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For certain orientations of Josephson junctions between twopx-wave or twod-wave superconductors, the sub-
gap Andreev states produce a4π-periodic relation between the Josephson currentI and the phase difference
φ: I ∝ sin(φ/2). Consequently, the ac Josephson current has the fractional frequencyeV/~, whereV is the
dc voltage. In the tunneling limit, the Josephson current is proportional to the first power (not square) of the
electron tunneling amplitude. Thus, the Josephson current is carried by single electrons, rather than by Cooper
pairs.

1 Introduction

In many materials, the symmetry of the superconducting
order parameter is unconventional, i.e. nots-wave. In the
high-Tc cuprates, it is the singletdx2−y2 -wave [1]. There
is experimental evidence that, in the quasi-one-dimensional
(Q1D) organic superconductors(TMTSF)2X [2], the sym-
metry is triplet [3], most likely thepx-wave [4], with the
x axis is along the conducting chains. The unconventional
pairing symmetry typically results in formation of subgap
Andreev bound states on the surfaces of these supercon-
ductors. Ford-wave cuprate superconductors, the midgap
Andreev states were predicted theoretically in Ref. [5] and
discovered experimentally as a zero-bias conductance peak
in tunneling between normal metals and superconductors
(see review [6]). For the Q1D organic superconductors,
the midgap states were theoretically predicted to exist at the
edges perpendicular to the chains [7, 8]. When two uncon-
ventional superconductors are joined together in a Joseph-
son junction, their Andreev surface states hybridize to form
Andreev bound states in the junction. These states are im-
portant for the Josephson current. Andreev bound states in
high-Tc junctions were reviewed in Ref. [9]. The Joseph-
son effect between two Q1Dp-wave superconductors was
studied in Refs. [10, 11].

In the present paper, we predict a new effect for Joseph-
son junctions between unconventional nonchiral supercon-
ductors, which we call the fractional ac Josephson effect.
Suppose both superconductors forming a Josephson junc-
tion have surface midgap states originally. This is the case
for the butt-to-butt junction between twopx-wave Q1D su-
perconductors, as shown in Fig. 1a, and for the45◦/45◦

in-plane junction between twod-wave superconductors, as
shown in Fig. 2a. (The two angles indicate the orientation
of the junction line relative to theb axes of eachdx2−y2

superconductor.) We predict that the contribution of the hy-

bridized Andreev bound states produces a4π-periodic re-
lation between the supercurrentI and the superconducting
phase differenceφ: I ∝ sin(φ/2) [12]. Consequently, the
ac Josephson effect has the frequencyeV/~, wheree is the
electron charge,V is the applied dc voltage, and~ is the
Planck constant. The predicted frequency is a half of the
conventional Josephson frequency2eV/~ originating from
the conventional Josephson relationI ∝ sin φ with the pe-
riod of 2π. Qualitatively, the predicted effect can be un-
derstood as follows. The Josephson current across the two
unconventional superconductors is carried by tunneling of
single electrons(rather than Cooper pairs) between the two
resonant midgap states. Thus, the Cooper pair charge2e is
replaced the single chargee in the expression for the Joseph-
son frequency. This interpretation is also supported by the
finding that, in the tunneling limit, the Josephson current is
proportional to the first power (not square) of the electron
tunneling amplitude [13]. Possibilities for experimental ob-
servation of the fractional ac Josephson effect are discussed
in Sec. 5.

The predicted current-phase relationI ∝ sin(φ/2) is
quite radical, because every textbook on superconductivity
says that the Josephson current must be a2π-periodic func-
tion of φ [12]. To our knowledge, the only paper that dis-
cussed the4π-periodic Josephson effect is Ref. [14] by Ki-
taev. He considered a highly idealized model of spinless
fermions on a one-dimensional (1D) lattice with supercon-
ducting pairing on the neighboring sites. The pairing po-
tential in this case has thepx-wave symmetry, and midgap
states exist at the ends of the chain. They are described
by the Majorana fermions, which Kitaev proposed to use
for nonvolatile memory in quantum computing. He found
that, when two such superconductors are brought in contact,
the system is4π-periodic in the phase difference between
the superconductors. Our results are in agreement with his
work. However, we formulate the problem as an experi-
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mentally realistic Josephson effect between known super-
conducting materials.

2 The basics

We consider the case where the spin polarization vectorn
of the triplet pairing has a uniform, momentum-independent
orientation [3, 4]. If the spin quantization axisz is selected
alongn, then the Cooper pairing takes place between elec-
trons with the oppositez-axis spin projectionsσ and σ̄:
〈ĉσ(k)ĉσ̄(−k)〉 ∝ ∆σ(k), whereĉσ(k) is the annihilation
operator of an electron with momentumk and spinσ. The
pairing potential has the symmetry∆σ(k) = ∓∆σ̄(k) =
±∆σ(−k), where the upper and lower signs correspond to
the singlet and triplet cases.

We select the coordinate axisx perpendicular to the
Josephson junction plane. We assume that the interface be-
tween the two superconductors is smooth enough, so that
the electron momentum componentky parallel to the junc-
tion plane is a conserved good quantum number.

Electron states in a superconductor are described by the
Bogoliubov operatorŝγ, which are related to the electron
operatorŝc by the following equations [15]

γ̂nσky =
∫

dx [u∗nσky
(x) ĉσky (x) + v∗nσky

(x) ĉ†
σ̄k̄y

(x)],

(1)

ĉσky (x) =
∑

n

[unσky (x) γ̂nσky + v∗nσ̄k̄y
(x) γ̂†

nσ̄k̄y
], (2)

where k̄y = −ky, and n is the quantum number of
the Bogoliubov eigenstates. The two-components vectors
ψnσky (x) = [unσky (x), vnσky (x)] are the eigenstates of the
Bogoliubov-de Gennes (BdG) equation with the eigenener-
giesEnσky :

(
εky (k̂x) + U(x) ∆̂σky (x, k̂x)

∆̂†
σky

(x, k̂x) −εky (k̂x)− U(x)

)
ψn = Enψn,

(3)
wherek̂x = −i∂x is thex component of the electron mo-
mentum operator, andU(x) is a potential. In Eq. (3) and
below, we often omit the indicesσ andky to shorten nota-
tion where it does not cause confusion.

3 Junctions between quasi-one-
dimensional superconductors

In this section, we consider junctions between two
Q1D superconductors, such as organic superconductors
(TMTSF)2X, with the chains along thex axis, as shown in
Fig. 1a. For a Q1D conductor, the electron energy dispersion
in Eq. (3) can be written asε = ~2k̂2

x/2m−2tb cos(bky)−µ,
wherem is an effective mass,µ is the chemical potential,b
andtb are the distance and the tunneling amplitude between

the chains. The superconducting pairing potentials in thes-
andpx-wave cases have the forms

∆̂σky
(x, k̂x) =

{
σ∆β , s-wave,

∆β k̂x/kF , px-wave,
(4)

where~kF =
√

2mµ is the Fermi momentum, andσ is
treated as+ for ↑ and− for ↓. The indexβ = R, L labels
the right (x > 0) and left (x < 0) sides of the junction, and
∆β acquires a phase differenceφ across the junction:

∆R = ∆0e
iφ, ∆L = ∆0 . (5)

The potentialU(x) = U0δ(x) in Eq. (3) represents the junc-
tion barrier located atx = 0. Integrating Eq. (3) overx from
–0 to +0, we find the boundary conditions atx = 0:

ψL = ψR, ∂xψR − ∂xψL = kF Z ψ(0), (6)

Z = 2mU0/~2kF , D = 4/(Z2 + 4), (7)

whereD is the transmission coefficient of the barrier.

A. Andreev bound states

A general solution of Eq. (3) is a superposition of the
terms with the momenta close toαkF , where the index
α = ± labels the right- and left-moving electrons:

ψβσ = eβκx

[
Aβ

(
uβσ+

vβσ+

)
eik̃F x + Bβ

(
uβσ−
vβσ−

)
e−ik̃F x

]
.

(8)
Hereβ = ∓ for R andL. Eq. (8) describes a subgap state
with an energy|E| < ∆0, which is localized at the junction
and decays exponentially inx within the length1/κ. The
coefficients(uβσα, vβσα) in Eq. (8) are determined by sub-
stituting the right- and left-moving terms separately into Eq.
(3) for x 6= 0, whereU(x) = 0. In the limit kF À κ, we
find

uβσα

vβσα
=

∆βσα

E + iαβ~κvF
, κ =

√
∆2

0 − |E|2
~vF

, (9)

wherevF = ~kF /m is the Fermi velocity, and∆βσα is
equal toσ∆β for s-wave and toα∆β for px-wave, with
∆β given by Eq. (5). Theky-dependent Fermi momentum
~k̃F = ~kF + 2tb cos(bky)/vF in Eq. (8) eliminates the
dispersion inky from the BdG equation.

Substituting Eq. (8) into the boundary conditions (6),
we obtain the linear homogeneous equations for the coef-
ficientsAβ andBβ . The compatibility condition for these
equations gives an equation for the energies of the Andreev
bound states. There are two subgap states with the energies
Ea = aE0(φ) labeled by the indexa = ±:

E
(s)
0 (φ) = −∆0

√
1−D sin2(φ/2), s-s junction,(10)

E
(p)
0 (φ) = −∆0

√
D cos(φ/2), px-px junction.(11)

The energies (10) and (11) are plotted as functions of
φ in the left panels (b) and (c) of Fig. 1. Without barrier
(D = 1), the spectra of thes-s andpx-px junctions are the
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same and consist of two crossing curvesE = ∓∆0 cos φ/2,
shown by the thin lines in the left panel of Fig. 1b. A non-
zero barrier (D < 1) changes the energies of the Andreev
bound states in thes-s andpx-px junctions in different ways.
In thes-s case, the two energy levels repel nearφ = π and
form two separated2π-periodic branches shown by the thick
lines in the left panel of Fig. 1b [15, 16]. In contrast, in the
px-px case, the two energy levels continue to cross atφ = π,
and they separate from the continuum of states above+∆0

and below−∆0, as show in the left panel of Fig. 1c. The
absence of energy levels repulsion indicates that there is no
matrix element between these levels atφ = π in thepx-px

case, unlike in thes-s case.
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Figure 1. (a) Josephson junction between two Q1Dpx-wave su-
perconductors. (b) The energies (left panel) and the currents (right
panel) of the subgap states in thes-s junction as functions of the
phase differenceφ for D = 1 (thin lines) andD = 0.9 (thick
lines). (c) The same as (b) for thepx-px junction atD = 0.2.

As shown in Sec. 4, the45◦/45◦ junction between two
d-wave superconductors is mathematically equivalent to the
px-px junction. Eq. (11) was derived for the45◦/45◦ junc-
tion in Ref. [13].

B. Fractional ac Josephson effect

It is well known [15] that the current carried by a quasi-
particle statea is

Ia =
2e

~
∂Ea

∂φ
. (12)

The two subgap states carry opposite currents, which are
plotted vs.φ in the right panels (b) and (c) of Fig. 1 for
thes-s andpx-px junctions. At zero temperature, only the
subgap state with the lower energy is occupied in thes-s
junction. Substituting Eq. (10) into Eq. (12), we recover the
conventional formula for the Josephson current in the tun-
neling limit D ¿ 1 for thes-s junction:

Is ≈ De∆0

2~
sin φ. (13)

Now let us consider thepx-px junction at zero tempera-
ture in the initial stateφ = 0, where the two subgap states
(11) with the energies±E

(p)
0 are, correspondingly, occupied

and empty. Suppose a small voltageeV ¿ ∆0 is applied to

the junction, so the phase difference acquires dependence on
time t: φ(t) = 2eV t/~. If φ(t) changes sufficiently slowly
(adiabatically), the occupation numbers of the subgap states
do not change. In other words, the states shown by the solid
and dotted lines in Fig. 1c remains, correspondingly, occu-
pied and empty. The occupied state (11) produces the cur-
rent (12):

Ip(t) =
√

De∆0

~
sin

(
φ(t)
2

)
=
√

De∆0

~
sin

(
eV t

~

)
.

(14)
The frequency of the ac current (14) iseV/~, a half of
the conventional Josephson frequency2eV/~. This can be
traced to the fact that the energies Eq. (11) and the corre-
sponding wave functions have the period4π in φ, rather than
conventional2π.

The4π periodicity is the consequence of the energy lev-
els crossing atφ = π. (In contrast, in thes-wave case, the
levels repel atφ = π in Fig. 1b, thus the energy curves
are2π-periodic.) As discussed at the end of Sec. 3, there
is no matrix element between the energy levels atφ = π.
Thus, there are no transitions between them, so the occu-
pation numbers of the solid and dotted curves in Fig. 1c
are preserved. To show this more formally, we can write
a general solution of the time-dependent BdG equation as
a superposition of the two subgap states with the time-
dependentφ(t): ψ(t) =

∑
a Ca(t)ψa[φ(t)]. The matrix

element of transitions between the states is proportional to
φ̇〈ψ+|∂φψ−〉 = φ̇〈ψ+|∂φĤ|ψ−〉/(E− − E+). We found
that it is zero in thepx-wave case, thus there are no transi-
tions, and the initial occupation numbers of the subgap states
atφ = 0 are preserved dynamically.

As one can see in Fig. 1c, the system is not in the ground
state whenπ < φ < 3π, because the upper energy level is
occupied and the lower one is empty. In principle, the sys-
tem might be able to relax to the ground state by emitting a
phonon or a photon. We do not have an estimate for such
inelastic relaxations time, but we expect that it is quite long.
To observe the ac Josephson effect with the frequencyeV/~,
the period of Josephson oscillations should be set shorter
than the inelastic relaxations time, but not too short, so that
the time-dependent BdG equation can be treated adiabati-
cally.

C. Tunneling Hamiltonian approach

In the infinite barrier limitD → 0, the energies±E
(p)
0

of the two subgap states (11) degenerate to zero, i.e. they
become midgap states. The wave functions (8) simplify as
follows:

ψ±0 = [ψL0(x)∓ ψR0(x)]/
√

2, (15)

ψL0 =
√

2κ sin(kF x) eκx

(
1
i

)
θ(−x), (16)

ψR0 =
√

2κ sin(kF x) e−κx

(
eiφ/2

−ie−iφ/2

)
θ(x).

(17)
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Since atD = 0 the Josephson junction consists of two semi-
infinite uncoupledpx-wave superconductors,ψL0 andψR0

are the wave functions of the surface midgap states [7] be-
longing to the left and right superconductor. Let us examine
the properties of the midgap states.

If (u, v) is an eigenvector of Eq. (3) with an eigenvalue
En, then(−v∗, u∗) for s-wave and(v∗, u∗) for p-wave are
the eigenvectors with the energyEn̄ = −En. It follows
from this relation and Eq. (1) that̂γ†nσky

= Cγ̂n̄σ̄k̄y
with

|C| = 1. Notice that in thes-wave case, because(u, v) and
(−v∗, u∗) are orthogonal for anyu andv, the statesn andn̄
are always different. However, in thep-wave case, the vec-
tors (u, v) and(v∗, u∗) may be proportional, in which case
they describe the same state withE = 0. The states (16)
and (17) indeed have this property:

vL0 = iu∗L0, vR0 = −iu∗R0. (18)

Substituting Eq. (18) into Eq. (1), we find the Bogoliubov
operators of the left and right midgap states

γ̂†L0σky
= iγ̂L0σ̄k̄y

, γ̂†R0σky
= −iγ̂R0σ̄k̄y

. (19)

Operators (19) correspond to the Majorana fermions dis-
cussed in Ref. [14]. In the presence of a midgap state,
the sum overn in Eq. (2) should be understood as∑

n>0 +(1/2)
∑

n=0, where we identify the second term as
the projectionP ĉ of the electron operator̂c onto the midgap
state. Using Eqs. (18), (19), and (2), we find

P ĉσky (x) = u0(x)γ̂0σky = v∗0(x)γ̂†
0σ̄k̄y

. (20)

Let us consider two semi-infinitepx-wave supercon-
ductors on a 1D lattice with the spacingl, one occupying
x ≤ l̄ = −l and anotherx ≥ l. They are coupled by the
tunneling matrix elementτ between the sites̄l andl:

Ĥτ = τ
∑

σky

[ĉ†Lσky
(l̄) ĉRσky (l) + ĉ†Rσky

(l) ĉLσky (l̄)]. (21)

In the absence of coupling (τ = 0), the subgap wave func-
tions of each superconductor are given by Eqs. (16) and (17).
Using Eqs. (20), (18), (16), and (17), the tunneling Hamil-
tonian projected onto the basis of midgap states is

PĤτ = τ [u∗L0(l̄)uR0(l) + c.c.] (γ̂†L0↑γ̂R0↑ + H.c.)

= ∆0

√
D cos(φ/2) (γ̂†L0↑γ̂R0↑ + γ̂†R0↑γ̂L0↑), (22)

where
√

D = 4τ sin2 kF l/~vF is the transmission ampli-
tude, and we omitted summation over the diagonal index
ky. Notice that Eq. (22) is4π-periodic inφ [14].

Hamiltonian (22) operates between the two degenerate
states of the system related by annihilation of the Bogoli-
ubov quasiparticle in the right midgap state and its creation
in the left midgap state. In this basis, Hamiltonian (22) can
be written as a2× 2 matrix

PĤτ = ∆0

√
D cos(φ/2)

(
0 1
1 0

)
. (23)

The eigenvectors of Hamiltonian (23) are(1,∓1), i.e. the
antisymmetric and symmetric combinations of the right and
left midgap states given in Eq. (15). Their eigenenergies are
E±(φ) = ∓∆0

√
D cos(φ/2), in agreement with Eq. (11).

The tunneling current operator is obtained by differentiating
Eqs. (22) or (23) with respect toφ. Becauseφ appears only
in the prefactor, the operator structures of the current opera-
tor and the Hamiltonian are the same, so they are diagonal in
the same basis. Thus, the energy eigenstates are simultane-
ously the eigenstates of the current operator with the eigen-
valuesI± = ±(

√
De∆0/~) sin(φ/2), in agreement with

Eq. (14). The same basis(1,∓1) diagonalizes Hamiltonian
(23) even when a voltageV is applied and the phaseφ is
time-dependent. Then the initially populated eigenstate pro-
duces the currentIp =

√
D(e∆0/~) sin(eV t/~) with the

fractional Josephson frequencyeV/~, in agreement with Eq.
(14).

D. Josephson current carried by single electrons, rather
than Cooper pairs

In the tunneling limit, the transmission coefficientD is
proportional to the square of the electron tunneling ampli-
tudeτ : D ∝ τ2. Eq. (14) show that the Josephson current
in thepx-px junction is proportional to the first power ofτ .
This is in contrast to thes-s junction, where the Josephson
current (13) is proportional toτ2. This difference results
in the big ratioIp/Is = 2/

√
D between the critical cur-

rents in thepx- ands-wave cases. The reason for the differ-
ent powers ofτ is the following. In thepx-wave case, the
transfer of just one electron between the degenerate left and
right midgap states is a real (nonvirtual) process. Thus, the
eigenenergies are determined from the secular equation (23)
already in the first order ofτ . In thes-wave case, there are
no midgap states, so the transferred electron is taken from
below the gap and placed above the gap, at the energy cost
2∆0. Thus, the transfer of a single electron is a virtual (not
real) process. It must be followed by the transfer of another
electron, so that the pair of electrons is absorbed into the
condensate. This gives the current proportional toτ2. This
picture implies that the Josephson supercurrent is carried by
single electrons in thepx-px junction and by Cooper pairs
in thes-s junction. Because the single-electron chargee is
a half of the Cooper-pair charge2e, the frequency of the ac
Josephson effect in thepx-px junction iseV/~, a half of the
conventional Josephson frequency2eV/~ for the s-s junc-
tion. These conclusions also apply to a junction between
two d-wave superconductors in such orientation that both
sides of the junction have surface midgap states, e.g. to the
45◦/45◦ junction.

4 Josephson junctions betweend-
wave superconductors

In this section, we study Josephson junctions between two
d-wave cuprate superconductors. As before, we select the
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coordinatex perpendicular to the junction line and assume
that the electron momentum componentky parallel to the
junction line is a conserved good quantum number. Then,
the 2D problem separates into a set of 1D solutions (8) in
thex direction labeled by the indexky. Using an isotropic
electron energy dispersion lawε = ~2(k2

x + k2
y)/2m − µ,

we replace the Fermi momentumkF and velocityvF by

theirx-componentskFx =
√

k2
F − k2

y andvFx = ~kFx/m.

Thus, the transmission coefficient D in Eq. (7) becomesky-
dependent. The total Josephson current is given by a sum
over all occupied subgap states labeled byky.

(a) a
b

a
b

ky kx

a
b

a
b

ky

kx

AB CD

(b)

A

C

D

B

Figure 2. Schematic drawing of the45◦/45◦ junction (panel a) and
0◦/0◦ junction (panel b) between twod-wave superconductors.
The thick line represents the junction line. The circles illustrate
the Fermi surfaces, where positive and negative pairing potentials
∆ are shown by the solid and dotted lines. The points A, B, C,
and D in the momentum space are connected by transmission and
reflection from the barrier.

For the cuprates, let us consider a junction parallel to
the [1, 1̄] crystal direction in thea-b plane and select thex
axis along the diagonal[1, 1], as shown in Fig. 2a. In these
coordinates, thed-wave pairing potential is

∆̂σky (x, k̂x) = σ2∆β kyk̂x/k2
F , (24)

where the same notation as in Eq. (4) is used. Direct com-
parison of Eqs. (24) and (4) demonstrates that thed-wave su-
perconductor with the45◦ junction maps to thepx-wave su-
perconductor by the substitution∆0 → σ2∆0ky/kF . Thus,
the results obtained in Sec. 3 for thepx-px junction apply
to the45◦/45◦ junction between twod-wave superconduc-
tors with the appropriate integration overky. The energies
and the wave functions of the subgap Andreev states in the
45◦/45◦ junction are4π-periodic, as in Eqs. (11). Thus the
ac Josephson current has the fractional frequencyeV/~, as
in Eq. (14).

On the other hand, if the junction is parallel to the[0, 1]
crystal direction, as shown in Fig. 2b, then̂∆σky (x, k̂x) =
σ∆β (k̂2

x − k2
y)/k2

F . This pairing potential is an even func-

tion of k̂x, thus it is analogous to thes-wave pairing poten-
tial in Eq. (4). Thus, the0◦/0◦ junction between twod-wave
superconductors is analogous to thes-s junction. It should
exhibit the conventional2π-periodic Josephson effect with
the frequency2eV/~.

For a generic orientation of the junction line, thed-wave
pairing potential acts likepx-wave for some momentaky

and likes-wave for otherky. Thus, the total Josephson cur-
rent is a sum of the unconventional and conventional terms

[12]:

I = C1 sin(φ/2) + C2 sin(φ) + . . . , (25)

with some coefficientsC1 andC2. We expect that both terms
in Eq. (25) are present for any real junction betweend-wave
superconductors because of imperfections. However, the ra-
tio C1/C2 should be maximal for the junction shown in Fig.
2a and minimal for the junction shown in Fig. 2b.

5 Experimental observation of the
fractional ac Josephson effect

Conceptually, the setup for experimental observation of the
fractional ac Josephson effect is very straightforward. One
should apply a dc voltageV to the junction and measure fre-
quency spectrum of microwave radiation from the junction,
expecting to detect a peak at the fractional frequencyeV/~.
Josephson radiation at the conventional frequency2eV/~
was first observed experimentally almost 40 years ago in
Kharkov [17, 18], followed by further work [19, 20]. In Ref.
[18], the spectrum of microwave radiation from tin junctions
was measured, and a sharp peak at the frequency2eV/~
was found. Without any attempt to match impedances of the
junction and waveguide, Dmitrenko and Yanson [18] found
the signal several hundred times stronger than the noise and
the ratio of linewidth to the Josephson frequency less than
10−3. More recently, a peak of Josephson radiation was ob-
served in Ref. [21] in indium junctions at the frequency 9
GHz with the width 36 MHz. In Ref. [22], a peak of Joseph-
son radiation was observed around 11 GHz with the width
50 MHz inBi2Sr2CaCu2O8 single crystals with the current
along thec axis perpendicular to the layers.

To observe the fractional ac Josephson effect predicted
in this paper, all it takes is to perform the same experiment
with the45◦/45◦ cuprate junctions shown in Fig. 2(a). For
control purposes, it is also desirable to measure frequency
spectrum for the0◦/0◦ junction shown in Fig. 2(b), where
a peak at the frequencyeV/~ should be minimal. It should
be absent completely in a conventionals-s junction, unless
the junction enters a chaotic regime with period doubling
[23]. The high-Tc junctions of the required geometry can be
manufactured using the step-edge technique. Bicrystal junc-
tions are not appropriate, because the crystal axesa andb of
the two superconductors are rotated relative to each other in
such junctions. As shown in Fig. 2(a), we need the junction
where the crystal axes of the two superconductors have the
same orientation. Unfortunately, attempts to manufacture
Josephson junctions from the Q1D organic superconductors
(TMTSF)2X failed thus far.

The most common way of studying the ac Josephson
effect is observation of the Shapiro steps. In this setup,
the Josephson junction is irradiated by microwaves with the
frequencyω, and steps in dc current are detected at the
dc voltagesVn = n~ω/2e. Unfortunately, this method



658 Hyok-Jon Kwonet al.

is not very useful to study the effect that we predict. In-
deed, our results are effectively obtained by the substitu-
tion 2e → e. Thus, we expect to see the Shapiro steps at
the voltagesVm = m~ω/e = 2m~ω/2e, i.e. we expect to
see onlyevenShapiro steps. However, when both terms are
present in Eq. (25), they produce both even and odd Shapiro
steps, so it would be difficult to differentiate the novel ef-
fect from the conventional Shapiro effect. Notice also that
the so-called fractional Shapiro steps observed at the voltage
V1/2 = ~ω/4e corresponding ton = 1/2 have nothing to
do with the effect that we propose. They originate from the
higher harmonics in the current-phase relationI ∝ sin(2φ).
The fractional Shapiro steps have been observed in cuprates
[24], but also in conventionals-wave superconductors [25].
Another method of measuring the current-phase relation in
cuprates was employed in Ref. [26], but connection with our
theoretical results is not clear at the moment.

6 Conclusions

In this paper, we study suitably orientedpx-px or d-d
Josephson junctions, where the superconductors on both
sides of the junction originally have the surface Andreev
midgap states. In such junctions, the Josephson current
I, carried by the hybridized subgap Andreev bound states,
is a 4π-periodic function of the phase differenceφ: I ∝
sin(φ/2), in agreement with Ref. [14]. Thus, the ac Joseph-
son current should exhibit the fractional frequencyeV/~,
a half of the conventional Josephson frequency2eV/~. In
the tunneling limit, the Josephson current is proportional to
the first power of the electron tunneling amplitude, not the
square as in the conventional case [13]. Thus, the Josephson
current in the considered case is carried by single electrons
with chargee, rather than by Copper pairs with charge2e.
The fractional ac Josephson effect can be observed exper-
imentally by measuring frequency spectrum of microwave
radiation from the junction and detecting a peak ateV/~.
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