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For certain orientations of Josephson junctions betweerpfwwoave or twod-wave superconductors, the sub-

gap Andreev states producela-periodic relation between the Josephson curfeand the phase difference

¢: I « sin(¢/2). Consequently, the ac Josephson current has the fractional freqeiEply whereV is the

dc voltage. In the tunneling limit, the Josephson current is proportional to the first power (not square) of the
electron tunneling amplitude. Thus, the Josephson current is carried by single electrons, rather than by Cooper
pairs.

1 Introduction bridized Andreev bound states producesraperiodic re-
lation between the supercurrehtand the superconducting
In many materials, the symmetry of the superconducting phase difference: I o sin(¢/2) [12]. Consequently, the
order parameter is unconventional, i.e. evave. Inthe  ac Josephson effect has the frequeaiyh, wheree is the
high-T, cuprates, it is the singlet,._,>-wave [1]. There  electron chargeV is the applied dc voltage, anidis the
is experimental evidence that, in the quasi-one-dimensionalPlanck constant. The predicted frequency is a half of the
(Q1D) organic superconductof$ MTSF),X [2], the sym-  conventional Josephson frequeriayl// 1 originating from
metry is triplet [3], most likely thep,-wave [4], with the  the conventional Josephson relatibnx sin ¢ with the pe-
x axis is along the conducting chains. The unconventional riod of 27. Qualitatively, the predicted effect can be un-
pairing symmetry typically results in formation of subgap derstood as follows. The Josephson current across the two
Andreev bound states on the surfaces of these superconunconventional superconductors is carried by tunneling of
ductors. Ford-wave cuprate superconductors, the midgap single electrongrather than Cooper pairs) between the two
Andreev states were predicted theoretically in Ref. [5] and resonant midgap states. Thus, the Cooper pair chizrige
discovered experimentally as a zero-bias conductance peakeplaced the single chargén the expression for the Joseph-
in tunneling between normal metals and superconductorsson frequency. This interpretation is also supported by the
(see review [6]). For the Q1D organic superconductors, finding that, in the tunneling limit, the Josephson current is
the midgap states were theoretically predicted to exist at theproportional to the first power (not square) of the electron
edges perpendicular to the chains [7, 8]. When two uncon-tunneling amplitude [13]. Possibilities for experimental ob-
ventional superconductors are joined together in a Josephservation of the fractional ac Josephson effect are discussed
son junction, their Andreev surface states hybridize to form in Sec. 5.
Andreev bound states in the junction. These states are im- The predicted current-phase relatidne sin(¢/2) is
portant for the Josephson current. Andreev bound states imquite radical, because every textbook on superconductivity
high-T. junctions were reviewed in Ref. [9]. The Joseph- says that the Josephson current must Be-periodic func-
son effect between two Qlp-wave superconductors was tion of ¢ [12]. To our knowledge, the only paper that dis-
studied in Refs. [10, 11]. cussed ther-periodic Josephson effect is Ref. [14] by Ki-

In the present paper, we predict a new effect for Joseph-taev. He considered a highly idealized model of spinless
son junctions between unconventional nonchiral supercon-fermions on a one-dimensional (1D) lattice with supercon-
ductors, which we call the fractional ac Josephson effect. ducting pairing on the neighboring sites. The pairing po-
Suppose both superconductors forming a Josephson junctential in this case has the.-wave symmetry, and midgap
tion have surface midgap states originally. This is the casestates exist at the ends of the chain. They are described
for the butt-to-butt junction between twg.-wave Q1D su- by the Majorana fermions, which Kitaev proposed to use
perconductors, as shown in Fig. 1a, and for 4h&/45° for nonvolatile memory in quantum computing. He found
in-plane junction between twa@-wave superconductors, as that, when two such superconductors are brought in contact,
shown in Fig. 2a. (The two angles indicate the orientation the system istr-periodic in the phase difference between
of the junction line relative to th& axes of eachl,>_,» the superconductors. Our results are in agreement with his
superconductor.) We predict that the contribution of the hy- work. However, we formulate the problem as an experi-
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mentally realistic Josephson effect between known super-the chains. The superconducting pairing potentials insthe
conducting materials. andp,-wave cases have the forms

R R B { olg, s-wave @)

AU, ak:v 7
2 The basics by (@ k<) Apky/kp, p.-wave

whereikr = +/2myu is the Fermi momentum, and is
treated ast for T and— for |. The index3 = R, L labels
the right ¢ > 0) and left & < 0) sides of the junction, and
Ag acquires a phase differengeacross the junction:

We consider the case where the spin polarization vactor
of the triplet pairing has a uniform, momentum-independent
orientation [3, 4]. If the spin quantization axiss selected
alongn, then the Cooper pairing takes place between elec-
trons with the opposite-axis spin projectionsr and a: Ag = Age'?, AL =Ay. (5)
(¢s(k)és(—k)) x A,(k), whereé, (k) is the annihilation . _ _
operator of an electron with momentumand spino. The ~ The potentiall (z) = Upd(x) in Eq. (3) represents the junc-
pairing potentia| has the Symmewo_ (k) = FA; (k) — tion barrier IO(-:atEd at = 0. Integratln_g_ Eq (3) over from
+A,(—k), where the upper and lower signs correspond to —0 to +0, we find the boundary conditionszat= 0:
the singlet and triplet cases.
. . . = R — Ot = kpZ , (6

We select the coordinate axis perpendicular to the VL = ¥, 3211)3 utir 5 ¥(0) (©)
Josephson junction plane. We assume that the interface be- Z =2mUo/Wkp, D =4/(Z"+4), (")
tween the two superconductors is smooth enougr_\, SO tha(/\/hereD is the transmission coefficient of the barrier.
the electron momentum componént parallel to the junc-
tion plane is a conserved good quantum number. A. Andreev bound states

Electron states in a superconductor are described by the
Bogoliubov operatorg, which are related to the electron
operators: by the following equations [15]

A general solution of Eq. (3) is a superposition of the
terms with the momenta close t@kr, where the index
«a = =+ labels the right- and left-moving electrons:

oot = [ i ) on ) e ) g, O, e [ g (e Y o (e ) o],
Bo+

(1) (8)
Cok, (T) = Z[“M’% (%) Ynok, + ”Zaky (x) jwk ], 2) Hereg = Ffor RandL. Eq. (8) describes a subgap state
n ! with an energy E| < Ay, which is localized at the junction
B and decays exponentially in within the lengthl/x. The
where k, = —k,, andn is the quantum number of coefficients(ugsya, V300 ) in EQ. (8) are determined by sub-

the Bogoliubov eigenstates. The two-components vectorsstituting the right- and left-moving terms separately into Eq.

Unok, (2) = [Unok, (), vnok, ()] are the eigenstates of the  (3) for - £ 0, wherelU(z) = 0. In the limit kr > «, we
Bogoliubov-de Gennes (BdG) equation with the eigenener-fjnd

giesEnop,
UBoa _ Aﬁ”a K= \% A% — ‘E|2 (9)
€k, (l%z) +U(x) Agky (z, l%x) o = B Vgoo  E +iafhrvp hvp
Alky (v, ke)  —ep,(ke) =Ul) ] 7" "7 wherevy = hkp/m is the Fermi velocity, and\ s, is
R ©)) equal toocAg for s-wave and toaAgs for p,-wave, with
wherek, = —id, is thex component of the electron mo-  Aj given by Eq. (5). The:,-dependent Fermi momentum

mentum operator, anti (z) is a potential. In Eq. (3) and  pk, = hkp + 2t cos(bk,)/vr in Eq. (8) eliminates the
below, we often omit the indices andk, to shorten nota-  dispersion ink, from the BdG equation.
tion where it does not cause confusion. Substituting Eq. (8) into the boundary conditions (6),
we obtain the linear homogeneous equations for the coef-
. . ficients Ag and Bz. The compatibility condition for these
3 Junctions between quasi-one- equations gives an equation for the energies of the Andreev

i ; bound states. There are two subgap states with the energie
dimensional superconductors B, o (o) labeled by the index — <

In this section, we consider junctions between two s 5 ] )

Q1D superconductors, such as organic superconductors o (¢) = —Aoy/1—Dsin®(¢/2), s-sjunctiorf10)
(TMTSF)QX, with the chains along the axis, as sho_vvn in _ E(p)(¢) _ —AO\/Bcos(¢/2), pa-p. junction(11)

Fig. 1a. For a Q1D conductor, the electron energy dispersion

in Eq. (3) can be written as= h2k§/2m—2tb cos(bky)—p, The energies (10) and (11) are plotted as functions of
wherem is an effective masg, is the chemical potentiab, ¢ in the left panels (b) and (c) of Fig. 1. Without barrier
andt, are the distance and the tunneling amplitude between(D = 1), the spectra of the-s andp,-p, junctions are the
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same and consist of two crossing cur¥es= FA cos ¢/2,
shown by the thin lines in the left panel of Fig. 1b. A non-
zero barrier P < 1) changes the energies of the Andreev
bound states in the s andp,.-p,. junctions in different ways.

In the s-s case, the two energy levels repel néar = and
form two separatedr-periodic branches shown by the thick
lines in the left panel of Fig. 1b [15, 16]. In contrast, in the
PPz Case, the two energy levels continue to crossat,
and they separate from the continuum of states akakeg
and below—A, as show in the left panel of Fig. 1c. The

absence of energy levels repulsion indicates that there is no

matrix element between these levelspat = in the p,-p,
case, unlike in the-s case.
Ay

(a) Noe'®

0 T

21 3n  4n0 s 2n
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Figure 1. (a) Josephson junction between two QiBwave su-
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the junction, so the phase difference acquires dependence on
timet: ¢(t) = 2eVt/h. If ¢(t) changes sufficiently slowly
(adiabatically), the occupation numbers of the subgap states
do not change. In other words, the states shown by the solid
and dotted lines in Fig. 1c remains, correspondingly, occu-
pied and empty. The occupied state (11) produces the cur-
rent (12):

p(0) = VP80 (2400

\/Eer . eVt
h S1n (ﬁ) .

(14)
The frequency of the ac current (14) é8/h, a half of
the conventional Josephson frequerey’/h. This can be
traced to the fact that the energies Eq. (11) and the corre-
sponding wave functions have the peripdin ¢, rather than
conventionalr.

The4nr periodicity is the consequence of the energy lev-
els crossing ab = «. (In contrast, in the-wave case, the
levels repel atp = = in Fig. 1b, thus the energy curves
are 2r-periodic.) As discussed at the end of Sec. 3, there
is no matrix element between the energy levelg at .
Thus, there are no transitions between them, so the occu-
pation numbers of the solid and dotted curves in Fig. 1c
are preserved. To show this more formally, we can write
a general solution of the time-dependent BdG equation as
a superposition of the two subgap states with the time-
dependenty(t): ¥(t) = >, Ca(t)a[é(t)]. The matrix
element of transitions between the states is proportional to

perconductors. (b) The energies (left panel) and the currents (right¢<w+|a¢¢_> _ ¢<w+\6¢,ﬁ[|¢_>/(E_ — E4). We found

panel) of the subgap states in th& junction as functions of the
phase difference for D = 1 (thin lines) andD = 0.9 (thick
lines). (c) The same as (b) for the-p, junction atD = 0.2.

As shown in Sec. 4, thé5°/45° junction between two

that it is zero in thep,.-wave case, thus there are no transi-
tions, and the initial occupation numbers of the subgap states
at¢ = 0 are preserved dynamically.

As one can see in Fig. 1c, the system is not in the ground

d-wave superconductors is mathematically equivalent to theState whenr < ¢ < 3, because the upper energy level is

p=-pe junction. Eq. (11) was derived for thi° /45° junc-
tion in Ref. [13].

B. Fractional ac Josephson effect

It is well known [15] that the current carried by a quasi-
particle states is
_ 2e 0E,

“Th g

(12)

occupied and the lower one is empty. In principle, the sys-
tem might be able to relax to the ground state by emitting a
phonon or a photon. We do not have an estimate for such
inelastic relaxations time, but we expect that it is quite long.
To observe the ac Josephson effect with the frequen@yi,

the period of Josephson oscillations should be set shorter
than the inelastic relaxations time, but not too short, so that
the time-dependent BAG equation can be treated adiabati-
cally.

The two subgap states carry opposite currents, which are

plotted vs.¢ in the right panels (b) and (c) of Fig. 1 for
the s-s andp,-p, junctions. At zero temperature, only the
subgap state with the lower energy is occupied in ¢he
junction. Substituting Eq. (10) into Eq. (12), we recover the

conventional formula for the Josephson current in the tun-

neling limit D < 1 for the s-s junction:

DeAO
I, =
2h

sin ¢. (13)
Now let us consider thg,-p, junction at zero tempera-
ture in the initial statep = 0, where the two subgap states
(11) with the energie&Eé”) are, correspondingly, occupied
and empty. Suppose a small voltagé < A is applied to

C. Tunneling Hamiltonian approach

In the infinite barrier limitD — 0, the energies-E"’
of the two subgap states (11) degenerate to zero, i.e. they
become midgap states. The wave functions (8) simplify as
follows:

Yo = [Yro(z) F Yro(2)]/V2, (15)
Yro = V2 sin(kpa) e’“( 1 )9(x), (16)

0i®/2
—je /2

V25 sin(kpz) e " (

> 0(x).

17



656 Hyok-Jon Kworet al.

Since atD = 0 the Josephson junction consists of two semi- The eigenvectors of Hamiltonian (23) afg F1), i.e. the
infinite uncoupledp,.-wave superconductorsg;;o andrq antisymmetric and symmetric combinations of the right and
are the wave functions of the surface midgap states [7] be-left midgap states given in Eq. (15). Their eigenenergies are
longing to the left and right superconductor. Let us examine E.(¢) = FAov/D cos(4/2), in agreement with Eq. (11).
the properties of the midgap states. The tunneling current operator is obtained by differentiating
If (u,v) is an eigenvector of Eq. (3) with an eigenvalue Egs. (22) or (23) with respect th Because) appears only
E,, then(—v*, u*) for s-wave and(v*, u*) for p-wave are in the prefactor, the operator structures of the current opera-
the eigenvectors with the enerdy; = —FE,,. It follows tor and the Hamiltonian are the same, so they are diagonal in
from this relation and Eq. (1) th@tjwk = CHnsi, With the same basis. Thus, the energy eigenstates are simultane
|C| = 1. Notice that in thes-wave casey, because, v) and ously the eigenstates of the current operator with the eigen-
(—v*,u*) are orthogonal for any andv, the states, andn~~ valuesly = +(vDeAg/h)sin(¢/2), in agreement with
are always different. However, in thewave case, the vec-  EQ. (14). The same bas($, 1) diagonalizes Hamiltonian
tors (u, v) and (v*, u*) may be proportional, in which case (23) even when a voltag¥ is applied and the phasgis
they describe the same state with= 0. The states (16) time-dependent. Then the initially populated eigenstate pro-

and (17) indeed have this property: duces the currenf, = v/D(eAq/h)sin(eVt/h) with the
fractional Josephson frequeney/, in agreement with Eq.
VLo = gy, VRo = —iURo- (18) (14).

Substituting Eq. (18) into Eq. (1), we find the Bogoliubov

operators of the left and right midgap states D. Josephson current carried by single electrons, rather

than Cooper pairs

o o o s
Trook, = YVLogk,> TRook, = ~YVRoGk," (19) In the tunneling limit, the transmission coefficiebtis

Operators (19) correspond to the Majorana fermions dis- proportional to the square of the electron tunneling ampli-
tuder: D « 72. Eq. (14) show that the Josephson current

cussed in Ref. [14]. In the presence of a midgap state, . _ o : .

the sum overn in Eq. (2) should be understood as in the p,.-p, junction is proportional to the first power of

> H(1/2)3 where we identify the second term as This is in contrast to the-s junction, where the Josephson
n>0 n=0’ . . . .

the |>3rojectiorﬂ36 of the electron operatdronto the midgap current (13) is proportional te2. This difference results

state. Using Egs. (18), (19), and (2), we find in the big ratiol,,/I; = 2/V/D between the critical cur-
rents in thep,.- ands-wave cases. The reason for the differ-
Péok, (x) = uo(z)ook, = U(’;(myg% . (20) ent powers ofr is the following. In thep,-wave case, the

transfer of just one electron between the degenerate left anc
Let us consider two semi-infinitg,-wave supercon-  right midgap states is a real (nonvirtual) process. Thus, the
ductors on a 1D lattice with the spacihgone occupying  eigenenergies are determined from the secular equation (23
z < | = —l and another: > [. They are coupled by the already in the first order of. In the s-wave case, there are
tunneling matrix element between the sitelsand!: no midgap states, so the transferred electron is taken from
R below the gap and placed above the gap, at the energy cos
H. =71 Z[é}aky (1) CRok, (1) + éj%ky (1) Lok, (0]. (21) 2Aq. Thus, the transfer of a single electron is a virtual (not
ok, real) process. It must be followed by the transfer of another
electron, so that the pair of electrons is absorbed into the

I_n the absence of coupling (= 0), t_he subgap wave func-  qnqensate. This gives the current proportionattoThis
tions of each superconductor are given by Egs. (16) and (17)icqre implies that the Josephson supercurrent is carried by

Using Egs. (20), (18), (16), and (17), the tunneling Hamil- ;010 electrons in the,-p, junction and by Cooper pairs
tonian projected onto the basis of midgap states is in the s-s junction. Because the single-electron charge

a half of the Cooper-pair char@e, the frequency of the ac
Josephson effect in the.-p,. junction iseV/h, a half of the

= AoV/D cos(¢/2) (4541 9rot + AkorFLo1):  (22)  conventional Josephson frequeryl//h for the s-s junc-

tion. These conclusions also apply to a junction between
wherev'D = 47sin® krl/hvp is the transmission ampli-  two d-wave superconductors in such orientation that both
tude, and we omitted summation over the diagonal index sides of the junction have surface midgap states, e.g. to the
k,. Notice that Eq. (22) idr-periodic in¢ [14]. 45° /45° junction.
Hamiltonian (22) operates between the two degenerate

states of the system related by annihilation of the Bogoli-

ubov quasiparticle in the right midgap state and its creation 4 Josephson junctions betweend-

in the left midgap state. In this basis, Hamiltonian (22) can
be written as & x 2 matrix wave superconductors

PH, = 7 [ufo(uro(l) + c.c.] (319 9mor + Hee.)

PH, = AgV'D cos(6/2) (

0 1 (23) In this section, we study Josephson junctions between two
1 0/ d-wave cuprate superconductors. As before, we select the
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coordinater perpendicular to the junction line and assume [12]:
that the electron momentum componégtparallel to the
junction line is a conserved good quantum number. Then,
the 2D problem separates into a set of 1D solutions (8) in
the « direction labeled by the indek,. Using an isotropic
electron energy dispersion law= h*(k2 + k2)/2m — p,

we replace the Fermi momentuky)- and velocityvy by

I = Cysin(¢/2) + Cosin(g) + ..., (25)

with some coefficient§’; andCs. We expect that both terms

in Eq. (25) are present for any real junction betwdemiave

superconductors because of imperfections. However, the ra-
] tio Cy /C5 should be maximal for the junction shown in Fig.

theirz-componenté s, = 4/ ki — kj andvp, = hkpe/m. 2a and minimal for the junction shown in Fig. 2b.

Thus, the transmission coefficient D in Eq. (7) becomgs

dependent. The total Josephson current is given by a sum

over all occupied subgap states labeled:py 5 Experimental observation of the

fractional ac Josephson effect

Conceptually, the setup for experimental observation of the
fractional ac Josephson effect is very straightforward. One
should apply a dc voltagg to the junction and measure fre-
quency spectrum of microwave radiation from the junction,
expecting to detect a peak at the fractional frequericys.
Josephson radiation at the conventional frequehdy/h
Figure 2. Schematic drawing of tH&° /45° junction (panela)and ~ Was first observed experimentally almost 40 years ago in
0°/0° junction (panel b) between twd-wave superconductors. Kharkov [17, 18], followed by further work [19, 20]. In Ref.
The thick line represents the junction line. The circles illustrate [18], the spectrum of microwave radiation from tin junctions
the Fermi surfaces, where positive and negative pairing potentialsyyas measured, and a sharp peak at the frequeatyh
A are shown by the solid and dotted lines. The points A, B, C, Jvas found. Without any attempt to match impedances of the
and D in the momentum space are connected by transmission an . . .
reflection from the barrier. Junction and waveguide, Dmitrenko and Yanson [18] found
. ) i the signal several hundred times stronger than the noise and
For the cuprates, let us consider a junction parallel 10 e ratio of linewidth to the Josephson frequency less than
the[1, 1] crystal direction in the:-b plane and select the 10~3. More recently, a peak of Josephson radiation was ob-
axis along the diagonal, 1], as shown in Fig. 2a. In these  goryeq in Ref. [21] in indium junctions at the frequency 9
coordinates, the-wave pairing potential is GHz with the width 36 MHz. In Ref. [22], a peak of Joseph-
Aaky (z, ,;,z) = 0204 kyfcm/k%, (24) son radigtion was observed' around 11 GH; with the width
’ 50 MHz inBiySr,CaCuyOg single crystals with the current
where the same notation as in Eq. (4) is used. Direct com-along thec axis perpendicular to the layers.
parison of Egs. (24) and (4) demonstrates that/theve su- To observe the fractional ac Josephson effect predicted
perconductor with thé5° junction maps to thg,-wave su- i this paper, all it takes is to perform the same experiment
perconductor by the substitutiahy — 0240k, /kr. Thus,  \yith the 45° /45° cuprate junctions shown in Fig. 2(a). For
the results obtained in Sec. 3 for the-p, junction apply  control purposes, it is also desirable to measure frequency
to the45°/45° junction between twal-wave superconduc- spectrum for the)° /0° junction shown in Fig. 2(b), where
tors with the appropriate integration ovey. The energies 4 peak at the frequeney//k should be minimal. It should
and the wave functions of the subgap Andreev states in thepe gpsent completely in a conventiorad junction, unless
45°/45° junction aredr-periodic, as in Egs. (11). Thus the e junction enters a chaotic regime with period doubling
ac Josephson current has the fractional frequemy, as 23], The high4}. junctions of the required geometry can be

in Eq. (14). S manufactured using the step-edge technique. Bicrystal junc-
On the other hand, if the junction is parallel to 0e1]  tions are not appropriate, because the crystal axeslb of
crystal direction, as shown in Fig. 2b, thén;,, (z,k:) = the two superconductors are rotated relative to each other in

olg (k2 — k2)/k%. This pairing potential is an even func-  such junctions. As shown in Fig. 2(a), we need the junction

tion of k,, thus it is analogous to thewave pairing poten- ~ Where the crystal axes of the two superconductors have the
tial in Eq. (4). Thus, th@°/0° junction between twd-wave same orientation. Unfortunately, attempts to manufacture
superconductors is analogous to the junction. It should ~ Josephson junctions from the Q1D organic superconductors
exhibit the conventionatr-periodic Josephson effect with  (TMTSF)2X failed thus far.

the frequencyeV// . The most common way of studying the ac Josephson
For a generic orientation of the junction line, hevave effect is observation of the Shapiro steps. In this setup,
pairing potential acts like,-wave for some momenta, the Josephson junction is irradiated by microwaves with the

and likes-wave for otherk,. Thus, the total Josephson cur- frequencyw, and steps in dc current are detected at the
rent is a sum of the unconventional and conventional termsdc voltagesV,, = nhw/2e. Unfortunately, this method
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