Bingham fiuid.
_relaxat|0n of a physical system _and its corresponding abil- Whenn < ﬁ the }elation is known as the Hershel-Bulkeley
ity to explore the space of configurations [89, 90]. Under law, but if o, = 0, the equation describes a power-law fluid
the action of externally applied shear stresses, these systenﬁ/itr’] a sheei]r stra’in rate decreasing viscosity '
eventually yield and are able to flow like a viscous fluid. _ i o )
Shear yielding is thus another feature they have in common. ~ Although the understanding of yield and viscoplastic
As we will see in the following subsections, under stress flow in these materials is difficulted by the absence of a
conditions both soft materials [7] and crystalline solids [91] Clear mediating mechanism, such as the motion of dislo-
are susceptible to display jamming and shear yielding, dueCations in a crystal, it has been argued that the common
to the interactions and spatial arrangement of their con-N€ology displayed by these general class of complex flu-
stituent particles in the case of soft-matter systems, or toldS might be attributed to two particular shared properties
the interactions and spatial arrangement of their topologi- ©f these materials: ‘structural disorder and metastability;
cal defects—such as dislocations—in plastically deforming Which are characteristic features of an underlying glassy dy-
crystals. Jamming and yielding could in turn be responsible "@mics [103]. In a few words, a glassy dynamics is asso-
for the remarkably similar creep and stationary flow rheol- ¢iated to the slow structural relaxation which takes place
ogy observed experimentally in these systems, in spite of theVhen some parts of the system are trapped by their neigh-
big differences among the materials involved. bors and have to surmount large energy barriers to explore
further more favorable configurations. Molecular dynam-
A. Jamming and viscoelastic flow in soft condensed mat-  ics simulations [104, 105, 106, 107] of glass-forming lig-
ter materials uids and polymers have proved of much help in this re-
spect. About the same time, a general “jamming” scenario
was also proposed [89] as a common framework to under-
stand the mechanical behavior of a broader class of non-
equilibrium physical systems (colloidal suspensions, super-

The phenomena of jamming and yielding control the be-
havior and properties of soft materials as diverse as colloidal
suspensions [92], emulsions [93], foams [94], gels [95, 96],

pastes [97], biological tissues [98], and other soft matter cooled liquids, foams, etc. and granular media) which, in

systfms. '\]floslft of t?else plhy5||cal Sylftzmst consist of ;]'a”'spite of their differences, exhibit common properties such as
ous types ot Soit particles closely packed into an amorpnousy ., , dynamics and scaling features near the so-called jam-
state. At such high concentrations, the individual motion

. ) i . ming threshold.
of particles is drastically constrained and, as a consequence, 9

soft and concentrated materials usually respond like elastic Régarding the slow relaxation dynamics characteristic of
solids upon the application of low stresses. On the other SOft glassy materials, recent experiments [108, 109] show
hand, they flow like viscous fluids above the so-called yield the necessity of incorporating dynamical heterogeneities for
stress valuer,, exhibiting a common rheology. The defor- its complete (_Jlescrlptlon._ In this respect, a new light scatter-
mation process of amorphous polymeric materials has, forind method, introduced in Ref. [96], allowed to detect the

instance, received a great deal of attention [7]. The creepintérmittent dynamics of a gel formed from attractive col-

compliance curve of amorphous polymer networks above l0ids. The dynamics is found to be intermittent due to ran-
the glass transition temperature has been reported to closel{lo™ réarrangements which appear to be localized in time.

exhibit the following behavior [99, 100] his and similar experiments strongly suggest that intermit-
tent behavior seems to be a fundamental ingredient for the
J(t) = 7)o = jo + CtY3 1 t/y (29) slow relaxation in jammed materials.
Finally, it is interesting to point out that an empirical
where~ is the global strain of the materiad; is the ex- relation known as the “Cox-Merz rule” [110] quite success-

ternal stressj, is the instantaneous elastic component of fully relates the non-linear steady rheology with the linear
the compliance, ang is the viscosity. According to this  but frequency dependent rheological properties of polymer
behavior, theCt!/3 term, also known as Andrade creep melts. In particular, the Cox-Merz rule relates the steady vis-
term, dominates for times much smaller than the relaxation cosity at a given shear rate to the modulus of the dynamic
time t. characteristic of the complex fluid, while a macro- viscosity at a frequency = 4, i.e. n(¥) = |n*(w)|. Sev-
scopic viscous flow of the forrtyn is established after much  eral works have posterioritried to theoretically justify this
longer timest >> t.. One can define and measure a time empirical relation starting from basic assumptions [111].
dependent effective viscosity in the Andrade creep regimelndeed, the time dependent rheology which follows from
n = o/4 ~ t?/3, which reaches its equilibrium value at Eq. (29) in the Andrade regimeg = o/4 ~ t%/3, is di-
longer times. mensionally equivalent to the shear-thinning behayior
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4~2/3 reported in Ref. [106] for the steady nonlinear rheol- dislocation motion in a discontinuous and intermittent man-

ogy of a binary Lennard-Jones mixture, and it would be con- ner [120].

sistent with the Cox-Merz rule fap = 1/¢t. The shear thin-

ning exponent could also be related to the subaging behavior  In Ref. [91], the temporal relaxation of a relatively sim-

observed in many soft-glassy materials- t*, wheret,, is ple dislocation dynamics model was studied through numer-

the so-called waiting time and < 1 [112]. ical simulation. In particular, a collection of parallel straight
In the following section, we will show that most of the ~€dge dislocations with Burgers vectdss = bz moving in

attributes discussed for the case of amorphous soft-glassy Single slip system under the action of constant stress was

materials are also shared by crystalline materials like softShown to give rise to Andrade-like creep at short and in-

metals or vortex lattices deforming plastically due to the mo- termediate times for a wide range of applied stresses, with-
tion of dislocations. out invoking thermally activated processes, ile= 0 (see

Fig. 6). The strain rate, which is proportional to the density
B. Dislocation jamming and viscoplastic creep deforma-  of mobile dislocationgy/dt =, b;v; with v; the velocity
tion of each dislocation, decays as a power law with an exponent
close to2/3, in agreement with Andrade’s observations. At
The viscoplastic deformation of crystalline solids is due |arger times, the strain-rate was observed to cross over to
to the creeping motion of dislocations driven by an exter- |inear creep regime (i.e. to a plateau signaling a steady rate
nally applied stress [113, 114, 12, 115]. The study of the of deformation) whenever the applied stress is larger than a

dynamics of these linear topological defects is a subject of critical thresholdo., or, otherwise, to decay exponentially
considerable interest because of its practical importance ingg zero.

materials design and engineering. It is also interesting from
the theoretical point of view for the many features that dis-

location motion shares with other complex systems like, for ‘
instance, flux lines in high temperature superconductors, or 16 ALY DODIARA S |
some of the soft matter materials discussed above. : e

At the beginning of the XX century, Andrade reported ©' . 60,0025 SE e
that the creep deformation of soft metals at constant temper- 2 06 L: 0=0.0075 g |
ature and stress grows in time according to a power law with g_ B gzg'gizs
exponentl /3, i.e. v ~ t/3 where~ is the global strain of i <0=00175
the material [116]. More generally, the creep deformation — v 0=0.0225
curve usually follows the relatiom(t) = ~o + /3 + xt, S 04 | oTous ]
where~, is the instantaneous plastic straitt!/? is known = * 0=0.05 T,
as Andrade creep, angt is referred to as linear creep oI
regime [113, 114]. The same qualitative behavior has since 14 ' ‘ ‘ .
been observed in many materials with rather different struc- 1 2 3 4 5
tures leading to the conclusion that this should be a pro- Ioglot

cess determined by quite general principles, independent

of most material specific propertles._ Notice th‘tit the creep Figure 6. The strain rate relaxation for different applied stresses at
curve for am_orphous polymer melts introduced in the Previ- " for a system of sizé. — 100b. The initial density of edge
ous subsection, follows exactly the same relation. Various gislocations is arounti%. The solid line is the best linear fit of the
arguments have been proposed within the dislocation liter-o = 0.01 curve and yieldsly /dt ~ =%,
ature [113,114,117-119] to try to explain Andrade’s creep.
Most of them are based on thermally activated processes
over time (or strain) dependent barriers, however, there is
still a lack of consensus on the basic mechanisminvolvedin  These results suggested that a possible interpretation
the phenomenon. of dislocation motion and the corresponding creep laws of
As in the case of soft-matter systems, the plastic defor- crystalline materials could also be found within the general
mation of crystals only occurs when the externally applied “jamming” framework proposed to encompass the wide va-
stress overcomes a threshold value, the yield stress of theiety of non-equilibrium soft and glassy materials discussed
material. Above this threshold value, large-scale disloca- previously. When jammed, these systems are unable to ex-
tion motion may take place, and a steady regime of plasticplore phase space, but they can be unjammed by changinc
deformation is eventually established. Dislocations tend to the stress, the density, or the temperature. The analogies o
move cooperatively under the action of external stress due tadislocation motion and these so-called jammed systems was
their mutual long-range and anisotropic elastic interactions, further explored by considering the influences of dislocation
which can be attractive or repulsive. As a result of these in- multiplication, and thermal-like fluctuations on the dynam-
teractions, and of the spatial dislocation structures they giveics. Dislocation multiplication favors the rearrangements of
rise to, self-induced constraints build up in the system andthe system and induces a linear creep regime (flowing phase’
the motion of dislocations may eventually cease. Neverthe-at lower stress values, but it does not affect the initial power-
less, small variations of the external loading, the density, law creep. The introduction of a finite effective temperature
the dislocation distribution or the temperature can enhanceT had a similar effect [91].
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longer is the collective power-law motion before the system
falls either in the jammed or in the moving state. Precisely
) at the critical point and for the case of an infinite system, the
0+ E Andrade power-law could in principle last indefinitely.

) \ K C. Non-linear rheology
S

E Above the stress threshold, the system eventually ex-
hibits a linear creep regime in which the dislocations present
7 in the system tend to glide in a coherent manner. The depen-
07 F E dence of the steady strain-rate value on the external shear
stress is shown in Fig. 8. Within the error bars, the simu-
lation data for the higher stress values considered can be fit
0 quite nicely by a cubic law dependence (see the solid line
t in the plot). This is an interesting result since, if we were

) ) ) ) to compare with the nonlinear rheology characteristic of
Figure 7. The time evolution of the root-mean-square velocity of amgerphous polymeric networks or other soft glassy materi-
four individual runs of the numerical simulations for different ini- - [106], it would correspond to an effectiskear-thinning

tial conditions. The applied stress value in all casess 0.0075. . . . - . .
The curves are depicted in a double logarithmic scale to empha_wscosnyfor the dislocation ensemble which decreases with

size the intermittent bursts characteristic of the creep dislocationthe strain-rate ag = o(dy/dt)™" ~ (dv/dt)=2/3. This
dynamics around the yield threshold. result is in good agreement with the theoretical results ob-

tained in Ref. [106] and compatible with the power law

The detailed analysis of the model data unveiled the shear-thinning behavioy ~ 4~ with o = 0.5 — 1.0 ob-
dislocation microscopic dynamics in the Andrade, and in served in many different complex fluids [7].
the stationary regimes: Most dislocations are arranged into .
metastable structures so that the stress field they generate
in the material is screened out on large length-scales. These
structures consist of small-angle dislocation boundaries sep-
arating slightly misoriented crystalline blocks or far more
complex dislocation arrangements. If the applied stress is
below the yield threshold, dislocations are not able to eas- S 4
ily explore the space of configurations to find the most fa- =3
vorable spatial arrangement and they are, most of the time,
trapped in metastable configurations which induce a jam- 107
ming of the system. Around the yield threshold, a small
fraction of dislocations may, however, attain a higher mo-
bility and provoke several intermittent rearrangements of 100 5 -
the whole system in the course of time. The stress field 10 10
generated by these unsettled dislocations conserves the ini- o
tial long-range character, and forces the system to continuerigure 8. The steady strain rate value for different applied stresses
evolving in time in a cooperative manner to try to reduce in a double logarithmic scale. The solid line represents a cubic de-
the internal shear stress (or minimize the elastic energy) bypendence of the formy/dt ~ o* which appears to be in good
exploring further more favorable arrangements. correspondence with the simulation data for the higher stress val-

In Fig. 7, we show the root-mean-square velocity ues considered.
(WH2(t) = [, v?/N]Y/? of all the dislocations § ~ To summarize, the flow of dislocation structures in crys-
100 — 150) present in a square cell of siZe= 100b as a talline solids undergoing plastic deformation shares com-
function of time for four single runs of the numerical sim- mon features with the time-dependent linear rheology and
ulations. Thus, each run represents the creep behavior of avith the nonlinear steady rheology of soft glassy materials
small piece (a few nanometers big) of a macroscopic systemand, in particular, it seems to satisfy the empirical Cox-Merz
and starts from a different initial dislocation configuration, rule. Notice, however, that the concentration of dislocations
obtained after letting the system relax in the absence of ex-in the crystal needs not to be too high to warrant the pres-
ternal load during a given time interval. The external shear ence of kinematical constraints and metastability in the dy-
stress applied is in all cases= 0.0075, that is, in the vicin- namics. High concentrations could be replaced in this case
ity of the critical threshold .. We can clearly appreciate the by the long-range character of their mutual elastic interac-
presence of a few intermittent burst after whigi?)'/2(t) tions, that favor collective motions and rearrangements, and
slowly decreases in time. Similar burst, but either positive or by their ability to form intricate extended spatial structures
negative, can also be observed in the corresponding strain{in order to screen out the stress), that tend to glide in a co-
rate curvesly/dt (not shown). Andrade’s power law creep herent manner and thus can hamper their own relative mo-
appears as a result of the averaging process over many ofions driving the system to a jammed state. Further work is
these runs, mimicking the behavior of a much bigger sys- currently under way to try to precisely identify the most ba-
tem. The closer is the applied stress to the threshold thesic mechanism responsible for these remarkable similarities.

lol
[l
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Vi

In this paper we have discussed the collective dynamics of [7]

an

Conclusions

assembly of interacting particles and, in particular, the

transition from a blocked to a moving phase. Transitions
of this kind are observed in different contexts and are due
to different mechanisms. When the particles are blocked

by quenched disorder, one typically refers to the depinning [°]

M.-Carmen Miguekt al.

[6] D. Rapaport,The Art of Molecular Dynamics Simulation

(8]

transition, which can be elastic when the medium preserves

its topology through the transition, or plastic when topolog- [10]

ical defects, such as dislocations, are generated during the

dynamics. The driving force for depinning can be due to an [11

externally applied field, or could be self-generated by a den-
sity gradient, as in the case of front propagation. When the
motion is not hindered by quenched disorder, but by intrinsic
constraints one usually refers to a jamming transition.

Common features of depinning and jamming phenom- [13]

(12]

ena are, at the macroscopic level, the observation of a non-

trivial steady-state force-velocity curve, scaling typically as [14]

v~ (F—F,)Pfor F > F,, and a transient power law relax-
ation of the velocity ~ ¢~<. At the microscopic level, pin-

ning and jamming systems are both characterized by a comyis;
plex energy landscape, with many metastable states. Thi
leads to an intermittent avalanche-like response to exter

nal

ning and jamming have several properties in common which [17]

perturbations. Thus despite the different origins, pin-

S16]

could be possibly used to construct a comprehensive theory

of deblocking transitions. Numerical simulations of inter- [18]

acting particles have played a major role so far to elucidate

the detailed nature of some of these phenomena. The adf19

vancement of theoretical understanding is needed to redi-
rect numerical simulations from a purely descriptive point
of view to a deeper level of analysis.
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