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and Stefano Zapperi
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A wide variety of interacting particle assemblies driven by an external force are characterized by a transition
between a blocked and a moving phase. The origin of this deblocking transition can be traced back to the
presence of either external quenched disorder, or of internal constraints. The first case belongs to the realm
of the depinning transition, which, for example, is relevant for flux-lines in type II superconductors and other
elastic systems moving in a random medium. The second case is usually included within the so-called jamming
scenario observed, for instance, in many glassy materials as well as in plastically deforming crystals. Here
we review some aspects of the rich phenomenology observed in interacting particle models. In particular, we
discuss front depinning, observed when particles are injected inside a random medium from the boundary,
elastic and plastic depinning in particle assemblies driven by external forces, and the rheology of systems close
to the jamming transition. We emphasize similarities and differences in these phenomena.

I Introduction

Various materials ranging from synthetic nanocrystals, mag-
netic colloids, charged particles in Coulomb crystals, pro-
teins and surfactants, or vortices in type II superconduc-
tors and in Bose-Einstein condensates, form ordered self-
assembled structures. This topic has attracted much interest
for various fundamental and technological reasons. In this
respect, the response of these structures to external forces of
various kinds (optical, magnetic, mechanical) is of particu-
lar importance [1-3]. In many cases one observes the pres-
ence of blocked phases, where the evolution of the system
is frozen. This behavior can have different origins: when
it is due to the presence of quenched disorder it is denoted
by pinning, while when it is due to intrinsic constraints it is
referred to as “jamming”. In both cases, a sufficiently large
force leads to a moving phase, through a deblocking transi-
tion.

All these systems can be modeled by a set of inter-
acting particles moving under the action of external forces
sometimes in a random pinning field. For instance, super-
conducting vortices in thin films are pinned by vacancies
and driven by an applied current through the Lorentz force,
colloids interact replace by via Van der Waals or dipolar
forces and are driven by the solvent flow. Despite the dif-
ferences in these systems, one can try to identify some com-
mon features in their dynamic response. This goal has been

achieved mostly through the use of numerical simulations,
which have been extensively employed in the past in various
contexts. Here we review the results obtained from numer-
ical simulations of interacting particles, in order to provide
a common framework for pinning and jamming phenomena
that, despite their similarities, have been traditionally stud-
ied by different communities.

The transition from a blocked to a moving phase is a cen-
tral problem in the theory of non-equilibrium critical phe-
nomena. Beside the large body of theoretical work devoted
to the depinning transition of elastic manifolds in disordered
media and recent theories devoted to jamming in glasses and
colloids, one should also mention the theory of absorbing-
state phase transitions [4, 5]. An absorbing state is a con-
figuration in which the evolution of the system, typically
a stochastic lattice model, is frozen and no longer evolves.
When a suitable control parameter is changed the system can
eventually be found into an active, statistically stationary,
phase. The absorbing state phase transition is a second or-
der non-equilibrium phase transition, characterized by scal-
ing laws and critical exponents, as in ordinary equilibrium
phase transitions. The same is true for the depinning transi-
tion and, in fact, it is sometimes possible to map a depinning
transition into and absorbing-state phase transition and vice
versa. While the characterization of pinning-depinning as a
critical phenomenon is based on a firm theoretical ground,
the current theoretical understanding of jamming phenom-
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ena is not so advanced. Similarly, when depinning involves
the generation of topological defects, one refers to a plas-
tic depinning transition, but the precise meaning of the word
transition is not clear at present in this context.

At this stage of the theoretical understanding, however,
it is possible to draw an extensive common picture of these
phenomena, in which some parts are depicted in full detail,
others are less precise, and some are just sketched. We hope
that this work, by its own nature incomplete, will stimulate
others to find further connections between non-equilibrium
transitions from blocked to moving phases and possibly to
formulate a complete theory encompassing all these phe-
nomena.

The paper is organized as follows: in section II we dis-
cuss the models used to describe the physics of interacting
particle assemblies. In section III, we analyze the injection
of particles in a random medium and discuss the relations
with front propagation and with continuum theories. Sec-
tion IV is devoted to the depinning of interacting particles
by an external force through a pinning field. We analyze
the problem by increasing gradually the level of complex-
ity, from the pinning of single particle to collective elastic
and plastic depinning. In section V, we introduce jamming
phenomena and discuss in detail the jamming transition ob-
served in plastically deformed crystals, modeled by a set of
stress-driven interacting dislocations. We conclude briefly
in section VI.

II Interacting particle models and
their physical realization

Several systems in nature can be modeled by a collection of
interacting particles. Here we summarize the main features
of these models and discuss some concrete examples. For
simplicity, we will restrict ourselves to pairwise interactions
between particles. In this case, identifying the particle coor-
dinates by~ri, with i = 1, ...N , we can write the equations
of motion in general as

m
d2~ri

dt2
+ Γ

d~ri

dt
=

∑

j

~J(~rj − ~ri) + ~Fext(~ri, t), (1)

wherem is the mass of the particles,Γ is a damping coef-
ficient, and~J = −~∇V (~r) is the interparticle force derived
from an interaction potentialV . The last term represents
external forces, quenched disorder, or other noise sources,
and will be discussed in detail below. In most cases of inter-
est, dissipation is so strong that we can safely neglect inertia
putting m = 0. Most of the following discussion will be
devoted to thisoverdampedlimit, but occasionally we will
discuss as well the effect of inertia.

Depending of the particular system under study, the in-
terparticle potential can have different forms which will af-
fect the dynamics of the system. The simplest case is that
of a short-range repulsive central force~J(~r) = r̂K(|~r|/ξv)
which can be characterized by its peak valueK(0) and its
rangeξv. In a series of increasing complexity, one can con-
sider non-monotonic interactions (i.e. the force can be re-

pulsive and attractive in different ranges), long-range inter-
actions (i.e.K(r) ∼ r−α, for larger with 0 < α < d + 2,
anisotropic forces (i.e.~J = r̂K(~r)), non-central forces (i.e.
~J(~r)× r̂ 6= 0), or different combinations of the above.

The external force normally includes a uniform driving
force F , which could be time dependent. Typical exam-
ples are the AC driveF (t) = F0 sin(ωt) or the ramp up
F (t) = ct, but the possibilities are endless. In addition, one
should consider position dependent forces due to quenched
impurities that may be present in the system. Here we will
mainly discuss the effect of a set ofNp pinning points placed
randomly at position~Rp, giving rise to a random force field
of the type

Fp(~r) =
∑

p

~fp((~r − ~Rp)/ξp), (2)

whereξp is the range of the individual pinning forces. Nor-
mally, the particular shape of the pinning potential does not
matter as long as its range is short. One can also consider
correlated disorder, such as columnar and planar defects, de-
pending on the particular situation at hand. In addition, ther-
mal effects can be included adding a a random uncorrelated
Gaussian termη(~r, t) to the equation.

Once the interactions of the particle systems have been
specified, one should also discuss the boundary and initial
conditions of the model. A common choice is to use peri-
odic boundary conditions, and to place the particles in their
zero temperature equilibrium positions (i.e. forming a crys-
tal). Alternatively, the particles can be placed randomly in
the system mimicking a sudden quench from a disordered
high temperature phase. The latter may give rise to an intrin-
sic geometrical disorder. These conditions are appropriate if
one is interested in modeling the dynamics in the bulk of
the material, without worrying about surface effects. On the
other hand, boundary effects are at the core of the phenom-
ena in some cases and one should then implement different
initial and boundary conditions. This case will be discussed
explicitly in the next section. Periodic boundary conditions
need special care when interactions are long-ranged, since
in this case one cannot impose a cutoff to the extent of the
interaction force, as it is often done for short range-forces.
One should instead consider explicitly the interaction of the
particles in a given finite cell with all the periodic images of
the system. The infinite sum over the images can rarely be
performed exactly and since the sum is slowly converging a
simple truncation of the series gives a poor approximation
and may induce spurious effects. To overcome this problem
one can employ the Ewald summation method, originally
proposed for Coulomb interactions, after generalizing it for
the appropriate interactions involved [6].

Finally, we would like to discuss here some physical re-
alizations of the generic model we have discussed above.
One of the most studied examples is the flux-line lattice
in type II superconductors. In thin superconducting films,
the system can be really treated as a quasi-two dimensional
set of interacting rod-like particles. Conversely, for thicker
superconductor samples one should study a set of flexible
lines. In this article, we will only consider the case of rigid
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vortex lines. The interparticle force between rigid flux-lines
in the framework of the London theory is given by

~J(~r) = Φ2
0/(8π2λ3)K1(|~r|/λ)r̂, (3)

whereΦ0 is the quantized flux carried by the vortices,K1

is a Bessel function andλ is the London penetration length
[28, 27]. Notice that this is a short-range (sinceK1(x) ∼
exp(−x) for largex) repulsive central force, with a diver-
gence of the formx−1 at short distances which is cut off by
the vortex core. Instead in two dimensions, the interaction
is long-range

~J(|~r|) =
Φ2

0r̂

8π2λ2r
, (4)

decaying as1/r. In addition to interaction forces, a current
~j flowing in the superconductor produces a Lorentz force
~F = ~j × ~B/c acting on the vortices.

In the case of complex fluids or soft condensed
matter materials [7], which usually contain large poly-
mer molecules or colloidal particles in a solvent whose
molecules are much smaller in size, a generic model in
which inertial terms are neglected often provides an effec-
tive approach towards describing such systems. The solvent
is considered as a continuum medium, characterized by its
viscosity, in which energy is dissipated as the suspended par-
ticles move through it. In close correspondence with their
characteristic dissipative motion, the suspended particles ex-
hibit a Brownian dynamics due to the random collisions with
the solvent molecules. This is modeled as a random Gaus-
sian force~η in the equations of motion of the form

Γi(
d~ri

dt
− ~vs) = ~J(~ri) + ~η(~ri, t), (5)

where~vs is the solvent velocity that can be controlled by
an externally applied flow field, and~J is an elastic or con-
servative force on particlei due to deformations of long
molecules or bubbles, or due to other interactions (such
as Van der Waals, electrostatic, magnetic, and excluded-
volume) among the suspended particles. The amplitude of
the autocorrelation function〈|~ηi|2〉 = 2ΓikBT δ(t − t′)
is proportional to the temperatureT of the system. More
sophisticated algorithms, in which one solves similar equa-
tions to the one represented above, have been developed to
model the rheology of dense spherical particles [8] account-
ing for hydrodynamic interactions, ellipsoidal or rod-like
particles [9], as well as emulsions [10] and foams [11].

Another example which is worth considering from this
general point of view is a collection of dislocations in a thin
crystalline film. Crystal dislocations are topological defects
characterized by a Burgers vector~b [12]. As in the case of
flux-lines, in a three dimensional crystal dislocations are de-
formable lines. Nevertheless, one often treats them in the
rigid approximation, obtaining an effective two dimensional
particle model, which becomes exact for thin samples. Dis-
locations produce long-range stress and strain fields in the
host crystal, and experience the so-called Peach-Koehler
force due to the overall local stress. This induces an interac-
tion force between dislocations that depends on their charac-
ter (edge or screw, when~b is perpendicular or parallel to the

corresponding dislocation axis, respectively [12]), but that is
generally long-range, decaying as1/r, and anisotropic. For
instance, the force between two edge dislocations at a dis-
tance~r = (x, y), and with Burgers vectors in thex direction
is given by

Jx(x, y) =
µb2

2π(1− ν)
x(x2 − y2)
(x2 + y2)2

, (6)

whereµ is the shear modulus, andν is the Poisson ratio of
the host crystal. We have only considered thex component
since, differently from flux lines, dislocations move mainly
by gliding along preferential directions, namely the direc-
tion of the Burgers vector. Thus, while the particle system is
two dimensional, the motion is confined along several par-
ticular directions. This fact, together with the anisotropic
character of the interaction, gives rise to metastable struc-
tures that act as geometric constrains for their own dynam-
ics. In this case, the driving force is often an externally
applied stressσ which acts on the dislocations through the
Peach-Koehler force~F = (~b·σ)×L̂, whereL̂ is the direction
of the dislocation line local tangent.

III Gradient driven dynamics: front
invasion

The theoretical and experimental investigation of the growth
dynamics of rough interfaces has became a subject of great
scientific interest in recent years [13-15]. This is clearly
illustrated nowadays by the large variety of studies deal-
ing with front invasion where roughening processes take
place such as flow through porous media [16-18] or imbibi-
tion [19], flame propagation [20, 21], deposition processes
[14, 15], and flux penetration in superconducting materials
[32, 33, 45, 46].

From a macroscopic point of view, the development of
modeling techniques for the description of these dynami-
cal systems has been generally based on the traditional ap-
proach to transport phenomena, where the governing ex-
pressions are usually differential equations representing lo-
cal balances of the quantity of interest (e.g., mass, momen-
tum, flux of superconducting vortices, etc.) in acontinuum
framework. However, it is sometimes unavoidable that the
process of front propagation takes place on a particular sub-
strate whose structural details and/or microscopic irregular-
ities cannot be properly described within a standard macro-
scopic formalism. On the other hand, it often happens that
these structural features may represent key factors for the
development of highly efficient materials. This is the case,
for example, in the field of heterogeneous catalysis, where
the morphological characteristics of the catalyst pore space
can have a dramatic influence on the accessibility of the dif-
fusion front of reagent towards the active sites in the deeper
parts of the porous material [23]. In the extreme situation
where the porous catalyst has a microscopically disordered,
but macroscopically non-homogeneous geometry, even a de-
parture from the classical diffusion formalism may be ex-
pected [24]. For example, the so-calledanomaloustype of
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transport in self-similar (fractal) structures usually occurs in
the form of a subdiffusive regime [25, 26].

The invasion of magnetic flux into a disordered type II
superconductor is another problem that has recently been the
object of intense theoretical and experimental research. As a
matter of fact, the magnetization properties of type II super-
conductors have been studied for many years, but the inter-
est in this problem has been renewed with the discovery of
high temperature superconductors [27, 28]. The magnetiza-
tion process is usually described in terms of the Bean model
[29] and its generalizations: flux lines enter into the sam-
ple and, due to the presence of quenched disorder, give rise
to a steady flux gradient. While the Bean model provides a
consistent picture of average magnetization properties, such
as the hysteresis loop and thermal relaxation effects [30], it
does not account for local fluctuations in time and space. It
has been recently observed that flux line dynamics is inter-
mittent, taking place in avalanches [31], and flux fronts are
not smooth [32-34]. In particular, it has been shown that the
flux front crosses over from flat to fractal as a function of
material parameters and applied field [33].

A widely used modeling strategy to describe the fluc-
tuations around the Bean state consists of numerical simu-
lations of interacting vortices, pinned by quenched random
impurities [35-40]. With this approach it has been possible
to reproduce flux profiles [37], hysteresis [37], avalanches
[36, 39, 40] and plastic flow [35, 40]. One of the aims
of these studies [37] is to establish precise connections be-
tween the microscopic models and the macroscopic behav-
ior, captured for instance by generalized Bean models. A
different approach treats the problem at mesoscopic scale,
describing the evolution of interacting coarse-grained units
[41, 42], supposed to represent the system at an intermediate
scale. While these models give a faithful representation of
several features of the problem, the connection with the un-
derlying microscopic dynamics still represents a very active
field of research.

A. Invading front from an interacting particle simulation

In this section, the main objective is to show that the
gradient driven dynamics of the overdamped motion of in-
teracting particles in disordered substrates can display a col-
lective behavior that is typical of front invasion processes
with roughened interfaces. More precisely, as we show next,
the idea is to provide a basic description for these system in
terms of a particle model and to indicate how the relevant
scaling laws relating the front position and the flux profile
to the pinning strength can be consistently extracted from
numerical simulations. The equation of motion for an inter-
acting particle performing an overdamped motion in a ran-
dom pinning landscape can be written as in Eq. 1

Γ~vi =
∑

j

~J(~ri−~rj)+
∑

p

~fp[(~Rp−~ri)/ξp]+η(~ri, t), (7)

whereΓ is the effective viscosity, the first term on the right
hand side represents the particle-particle interaction, and the
second accounts for the interaction between particles and
pinning centers. Here we consider that~J is a short-range
interaction, and~fp is the force due to a pinning center, mod-
eled as a localized trap at the position~Rp, with ξp being the
range of the wells (typicallyξp ¿ λ), andp = 1, ..., Np. For
example, the pinning force could be modeled in terms of the
expression,~G(~x) = −f0~x(|~x| − 1)2, for |~x| < 1 and zero
otherwise. For completeness, an uncorrelated thermal noise
termη with zero mean and variance〈η2〉 = kbTΓδ(t − t′)
is also added to the equation, but we will restrict ourselves
to the analysis of the caseT = 0 (see Ref. [43] for the im-
plementation of thermal noise in simulations).

For gradient driven systems, the solution and interpreta-
tion of the MD model is essentially accomplished by the si-
multaneous numerical integration of Eq. (7) for each moving
particle in the system, and subsequent analysis of the flux
front propagation for different values of the pinning strength
f0. For instance, one typical simulation [46] can involve
up toNp = 800 000 Poisson distributed pinning centers of
width ξp = λ/2 in a system of size(Lx = 800λ,Ly =
100λ), corresponding to a density ofn = 10/λ2. The num-
berN of flux lines depends essentially on the boundary con-
dition adopted in the simulation. The injection of particles
into the sample is implemented through the concentration at
t = 0 of all particles in a small sliceL′ ¿ λ, parallel to the
y direction, and imposing periodic boundary conditions in
both directions. Due to mutual repulsion in the dense zone
of the slice, the particles will be pushed inside the material,
forming a penetrating front. The front position can then be
taken as thex coordinate of the most advanced particle in
the system at different times, or one can divide the system
into a grid and identify the front (see Fig. 1).

B. Non-linear diffusion

Now we show that the front penetration due to the col-
lective motion of interacting particles in a substrate of pin-
ning centers can be described by a disordered non-linear dif-
fusion equation [51]. The equation can be obtained perform-
ing a coarse-graining of Eq. (7), starting from the Fokker-
Planck equation for the probability distribution of the flux
line coordinatesP (~r1, ...., ~rN , t)

Γ
∂P

∂t
=

∑

i

~∇i(−~fiP + kBT ~∇iP ), (8)

where ~fi is the force on the particlei given by Eq. (7).
Next, we introduce the single particle densityρ(~r, t) ≡
〈∑i δ2(~r − ~ri)〉, where the average is done over the distri-
butionP (~r1, ...., ~rN , t). The evolution ofρ can be directly
obtained from Eq. (8) and is given by
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Figure 1. In the upper panel we show a typical realization of a flux front obtained from a simulation of interacting vortices in a disordered
landscape [46]. In the lower panel, we show the growth of the average front position as a function of time for different pinning force
strengths. The front initially grows ast1/3 and then is pinned at a distance that scales withf0.

Γ
∂ρ

∂t
= −~∇

(∫
d2r′ ~J(~r − ~r ′)ρ(2)(~r, ~r ′, t) +

∑
p

~fp[(~Rp − ~r)/ξp]ρ(~r, t)

)
+ kBT∇2ρ, (9)

d

whereρ(2)(~r, ~r ′, t) is the two-point density, whose evo-
lution depend on the three-point density and so on. The
simplest truncation scheme involves the approximation
ρ(2)(~r, ~r ′, t) ' ρ(~r, t)ρ(~r ′, t). We then coarse grain the
equation considering length scales larger thanλ. This can be
done expanding~J in Fourier space, keeping only the lowest
order term in~q, and retransforming back in real space. The
result reads

∫
d2r′ ~J(~r − ~r ′)ρ(~r ′, t) ' −a~∇ρ(~r, t), (10)

wherea ≡ ∫
d2r~r · ~J(~r)/2.

The coarse graining of the disorder term is more subtle.
A straightforward elimination of short wavelength modes
would give rise, as in the previous case, to a random force
~Fc(~r) = −g~∇n, wheren is the coarse grained version of the
microscopic density of pinning centersn̂(~r) ≡ ∑

p δ2(~r −
~Rp) andg ∝ f0 . This method can not be applied for short-
range attractive pinning forces as the one we are investigat-
ing. In this case, short wavelength modes yield a macro-
scopic contribution to pinning that can not be neglected.

Consider for instance the flow between two coarse grained
regions: short-range microscopic pinning forces give rise
to a macroscopic force that should always oppose the mo-
tion, while the random force derived above could in prin-
ciple point in the direction of the flow. In other words,
Fc(~r) should be considered as afriction force whose direc-
tion is always opposed to the driving force~Fd (in our case
~Fd = a~∇ρ) and whose absolute value is given by|g~∇n| for
|~Fd| > |g~∇n| and to|~Fd| otherwise [44].

Collecting all the terms, we finally obtain a disordered
non-linear diffusion equation for the density of particles

Γ
∂ρ

∂t
= ~∇(aρ~∇ρ− ρ~Fc) + kBT∇2ρ. (11)

Any solution of Eq. (11) is clearly dependent on the par-
ticular boundary condition (BC) imposed to the system. It
is therefore important to study the effect of different BC’s
on the dynamics of front propagation and to show that the
macroscopic approach based on the coarse-grained expres-
sion Eq. (11) is compatible with the MD model. To be
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specific, we consider the situation in which the front pen-
etration takes place in a disordered type II superconductor
and the particles are vortices interacting according to Eq. (3)
[46, 45]. The following BC’s correspond to different exper-
imental situations [47, 48]:

• (A) Constant total number of vortices. Experimen-
tally this corresponds to an external control of the
magnetic flux.

• (B) Constant vortex concentration at the boundary.
This case corresponds to an external control of the
magnetic field.

• (C) Total vortex number increasing at constant rate.
This represents an external control of the flux rate.

• (D) Boundary concentration increasing at constant
rate, corresponding to a constant field rate.

One should notice that boundary conditions can be more
complicated in reality, due to complex surface barriers that
oppose flux penetration.

For a clean system (f0 = 0) at T = 0, Eq. (11) can be
solved exactly using scaling methods [47, 48]. In this case,
the density profiles obey the equation

ρ(x, y, t) = t−χG(x/tψ) , (12)

whereχ andψ satisfyχ + 2ψ = 1. For the BC’s consid-
ered: A)χ = 1/3, ψ = 1/3; B) χ = 0, ψ = 1/2; C)
χ = −1/3, ψ = 2/3; and D)χ = −1, ψ = 1. These ex-
ponents are in perfect agreement with the results from MD
simulations reported in Ref. [46]. For instance, the data re-
ported in Fig. 1 correspond to boundary condition (A) and
correctly scale withψ = 1/3. The functionG(u) also de-
pends on the boundary condition and for the case (A) is
given byG(u) = (1 − u2)/6 for u < 1 and vanishes for
u ≥ 1. The other cases are reported in Refs. [47, 48].

The presence of disorder (pinning centers) induces sub-
stantial effects on the behavior of the system that can be
quantified in terms of the front propagation and/or the shape
of the density profiles of flux lines. Depending on the
boundary conditions, it has been observed that the front is
either pinned or simply slowed down [45]. Extensive numer-
ical simulations have also been performed in Refs. [45, 46]
to show the compatibility between the MD model with dis-
order and its coarse-grained representation, Eq. (11). More-
over, by varying the parameters of this continuum descrip-
tion of the front propagation, a crossover from flat to fractal
flux fronts has been detected, consistent with experimental
observations. The value of the fractal dimension suggests
that the strong disorder limit is described by percolation. In
the weak disorder limit, we recover the analytical results de-
rived in Refs. [47, 48].

IV Externally driven dynamics: de-
pinning and flow

In this section, we discuss the response of interacting parti-
cles to an external force in presence of quenched disorder.

The effect of quenched disorder is first analyzed in a sin-
gle particle model, which, although oversimplified, still dis-
plays a depinning transition. The effect of the interparticle
potential on the depinning transition will be first introduced
in the framework of the elastic theory, which breaks down
for strong pinning, leading to plastic depinning. Finally, we
briefly discuss the moving phases observed for strong driv-
ing.

A. Single particle pinning

A first understanding of the dynamics of driven particles
in a disordered landscape can be obtained considering the
motion of a single particle [49-51]. We consider a collec-
tion of parabolic wells for the pinning potentials, so that the
equation of motion for a single particle is given by

Γ
dx

dt
= F +

∑
p

f0(Xp − x)θ(|x−Xp| − ξp), (13)

where are the random coordinates of the pinning centers,
which we assume to be non-overlapping. When the particle
is not interacting with a pinning center, it moves with con-
stant velocityF/Γ, until it enters into the attraction range
of a pinning center. Considering this as the initial condition
(i.e. x(t = 0) = Xp − ξp), we can solve the equation

Γ
dx

dt
= F + f0(Xp − x) x < Xp + ξp, (14)

which is given by

x(t) = Xp + F/f0 − (F/f0 + ξp)e−t/Γ. (15)

In the limit t → ∞ the particle remains trapped as long
asF < Fc = ξpf0 and escapes otherwise. We can interpret
this behavior as a depinning transition: the particle is pinned
for F < Fc and moves forF > Fc.

The force-velocity diagram can be computed noting that
for F > ξpf0 the particle spends in each trap a time

τ = Γ log((F + Fc)/(F − Fc)). (16)

The total timeT to cross a system of lengthL with Np pin-
ning centers is given by

T = Npτ + (L− 2ξpNp)Γ/F. (17)

The average velocity of the particle is thus given by

v =
L

T
=

F

Γ(Fnp log((F + Fc)/(F − Fc)) + (1− 2ξpnp))
,

(18)
wherenp = Np/L is the number of pinning centers per
unit length. Close to the depinning transitionFc the veloc-
ity scales logarithmicallyv ∼ −1/ log(F − Fc), while at
higher forces the velocity is proportional to the force. This
behavior is characteristic of the depinning transition, but in
generalv ∼ (F − Fc)β , whereβ is a non trivial critical
exponent. Notice that the logarithmic behavior found above
is an artifact of the discontinuous pinning force. Using a
continuous force, one obtains instead a behavior of the type
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v ∼ (F −Fc)1/2 [50]. We notice that the dependence of the
exponents on the pinning potential is a peculiarity of the sin-
gle particle behavior and is not observed when interactions
come into play as we will discuss in the next section.

Single particle models are also useful for gradient driven
dynamics discussed in the previous section [46]. In that
case the external forceF is replaced by the density gradi-
ent, which can be approximated with a simple function of
x. For instance, in the case of boundary condition (B) (see
section III)F ∼ ∇ρ ∼ ρ0/x, whereρ0 is the boundary den-
sity. This simple model yields the correct scaling behavior
for the front position [46].

B. Elastic depinning

In the previous section, we have only considered the in-
teractions between moving particles and static pinning cen-
ters. We could expect that those results will be valid only
when the interactions between particles can be neglected,

as for instance in a very dilute system. In most situations,
however, interactions between particles should be explicitly
taken into account. In this case we will still observe a depin-
ning transition, but its quantitative and qualitative features
will change [52-58]. It is convenient to first study an inter-
acting particle system in theelasticapproximation, in which
the pinning forces are not strong enough to break the topo-
logical properties of the particle system. For instance, if the
particles are arranged into a crystal, the external force and
the disorder preserve the topological order and no defects
are generated.

In the pinned phase we can write the positions of the par-
ticles by their displacement vectors~u(~Ri) = ~ri− ~Ri, where
~ri are the coordinates in the deformed system and~Ri are the
equilibrium positions. The particle interaction energy can
then be expanded in terms of the displacement field, which
is assumed to be small,

c

U =
∑

ij

V (~ri − ~rj) ' U0 +
∑

α,β

∑

ij

(uα(~Ri)− uα(~Rj))
∂2V

∂rαrβ
(uβ(~Ri)− uβ(~Rj)), (19)

d

whereU0 is the energy in equilibrium. One can then take
the continuum limit expanding in small gradientu(~R) '
u(~R′) + (~R− ~R′) · ~∇u(~r) and obtain [59]

U = U0 +
1
2

∫
d3r

∑

α,βγδ

Eα,βγδ
∂uα

∂rγ

∂uβ

∂rδ
, (20)

where the elastic tensorEα,βγδ can be expressed in terms of
the interparticle pair potential as

Eα,βγδ = −1
2

∑

R

RγRδ
∂2V

∂rαrβ
(21)

Clearly this expansion holds as long as the sum in Eq. 21
converges. If interactions are long range, decaying with a
slow power lawV (r) ∼ r−(d−1+σ) with σ < 2, the elastic
energy can not be expanded in gradients and we have to live
with a non-local interaction.

Coming back to the local limit, a further simplification is
obtained in Eq. (20) if we take into account the symmetries
of the equilibrium system. In the case of an isotropic system,
the elastic tensor has only two independent components and
the energy reduces to

U = U0 +
1
2

∫
d3rK

(
∂uα

∂rα

)2

+ µ

(
∂uα

∂rβ

)2

, (22)

whereK andµ are the compression and shear moduli, re-
spectively.

Using the elastic expression for the interparticle energy,
we can rewrite the equation of motion for the particles as

∂uα

∂t
= µ∇2uα+(K+µ)

∂

∂rα
(~∇·~u)+F +fα(r, u). (23)

When expanding around a moving state, we obtain the same
equation with an extra convective term~v·~∇u on the left hand
side [60, 61]. These elastic equations are still impossible to
solve exactly, but several results have been obtained using
scaling theories and renormalization group calculations [52-
58]. In the case of long-range interactions the gradients are
replaced by a non-local interaction kernel and the equation
becomes

∂uα

∂t
=

∫
ddr′Kαβ(r−r′)(uβ(r′)−uβ(r))+F +fα(r, u),

(24)
with Kαβ(r) ∼ 1/rd+σ for large distances.

A first insight on the behavior of interacting particles
in a disordered media in the elastic approximation can be
gained by collective pinning theory, originally due to Larkin
[62]. In this approach, the main energetic contributions en-
tering the problem are written as a function of a lengthscale
L. Minimizing the sum of elastic and disorder energies,
one obtains the characteristic lengthLc at which pinning
becomes relevant. Considering a region of sizeL, where
the typical displacements of the elastic medium are of the
order of the rangeξp of the pinning potential, the elastic
energy can be estimated asEel ∼ µLd−2ξ2

p, where for sim-
plicity we have only considered the shear modulusµ. The
pinning energy can be estimated in the limit of weak pin-
ning, when the main effect comes from the fluctuations in
the disorder: in a region of sizeL, the typical fluctuations
of the pinning energy scale asEpin ∼ −Ep

√
Ldnp, where

Ep = f0ξp, np is the density of pins. Minimizing the total
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energyµLd−2ξ2
p − Ep

√
Ldnp with respect toL, we obtain

the Larkin length

Lc ∼
(

µξ2
p√

npEp

) 2
4−d

. (25)

For L < Lc the elastic medium is essentially undeformed,
while elastic deformations grow strongly forL > Lc and
typically, the system becomes rough on large lengthscales.

Notice that the Larkin length decreases with the disorder
strength as long asd < dc = 4. The dimensiondc = 4 en-
ters here for the first time, but has in fact a great importance.
As can be shown by renormalization group calculations,dc

is the upper critical dimension: ford > dc the system does
not roughen and the critical behavior at the depinning transi-
tion is essentially mean-field like. Since the physical dimen-
sion is usually lower than four, one is lead to think that this
limit is without practical interest. This is not completely
true, since in presence of long-range interactionsdc typi-
cally lowers, reaching sometimes the physical dimension.
In particular, for non local elastic interactions withσ < 2
the upper critical dimension is given bydc = 2σ.

Since Lc represents the characteristic lengthscale at
which pinning starts to be effective, Larkin estimated the
depinning threshold as the force needed to unpin a region of
lengthLc. This can be done comparing the energy due to
the external forceEext = FξpL

d to the pinning energy at
the scaleLc, obtaining

Fc ∼ Ep
√

npL
−d/2
c /ξp =

(fp
√

np)4/(4−d)

(ξpµ)d/(4−d)
. (26)

Collective pinning theory provides a qualitative descrip-
tion of the depinning transition and a good estimate of the
depinning threshold, but does not allow to estimate the crit-
ical exponents and the force-velocity curve. For this, one
needs renormalization group methods, which we do not
want to discuss here. We just quote some results, obtained
for the first order in aε = 4 − d expansion: the exponent
for the velocity scaling is given byβ = 1 − ε/9, while the
roughness exponent, ruling the scaling of the typical dis-
placements with the system sizeu ∼ Lζ , is estimated as
ζ = ε/3. Other exponents follow from scaling relations.
For instance, one can analyze the transient behavior of the
average particle velocity, which initially decays as a power
law 〈v〉 ∼ t−α, and then crosses over to a constant value
whenF > Fc, or goes exponentially to zero otherwise (see
Fig. 2) [51]. The exponentα can be obtained by a scaling
relation asα = β/νz, wherez is the dynamic exponent and
ν is the correlation length exponent [51].

Simulations have been widely used in the past to obtain
numerically the value of the exponents. We should distin-
guish here the vast body of work pertaining to elastic mani-
folds, in which the elastic approximation is enforced directly
in the model simulating variants of Eq. 23 [55], from particle
simulations in which the original system is studied. In one
dimension the elastic approximation works well and the ex-
ponents measured in particle models reproduce with a good
accuracy the results obtained for elastic manifolds, namely
β ' 0.25 and ζ ' 1.25 (see Fig. 3) [51,63-65]. This is

not surprising since ind = 1 topological order is trivially
present. In two dimensions from the mapping with elastic
manifold we would expectβ ' 0.65 andζ ' 0.75 [55] and
at least the first exponent is reproduced by particle simula-
tions [66].
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Figure 2. The decay of the velocity forN = 400 interacting par-
ticles with pinning ind = 1 for different values of the force. For
F > Fc = 0.514 the velocity crosses over to a steady value. See
Ref.[51] for details on the model.
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Figure 3. The force velocity curve obtained from the steady state
velocity shown in Fig. 2. with pinning ind = 1. The best fit yields
β = 0.22 andFc = 0.514 [51].

C. Plastic depinning

When pinning forces become stronger and/or pinning
centers more dilute the topological order of the system typi-
cally breaks down. In this case, it is not possible to describe
the deformation in terms of a displacement field as we did in
the previous section, and plastic deformation should be ex-
plicitly considered. Due to these difficulties, a complete the-
oretical understanding of plastic depinning is still not avail-
able and one should rely on numerical simulations. A sim-
ple estimate of the conditions for the occurrence of strong
pinning effects can be gained in the framework of collective
pinning theory. WhenLc ∼ a0, wherea0 is the interparticle
distance, the particles are pinned individually. One can
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Figure 4. (a) The force velocity curve forN = 270 interacting particles in the strong pinning limit ind = 2. The fit is a power lawF β

with β = 2.7. (b) The velocity distribution for the same system for different values of the force. Notice the bimodal structure that can be
used to set a threshold and identify moving particles. (c) The average number of moving particles scaling with the applied force asF γ with
γ = 1.8.

elaborate these type of arguments and draw phase diagrams
in terms of disorder and applied force [67].

Here we discuss the main features of plastic depinning as
observed in numerical simulations. Typically the force ve-
locity curve differs drastically from the one observed when
depinning is elastic, which is upward convex (see Fig. 3).
In plastic depinning, the curve is convex downward imply-
ing thatβ > 1. For instance Ref. [66] findsβ = 2.2 in a
simulation of colloids. Others do not provide a value forβ
since it appears that a precise estimate of the exponent is not
straightforward [67]. The main reason is that the depinning
forceFc is small and one could as well believe thatFc = 0
for a large system, and that the pinning seen in simulations
could be an artifact of finite sizes. For instance, the curve
reported in Fig. 4 can be reasonably fit asv ∼ F β , with
β ' 2.7. A small value ofFc would not change signifi-
cantly this fit but it is difficult to discriminate between the
two cases.

The important differences between plastic and elastic
depinning can be highlighted computing the velocity dis-
tribution of the moving particles. In plastic depinning the
solid breaks apart: some particles are pinned by the strong
defects while others move, typically in channels. Thus the
velocity distribution develops two peaks: one around zero
corresponding to pinned particles, and one at higher veloc-
ities [67]. Using this bimodal distribution, it is possible to
identify the fraction of moving particles〈nm〉, using a ve-
locity threshold situated in the middle of the two peaks (see
Fig. 4). Again the data are reasonably fit by a power lawF γ

with γ ' 1.8.
The channel structure of the dynamics has been studied

thoroughly in the literature analyzing the statistical proper-

ties of particle trajectories [35, 40, 71]. In Fig. 5 we report
an example of the trajectories in the plastic regime, showing
the separation between pinned and moving particles. It is
also possible to analyze the tearing of the lattice studying its
topological properties (i.e. the presence of defects, such as
dislocations) [67, 71, 72].

Figure 5. An example of particle trajectories in the plastic regime.
Particles are depicted by circles, pinning centers by stars and tra-
jectories by lines.

To understand theoretically plastic depinning several au-
thors have introduced simplified lattice models, which are
possibly amenable to analytical treatment. For instance,
Refs. [73, 74] propose a model in which particles flow in
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a two dimensional rotated square lattice. When the number
of particles present in a site is larger than a threshold, one
particle is transferred to a neighboring site. The flow is di-
rected and the outlet of each site is random but fixed. It is
interesting to note that this model is equivalent to a sand-
pile model [76, 77], namely a random (quenched) directed
Manna model [78, 79]. It should be possible to use the re-
sult obtained for the directed Manna model to solve exactly
this model [80, 81]. The model displays a plastic depin-
ning transition: some particles are trapped and others flow
in channels. The number of particles belonging to the flow
basin scales asnm ∼ (F −Fc)γ , with γ ' 0.5. The average
particle current (or velocity) scales instead asv ∼ (F−Fc)β

with β = 1.5. It was conjectured thatβ = 1 + γ, implying
that the velocity exponent is due to the combination of the
scaling of the velocity of the flowing particlevf and the one
of the channel size.

A similar reasoning was proposed in Ref. [75] for plas-
tic depinning in a disordered XY model. In this model each
spin depins as a single particle in a smooth pinning potential
asvs ∼ (F − Fc)1/2. The number of spins depinning also
scale with the applied force asnm ∼ (F − Fc)γ , yielding
β = γ+1/2. The exponentγ was found to be close tod, the
dimension of the lattice, which suggests that a simple geo-
metrical description could be possible. We notice that the
results presented in Fig. 4 satisfy approximately the relation
β = 1 + γ, althoughFc ' 0.

Recently, a different approach for plastic depinning was
discussed in Refs. [68, 69] through a model of a viscoelastic
medium. In this model, depending on the parameter val-
ues, one observes first order type or continuous depinning.
The model can be approached by mean-field theory [68] and
renormalization group [69], but at present the connections
with plastic depinning in particle systems is not clear. It is
interesting to notice that a first order depinning transition,
with hysteresis, is also expected in presence of inertia [70].
Raising the force from the pinned phase towards the moving
phase is different than decreasing it when the system is al-
ready moving. In the latter case inertia will keep the system
in motion even beyond the “depinning threshold”, resulting
in an hysteretic force velocity curve.

To summarize, plastic depinning is characterized in gen-
eral by the tearing of the elastic medium through the produc-
tion of dislocations. Only a fraction of the particles move
along channels, while the others are pinned, suggesting to
interpret the force velocity curve by a combination of scal-
ing of single particle velocities and channel size. However,
the wide fluctuations of the numerical values for the expo-
nents present in the literature and the lack of a theory does
not allow a clear quantitative picture of the phenomenon.

D. Moving phases, hysteresis and avalanches

When the external driving force is large enough, parti-
cles enter into a moving phase which can be of several kinds
depending on the type of disorder and the structure of the
particle system. All these aspects are reviewed in Ref. [82].
A first understanding of the dynamics of an elastic system
for strong driving forces comes from a high velocity expan-
sion [83]. When the system flows rapidly one can write
u(r, t) ' V t + δu, whereV is the average flow velocity.

In a first approximation the pinning force becomes effec-
tively a thermal like noisefp(r, u) ' fp(t, V t), with an
effective dynamic temperature decreasing with velocity as
Td ∼ 1/V . Thus one would expect that beyond a certain
velocity the elastic system would reorder since the effect
of pinning forces disappear. The discreteness and period-
icity of a particle system modifies considerably this picture:
while the displacements along the direction of motion do
not feel the disorder due to the high velocity, this is not the
case for transverse displacements. Taking into account this
effect, Giamarchi and Le Doussal [60] show that the sys-
tem should decouple in elastic channels and predict the ex-
istence of threshold for transverse depinning. These features
have been then observed in simulations [72]. For an exten-
sive discussion of other aspects of the dynamics we refer to
Ref. [82]

So far we have only discussed the dynamics of interact-
ing particles in random media occurring under a constant
applied force. When the applied force is time dependent
we observe other interesting phenomena. In particular, an
AC drive leads to hysteresis, which has been studied in de-
tail for domain walls in ferromagnetic materials [85, 86], it
should be possible to carry over these results to a generic
elastic system with disorder [87]. Hysteresis is expected in
the quasistatic limit already at the level of a single particle
model driven by an elastic spring [44]. Close to the depin-
ning transition, the hysteresis loop of the average displace-
ment as a function of the force can be obtained analytically
solving the equation [85]

Γ〈du/dt〉 = (F0sin(ωt)− Fc)βθ(F − Fc). (27)

Finally, Ref. [88] shows that the velocity force curve also
displays hysteresis, but only in the dynamic regime (i.e. hys-
teresis is lost in the limitω → 0 when one recovers the usual
force velocity depinning curve).

It is now well established that when the force is raised
slowly towards the depinning threshold the dynamics of an
elastic system takes place in the form of avalanches as in
self-organized criticality [76]. In particular, the avalanche
size distribution scales as

P (s) = s−τf(s/s∗), (28)

where the cutoff size grows as a power law with the dis-
tance from the critical points∗ ∼ (Fc − F )−νD. Hereν
is the correlation length exponent andD is the fractal di-
mension of the avalanche (i.e.s∗ ∼ ξD ) whereξ is the
correlation length. The connection with self-organized crit-
icality is more apparent when the elastic system is driven at
“constant velocity” [65]. This can be achieved coupling the
system elastically to a slider moving at constant velocity, or,
in other words, replacingF by k(V t − ∫

ddrdtu̇(r, t)). In
the limit of V → 0 andk → 0 the system is driven precisely
at the depinning transition [65, 77]. For a general review on
avalanches and self-organized criticality see Ref. [77].
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V Kinetically constrained dynamics:
jamming and shear yielding

In this section, we will discuss the flow behavior of a wide
class of physical systems whose dynamics is governed by
the presence of kinematical constraints induced by both in-
teractions and geometry. One of the main features shared by
their dynamics is the presence of jamming, a new concept
recently proposed to refer to the suppression of the temporal
relaxation of a physical system and its corresponding abil-
ity to explore the space of configurations [89, 90]. Under
the action of externally applied shear stresses, these systems
eventually yield and are able to flow like a viscous fluid.
Shear yielding is thus another feature they have in common.

As we will see in the following subsections, under stress
conditions both soft materials [7] and crystalline solids [91]
are susceptible to display jamming and shear yielding, due
to the interactions and spatial arrangement of their con-
stituent particles in the case of soft-matter systems, or to
the interactions and spatial arrangement of their topologi-
cal defects—such as dislocations—in plastically deforming
crystals. Jamming and yielding could in turn be responsible
for the remarkably similar creep and stationary flow rheol-
ogy observed experimentally in these systems, in spite of the
big differences among the materials involved.

A. Jamming and viscoelastic flow in soft condensed mat-
ter materials

The phenomena of jamming and yielding control the be-
havior and properties of soft materials as diverse as colloidal
suspensions [92], emulsions [93], foams [94], gels [95, 96],
pastes [97], biological tissues [98], and other soft matter
systems. Most of these physical systems consist of vari-
ous types of soft particles closely packed into an amorphous
state. At such high concentrations, the individual motion
of particles is drastically constrained and, as a consequence,
soft and concentrated materials usually respond like elastic
solids upon the application of low stresses. On the other
hand, they flow like viscous fluids above the so-called yield
stress valueσy, exhibiting a common rheology. The defor-
mation process of amorphous polymeric materials has, for
instance, received a great deal of attention [7]. The creep
compliance curve of amorphous polymer networks above
the glass transition temperature has been reported to closely
exhibit the following behavior [99, 100]

J(t) = γ/σ = j0 + Ct1/3 + t/η, (29)

whereγ is the global strain of the material,σ is the ex-
ternal stress,j0 is the instantaneous elastic component of
the compliance, andη is the viscosity. According to this
behavior, theCt1/3 term, also known as Andrade creep
term, dominates for times much smaller than the relaxation
time tc characteristic of the complex fluid, while a macro-
scopic viscous flow of the formt/η is established after much
longer timest >> tc. One can define and measure a time
dependent effective viscosity in the Andrade creep regime
η = σ/γ̇ ∼ t2/3, which reaches its equilibrium value at
longer times.

A common nonlinear rheology is also observed for
higher stress values, or shear strain-rate values in the case of
constant strain-rate experiments which are in most cases per-
formed in this class of systems. The stress-strain relation-
ships in the steady state are often described by phenomeno-
logical equations of the formσ = σy + aγ̇n [101, 102],
which imply a nonlinear dependence of the stressσ on the
shear strain ratėγ. For a Newtonian dispersionσy = 0 and
n = 1, resulting in a constant viscosity coefficientη = σ/γ̇.
If insteadσy 6= 0, the equation describes a Bingham fluid.
Whenn < 1 the relation is known as the Hershel-Bulkeley
law, but if σy = 0, the equation describes a power-law fluid,
with a shear strain rate decreasing viscosity.

Although the understanding of yield and viscoplastic
flow in these materials is difficulted by the absence of a
clear mediating mechanism, such as the motion of dislo-
cations in a crystal, it has been argued that the common
rheology displayed by these general class of complex flu-
ids might be attributed to two particular shared properties
of these materials: structural disorder and metastability;
which are characteristic features of an underlying glassy dy-
namics [103]. In a few words, a glassy dynamics is asso-
ciated to the slow structural relaxation which takes place
when some parts of the system are trapped by their neigh-
bors and have to surmount large energy barriers to explore
further more favorable configurations. Molecular dynam-
ics simulations [104, 105, 106, 107] of glass-forming liq-
uids and polymers have proved of much help in this re-
spect. About the same time, a general “jamming” scenario
was also proposed [89] as a common framework to under-
stand the mechanical behavior of a broader class of non-
equilibrium physical systems (colloidal suspensions, super-
cooled liquids, foams, etc. and granular media) which, in
spite of their differences, exhibit common properties such as
slow dynamics and scaling features near the so-called jam-
ming threshold.

Regarding the slow relaxation dynamics characteristic of
soft glassy materials, recent experiments [108, 109] show
the necessity of incorporating dynamical heterogeneities for
its complete description. In this respect, a new light scatter-
ing method, introduced in Ref. [96], allowed to detect the
intermittent dynamics of a gel formed from attractive col-
loids. The dynamics is found to be intermittent due to ran-
dom rearrangements which appear to be localized in time.
This and similar experiments strongly suggest that intermit-
tent behavior seems to be a fundamental ingredient for the
slow relaxation in jammed materials.

Finally, it is interesting to point out that an empirical
relation known as the “Cox-Merz rule” [110] quite success-
fully relates the non-linear steady rheology with the linear
but frequency dependent rheological properties of polymer
melts. In particular, the Cox-Merz rule relates the steady vis-
cosity at a given shear rateγ̇, to the modulus of the dynamic
viscosity at a frequencyω = γ̇, i.e. η(γ̇) = |η∗(ω)|. Sev-
eral works havea posterioritried to theoretically justify this
empirical relation starting from basic assumptions [111].
Indeed, the time dependent rheology which follows from
Eq. (29) in the Andrade regimeη = σ/γ̇ ∼ t2/3, is di-
mensionally equivalent to the shear-thinning behaviorη ∼
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γ̇−2/3 reported in Ref. [106] for the steady nonlinear rheol-
ogy of a binary Lennard-Jones mixture, and it would be con-
sistent with the Cox-Merz rule forw = 1/t. The shear thin-
ning exponent could also be related to the subaging behavior
observed in many soft-glassy materialsη ∼ tµw, wheretw is
the so-called waiting time andµ < 1 [112].

In the following section, we will show that most of the
attributes discussed for the case of amorphous soft-glassy
materials are also shared by crystalline materials like soft
metals or vortex lattices deforming plastically due to the mo-
tion of dislocations.

B. Dislocation jamming and viscoplastic creep deforma-
tion

The viscoplastic deformation of crystalline solids is due
to the creeping motion of dislocations driven by an exter-
nally applied stress [113, 114, 12, 115]. The study of the
dynamics of these linear topological defects is a subject of
considerable interest because of its practical importance in
materials design and engineering. It is also interesting from
the theoretical point of view for the many features that dis-
location motion shares with other complex systems like, for
instance, flux lines in high temperature superconductors, or
some of the soft matter materials discussed above.

At the beginning of the XX century, Andrade reported
that the creep deformation of soft metals at constant temper-
ature and stress grows in time according to a power law with
exponent1/3, i.e. γ ∼ t1/3 whereγ is the global strain of
the material [116]. More generally, the creep deformation
curve usually follows the relationγ(t) = γ0 + βt1/3 + κt,
whereγ0 is the instantaneous plastic strain,βt1/3 is known
as Andrade creep, andκt is referred to as linear creep
regime [113, 114]. The same qualitative behavior has since
been observed in many materials with rather different struc-
tures leading to the conclusion that this should be a pro-
cess determined by quite general principles, independent
of most material specific properties. Notice that the creep
curve for amorphous polymer melts introduced in the previ-
ous subsection, follows exactly the same relation. Various
arguments have been proposed within the dislocation liter-
ature [113,114,117-119] to try to explain Andrade’s creep.
Most of them are based on thermally activated processes
over time (or strain) dependent barriers, however, there is
still a lack of consensus on the basic mechanism involved in
the phenomenon.

As in the case of soft-matter systems, the plastic defor-
mation of crystals only occurs when the externally applied
stress overcomes a threshold value, the yield stress of the
material. Above this threshold value, large-scale disloca-
tion motion may take place, and a steady regime of plastic
deformation is eventually established. Dislocations tend to
move cooperatively under the action of external stress due to
their mutual long-range and anisotropic elastic interactions,
which can be attractive or repulsive. As a result of these in-
teractions, and of the spatial dislocation structures they give
rise to, self-induced constraints build up in the system and
the motion of dislocations may eventually cease. Neverthe-
less, small variations of the external loading, the density,
the dislocation distribution or the temperature can enhance

dislocation motion in a discontinuous and intermittent man-
ner [120].

In Ref. [91], the temporal relaxation of a relatively sim-
ple dislocation dynamics model was studied through numer-
ical simulation. In particular, a collection of parallel straight
edge dislocations with Burgers vectorsbi = bx̂ moving in
a single slip system under the action of constant stress was
shown to give rise to Andrade-like creep at short and in-
termediate times for a wide range of applied stresses, with-
out invoking thermally activated processes, i.e.T = 0 (see
Fig. 6). The strain rate, which is proportional to the density
of mobile dislocationsdγ/dt =

∑
i bivi with vi the velocity

of each dislocation, decays as a power law with an exponent
close to2/3, in agreement with Andrade’s observations. At
larger times, the strain-rate was observed to cross over to a
linear creep regime (i.e. to a plateau signaling a steady rate
of deformation) whenever the applied stress is larger than a
critical thresholdσc, or, otherwise, to decay exponentially
to zero.
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Figure 6. The strain rate relaxation for different applied stresses at
T = 0 for a system of sizeL = 100b. The initial density of edge
dislocations is around1%. The solid line is the best linear fit of the
σ = 0.01 curve and yieldsdγ/dt ∼ t−0.69.

These results suggested that a possible interpretation
of dislocation motion and the corresponding creep laws of
crystalline materials could also be found within the general
“jamming” framework proposed to encompass the wide va-
riety of non-equilibrium soft and glassy materials discussed
previously. When jammed, these systems are unable to ex-
plore phase space, but they can be unjammed by changing
the stress, the density, or the temperature. The analogies of
dislocation motion and these so-called jammed systems was
further explored by considering the influences of dislocation
multiplication, and thermal-like fluctuations on the dynam-
ics. Dislocation multiplication favors the rearrangements of
the system and induces a linear creep regime (flowing phase)
at lower stress values, but it does not affect the initial power-
law creep. The introduction of a finite effective temperature
T had a similar effect [91].
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Figure 7. The time evolution of the root-mean-square velocity of
four individual runs of the numerical simulations for different ini-
tial conditions. The applied stress value in all cases isσ = 0.0075.
The curves are depicted in a double logarithmic scale to empha-
size the intermittent bursts characteristic of the creep dislocation
dynamics around the yield threshold.

The detailed analysis of the model data unveiled the
dislocation microscopic dynamics in the Andrade, and in
the stationary regimes: Most dislocations are arranged into
metastable structures so that the stress field they generate
in the material is screened out on large length-scales. These
structures consist of small-angle dislocation boundaries sep-
arating slightly misoriented crystalline blocks or far more
complex dislocation arrangements. If the applied stress is
below the yield threshold, dislocations are not able to eas-
ily explore the space of configurations to find the most fa-
vorable spatial arrangement and they are, most of the time,
trapped in metastable configurations which induce a jam-
ming of the system. Around the yield threshold, a small
fraction of dislocations may, however, attain a higher mo-
bility and provoke several intermittent rearrangements of
the whole system in the course of time. The stress field
generated by these unsettled dislocations conserves the ini-
tial long-range character, and forces the system to continue
evolving in time in a cooperative manner to try to reduce
the internal shear stress (or minimize the elastic energy) by
exploring further more favorable arrangements.

In Fig. 7, we show the root-mean-square velocity
〈v2〉1/2(t) = [

∑
i v2

i /N ]1/2 of all the dislocations (N ∼
100 − 150) present in a square cell of sizeL = 100b as a
function of time for four single runs of the numerical sim-
ulations. Thus, each run represents the creep behavior of a
small piece (a few nanometers big) of a macroscopic system,
and starts from a different initial dislocation configuration,
obtained after letting the system relax in the absence of ex-
ternal load during a given time interval. The external shear
stress applied is in all casesσ = 0.0075, that is, in the vicin-
ity of the critical thresholdσc. We can clearly appreciate the
presence of a few intermittent burst after which〈v2〉1/2(t)
slowly decreases in time. Similar burst, but either positive or
negative, can also be observed in the corresponding strain-
rate curvesdγ/dt (not shown). Andrade’s power law creep
appears as a result of the averaging process over many of
these runs, mimicking the behavior of a much bigger sys-
tem. The closer is the applied stress to the threshold the

longer is the collective power-law motion before the system
falls either in the jammed or in the moving state. Precisely
at the critical point and for the case of an infinite system, the
Andrade power-law could in principle last indefinitely.

C. Non-linear rheology

Above the stress threshold, the system eventually ex-
hibits a linear creep regime in which the dislocations present
in the system tend to glide in a coherent manner. The depen-
dence of the steady strain-rate value on the external shear
stress is shown in Fig. 8. Within the error bars, the simu-
lation data for the higher stress values considered can be fit
quite nicely by a cubic law dependence (see the solid line
in the plot). This is an interesting result since, if we were
to compare with the nonlinear rheology characteristic of
amorphous polymeric networks or other soft glassy materi-
als [106], it would correspond to an effectiveshear-thinning
viscosityfor the dislocation ensemble which decreases with
the strain-rate asη = σ(dγ/dt)−1 ∼ (dγ/dt)−2/3. This
result is in good agreement with the theoretical results ob-
tained in Ref. [106] and compatible with the power law
shear-thinning behaviorη ∼ γ̇−α with α = 0.5 − 1.0 ob-
served in many different complex fluids [7].
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Figure 8. The steady strain rate value for different applied stresses
in a double logarithmic scale. The solid line represents a cubic de-
pendence of the formdγ/dt ∼ σ3 which appears to be in good
correspondence with the simulation data for the higher stress val-
ues considered.

To summarize, the flow of dislocation structures in crys-
talline solids undergoing plastic deformation shares com-
mon features with the time-dependent linear rheology and
with the nonlinear steady rheology of soft glassy materials
and, in particular, it seems to satisfy the empirical Cox-Merz
rule. Notice, however, that the concentration of dislocations
in the crystal needs not to be too high to warrant the pres-
ence of kinematical constraints and metastability in the dy-
namics. High concentrations could be replaced in this case
by the long-range character of their mutual elastic interac-
tions, that favor collective motions and rearrangements, and
by their ability to form intricate extended spatial structures
(in order to screen out the stress), that tend to glide in a co-
herent manner and thus can hamper their own relative mo-
tions driving the system to a jammed state. Further work is
currently under way to try to precisely identify the most ba-
sic mechanism responsible for these remarkable similarities.
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VI Conclusions

In this paper we have discussed the collective dynamics of
an assembly of interacting particles and, in particular, the
transition from a blocked to a moving phase. Transitions
of this kind are observed in different contexts and are due
to different mechanisms. When the particles are blocked
by quenched disorder, one typically refers to the depinning
transition, which can be elastic when the medium preserves
its topology through the transition, or plastic when topolog-
ical defects, such as dislocations, are generated during the
dynamics. The driving force for depinning can be due to an
externally applied field, or could be self-generated by a den-
sity gradient, as in the case of front propagation. When the
motion is not hindered by quenched disorder, but by intrinsic
constraints one usually refers to a jamming transition.

Common features of depinning and jamming phenom-
ena are, at the macroscopic level, the observation of a non-
trivial steady-state force-velocity curve, scaling typically as
v ∼ (F −Fc)β for F > Fc, and a transient power law relax-
ation of the velocityv ∼ t−α. At the microscopic level, pin-
ning and jamming systems are both characterized by a com-
plex energy landscape, with many metastable states. This
leads to an intermittent avalanche-like response to exter-
nal perturbations. Thus despite the different origins, pin-
ning and jamming have several properties in common which
could be possibly used to construct a comprehensive theory
of deblocking transitions. Numerical simulations of inter-
acting particles have played a major role so far to elucidate
the detailed nature of some of these phenomena. The ad-
vancement of theoretical understanding is needed to redi-
rect numerical simulations from a purely descriptive point
of view to a deeper level of analysis.
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[77] R. Dickman, M. A. Mũnoz, A. Vespignani, and S. Zapperi,
Braz. J. Phys.30, 27 (2000).

[78] S. S. Manna, J. Phys. A24, L363 (1991).

[79] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E62, 6195
(2000).

[80] M. Paczuski and K.E. Bassler, Phys. Rev. E62, 5347 (2000).

[81] M. Kloster, S. Maslov, and C. Tang, Phys. Rev. E63, 026111
(2001).

[82] T. Giamarchi and S. Bhattacharya, Lecture notes of the 2001
Cargese school on ”Trends in high magnetic field science”,
cond-mat/0111052.

[83] A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett.73, 3580
(1994).

[84] C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Lett.81,
3757 (1998).

[85] I. F. Lyuksyutov, T. Nattermann, and V. L. Pokrovsky, Phys.
Rev. B59, 4260 (1999).

[86] S. Zapperi, G. Durin, A. Magni, and S. Zapperi, J. Magn.
Magn. Mat. 242-245P2, 987 (2002).

[87] L. Bocquet, H. J. Jensen, J. Phys. I (France)7, 1603 (1997).

[88] A. Glatz, T. Nattermann, and V. Pokrovsky, Phys. Rev.
Lett.90, 047201 (2003).



572 M.-Carmen Miguelet al.

[89] A.J. Liu and S.R. Nagel, Nature396, 21 (1998).

[90] A.J. Liu and S.R. Nagel (Eds.),Jamming and Rheology, (Tay-
lor and Francis, London, 2001).

[91] M.-C. Miguel, A. Vespignani, M. Zaiser and S. Zapperi,
Phys. Rev. Lett.89, 165501 (2002).

[92] D. Bonn, S. Tanase, B. Abou, H. Tanaka, and J. Meunier,
Phys. Rev. Lett.89, 015701 (2002).

[93] T.G. Mason, J. Bibette, and D.A. Weitz, J. Colloid Interface
Sci.179, 439 (1996).

[94] D.J. Durian, D.J. Pine, and D.A. Weitz, Science252, 686
(1991).

[95] P.N. Segr̀e, V. Prasad, A.B. Schofield, and D.A. Weitz, Phys.
Rev. Lett.86, 6042 (2001).

[96] H. Bissig, V. Trappe, S. Romer, and Luca Cipelletti, cond-
mat/0301265.

[97] M. Cloitre, R. Borrega, F. Monti, and L. Leibler, Phys. Rev.
Lett. 90, 068303 (2003).

[98] B. Fabryet al., Phys. Rev. Lett.87, 148102 (2001).

[99] J.D. Ferry,Viscoelastic Properties of Polymers(Wiley, New
York, 1980), 3rd ed.

[100] D.J. Plazek, X.D. Zheng, and K.L. Ngai, Macromolecules
25, 4920 (1992).

[101] H.A. Barnes, J.F. Hutton, and K. Walters,An Introduction
to Rheology(Elsevier, Amsterdam, 1989).

[102] S.M. Fielding, P. Sollich, and M.E. Cates, J. Rheol.44, 323
(2000).

[103] P. Sollich, F. Lequeux, P. H́ebraud, and M.E. Cates, Phys.
Rev. Lett.78, 2020 (1997).

[104] M.L. Falk and J.S. Langer, Phys. Rev. E57, 7192 (1998).

[105] J.-L. Barrat and L. Berthier, Phys. Rev. E63, 012503 (2001).

[106] L. Berthier and J.-L. Barrat, J. Chem. Phys.116, 6228
(2002).

[107] J. Rottler and M.O. Robbins, Phys. Rev. Lett.89, 195501
(2002).

[108] W.K. Kegel and A. van Blaaderen, Science287, 290 (2000).

[109] E. Weekset al., Science287, 627 (2000).

[110] W.P. Cox and E.H. Merz, J. Polym. Sci.28, 619 (1958).

[111] M. Renardy, J. Non-Newtonian Fluid Mech.68, 133 (1997).

[112] L. Berthier private communication (2002).

[113] J. Friedel,Dislocations(Pergamon Press, Oxford, 1967).

[114] A. H. Cottrell, Dislocations and Plastic Flow in Crystals
(Oxford University Press, London, 1953).

[115] F.R.N. Nabarro,Theory of Crystal Dislocations(Dover,
New York, 1992).

[116] E.N. da C. Andrade, Proc. R. Soc. London A84, 1 (1910);
90, 329 (1914).

[117] N.F. Mott, Phil. Mag.44, 741 (1953).

[118] A.H. Cottrell, Phil. Mag. Lett.73, 35 (1996); 74, 375
(1996);75, 301 (1997).

[119] F.R.N. Nabarro, Phil. Mag. Lett.75, 227 (1997).

[120] M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss and J. R.
Grasso, Nature410, 667 (2001).


