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Tc and ∆o in a Phenomenological “Pseudogap” Model
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We study numerically superconductivity in a system characterized by the presence of a phenomenological
”pseudogap”,Eg, in the energy spectrum, for0 ≤ T ≤ T s. T ∗ is a crossover temperature. As a simplification,
the pseudogap and the superconducting gap have the sames–wave symmetry. We find that for∀Eg 6= 0
we require a critical value of the superconducting interaction,Vd, to produce a finite superconducting critical
temperature,Tc and another one for∆o 6= 0.

1 Introduction

After their discovery by Bednorz and Muller[1] in 1986, the
high–temperature superconductors (HTSC) are still attract-
ing a lot of interest due to their unusual physical proper-
ties, both in the normal and in the superconducting phases.
For example, theHTSC exhibit a pseudogap in the energy
spectrum in the temperature range0 ≤ T ≤ T ∗. T ∗ is de-
fined by Maier et al.[2] as the crossover temperature where
the spin–susceptibility is a maximum.

There is experimental evidence by the group of Tallon
and Loram[3] where the pseudogap persists belowTc, being
independent of the superconducting gap. This interpreta-
tion is in agreement with the experiment of energy gap evo-
lution in the tunneling spectra ofBi2Sr2CaCu28+δ per-
formed by Dipasupil et al.[4]. They find that the pseudogap
smoothly develops into the superconducting state gap with
no tendency to close atTc. Another proof that the pseudo-
gap and the superconducting gap are independent of each
other is given in the experiments of Krasnov et al.[5] where
they apply a magnetic field to their superconducting samples
and they destroy the superconducting gap, but the pseudogap
remains. They conclude that the pseudogap and the super-
conducting gap coexist inBi–2212 using intrinsic tunneling
spectroscopy.

Rubio Temprano, Trounov and M̈uller[6] have recently
studied the isotope effects on the pseudogap in the high–
temperature superconductorLa1.81Ho0.04Sr0.15CuO4 by
neutron crystal field spectroscopy. They have found evi-
dence for the opening of an electronic pseudogap atT∗ ≈
60K, above the superconducting critical temperature,Tc ≈
32K.

We exploit the consequences of the psudogap on
two macroscopic quantities in the superconducting state,
namely, the superconducting critical temperature,Tc, and
the superconducting order parameter atT = 0, ∆o.

This paper is organized as follows. In Section 2, we

present the pseudogap model, following the steps of Ţifrea,
Grosu and Crisan[7]. In Section 3 we present our numerical
results. In Section 4 we present our discussion and conclu-
sions.

2 The ”pseudogap” model

We assume[7] that thePG and the normal one–particle self–
energy are given by

Σ(~k, iωn) ≡ −E2
gGo(~k,−iωn) , (1)

whereGo(~k, iωn) is the free one–particle Green function.
~k is the wave vector andωn = 2πT (n + 1/2) is the odd
Matsubara frequency, withn an integer. With this choice of
self–energy (Eq. (1)) is easy to show that the ”PG” Green
function is given by

G(~k, iωn) =
u2

~k

iωn − E~k

+
v2
~k

iωn + E~k

, (2)

where we have chosen the pseudogap of pures–symmetry,
since we want to look for details overlooked in Ref. [7]. For
example, the authors of Ref. [7] did not find critical pairing
interactions to haveTc 6= 0 and∆o 6= 0. These considera-
tions have been properly taken into account by Pistolesi and
Nozières[8] in a similar model to ours. A word of caution
is in order here. The model we are discussing here appears
to be more of a semiconductor type, as recognized in Ref.
[8]. To transform the present model into a real pseudogap
model, we should include a damping factor, as it has been
done by Andrenacci and Beck[9].

The superconducting state in theHTSC is obtained
from the two twoBCS equations as follows
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G−1(~k, iωn)G(~k, iωn) + ∆F†(~k, iωn) = 1

∆∗G(~k, iωn)−G−1(~k,−iωn)F†(~k, iωn) = 0 , (3)

whereG(~k, iωn) andF†(~k, iωn) are the diagonal and off–
diagonalBCS Green functions, respectively. This interpre-
tation of thePG is equivalent to make the following choice
in theT -matrix approximation[10, 11, 12] for the supercon-
ducting self–energy:

∑
(~k, iωn) =

(
Σ(~k, iωn) ∆

∆∗ Σ(~k, iωn)

)
(4)

This assumption produces two gaps, one coming from the
PG and the other one from∆ in Eq. (4). Our approach
is completely different from the one in Refs. [13-16] where

they have an effective gap, given by∆eff =
√

∆2 + E2
g .

Their approach is equivalent to taking∆ = 0 in our Eq. (4)
and substitutingΣ(~k, iωn) by the diagonal self–energy (Eq.

(1)), with Eg →
√

E2
g + ∆2.

Solving Eq. (3), we obtain

G(~k, iωn) =
4∑

i=1

αi(~k)

iωn − ωi(~k)
; (5)

F(~k, iωn) = ∆
4∑

i=1

βi(~k)

iωn − ωi(~k)
, (6)

where

ω2
± = E2

~k
+
|∆|2

2
± |∆|

√
E2

g +
|∆|2

4
(7)

ω1(~k) = |ω+| ; ω2(~k) = −|ω+| ; ω3(~k) = |ω−| (8)

ω4(~k) = −|ω−| ; E2
~k
≡ ε2(~k) + E2

g , (9)

andε(~k) = −2t(cos(kx) + cos(ky)) is the free tight bind-
ing band in two dimensions. We are not considering here
the presence of the chemical potential, which we leave for
a future publication [17]. In Section 3 we chooset = 1,
as our unit of energy. In Eqs. (5–6), the spectral weights,
αi(~k) (normal ones) andβi(~k) (superconducting ones), with
i = 1, 2, 3, 4, are given by

c

α1(~k) =

(
u2

~k

ω1(~k)+E~k

+
v2

~k

ω1(~k)−E~k

)−1 (
(ω1)2 − (ε(~k))2

)

4∆ ω1(~k)
√

E2
g + |∆|2

4

α2(~k) =

(
u2

~k

ω1(~k)−E~k

+
v2

~k

ω1(~k)+E~k

)−1 (
(ω1)2 − (ε(~k))2

)

4∆ ω1(~k)
√

E2
g + |∆|2

4

α3(~k) =
−

(
u2

~k

ω3(~k)+E~k

+
v2

~k

ω3(~k)−E~k

)−1 (
(ω3)2 − (ε(~k))2

)

4∆ ω3(~k)
√

E2
g + |∆|2

4

α4(~k) =
−

(
u2

~k

ω3(~k)−E~k

+
v2

~k

ω3(~k)+E~k

)−1 (
(ω3)2 − (ε(~k))2

)

4∆ ω3(~k)
√

E2
g + |∆|2

4

β1(~k) = −β2(~k) =
(ω1)2 − (ε(~k))2

4∆ ω1(~k)
√

E2
g + |∆|2

4

β3(~k) = −β4(~k) =
(ω3)2 − (ε(~k))2

4∆ ω3(~k)
√

E2
g + |∆|2

4

. (10)

We have to solve theTc equation and the gap equation,
∆o, atT ≡ 0. They are given by 1

Vd
=

1
Nx ×Ny

∑
nx,ny

1

2
√

(ε(~k))2 + E2
g

×tanh




√
(ε(~k))2 + E2

g

2 kB Tc


 ≡ F (Tc) (11)
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1
Vd

=
1

Nx ×Ny

∑
nx,ny

1

2∆o

√
∆2

o + 4E2
g

×

 A2

o√
(ε(~k))2 + A2

o

− B2
o√

(ε(~k))2 + B2
o


 (12)

A2
o(B

2
o) ≡ E2

g +
1
2

(
∆2

o ±∆o

√
∆2

o + 4E2
g

)

= E2
g +

1
2

(
∆2

o ±∆2
eff

)
(13)

wherekx = 2nxπ/Nx and ky = 2nyπ/Ny, with nx =
0, 1, ..., Nx − 1, andny = 0, 1, ..., Ny − 1, since we are
solving our discrete system in two dimensions. We have
chosenNx = Ny = 1000 in our numerical calculations.
Vd is the absolute value of the pairing interaction. We have
used a precision of10−5 to solve Eqs. (11-12). From these
equations we conclude thatA2

o = ∆2
o andB2

o = 0 when
Eg = 0.

3 Numerical results

In Fig. 1 we presentTc vs Vd for several values of the pseu-
dogap parameter,Eg, for the case of pures–wave symme-
try. We observe that there is a critical value of the interac-
tion potential,V Tc

d,c , in order to haveTc. As we will see in
the results for∆o vs Vd, there is also a critical value of the
pairing potential below which∆o = 0. In the case ofVd,c

coming from the∆o → 0, these two critical pairing interac-
tions are different. These critical pairing interactions were
not discussed in Ref. [7]. However, they were considered in
a similar model by Pistolesi and Nozières[8].
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Figure 1. Tc/t vs Vd/t for several values of the pseudogap
parameter,Eg/t, for the case of pures–wave symmetry. For
Eg/t 6= 0 there is a critical interaction potential,Vd/t = V Tc

d,c/t,
below whichTc/ = 0. For example, forEg/t = 0.50 we find
V Tc

d,c/t ≈ 2.25 in units oft.

In Fig. 2 we present∆o vs Vd for several values ofEg,
when the pseudogap and the superconducting order param-
eter, atT = 0, have the same symmetry, namely, pures–
wave. We need a critical interaction potential,V ∆o

d,c 6= 0,

whenEg 6= 0, in order to have∆o 6= 0. From Fig. 2, for
Eg = 0.50, V ∆o

d,c ≈ 3.00. Comparing Figs. 1 and 2, we see

that for a fixed value ofEg, V Tc

d,c ≤ V ∆o

d,c . This result implies
that the ratio2∆o(V,Eg)/kBTc(V, Eg) is well defined only
for V ≥ V ∆o

d,c , for a fixed value ofEg.
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Figure 2.∆o/t vs Vd/t for several values of the pseudogap param-
eter,Eg/t. The superconducting order parameter, whenEg = 0/t
has been re–escaled by a factor of 10. ForEg/t 6= 0 there is a crit-
ical interaction potential,Vd/t = V ∆o

d,c /t, below which∆o/t = 0.

For example, forEg/t = 0.50 we find V ∆o
d,c /t ≈ 3.00 in units

of t.
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Figure 3. ∆o vs Vd for several values of the pseudogap parame-
ter, Eg. Following the approximation of Ref. [7], we have taken
Bo ≡ 0

From Fig. 3 we plot∆o/t vs Vd/t for several values of
the pseudogap parameter,Eg/t, when we adopt the aproxi-
mation of Ref. [7], namely,Bo/t ≡ 0. This approximation
does not produce a critical value of the interaction potential.
In consequence,V ∆o

d /t = 0, ∀ Eg/t. As our Eq. (11) does
not have the presence of the factorBo/t, we cannot perform
this approximation. Because of this,Tc/t always needs a
critical value of the interaction, for∀ Eg/t 6= 0.

4 Discussion and conclusions

In this paper we have considered that the pseudogap and the
superconducting order parameter both have the same sym-
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metry, namely, pures–wave symmetry. This is not a crazy
idea, because it has been shown that the observed symmetry
of the order parameter cannot be fitted with only the lowest
harmonics of thed–wave order parameter[18, 19, 20, 21].
Furthermore, a recent experiment with twisted Josephson
junctions in theBi–cuprates[22], is in favor of an extended
s–wave order parameter, and has shown the absence of ad–
wave part in the order parameter. However, the inclusion
of order parameters with another symmetry is not a difficult
task in our working scheme. With this point of view in mind
and following the model of Ţifrea, Grosu and Crisan[7] we
have studied their model to treat delicate points like the crit-
ical interaction potential.

In summary, we have numerically implemented a model
which has a pseudogap (really, it is a semiconductor gap,
since damping effects have been neglected in our calcula-
tions) in the one–particle energy spectrum of quasi–particles
in the temperature range0 ≤ T ≤ T ∗. We have in-
vestigated the effect ofEg on the two basic parameters
of the BCS theory, Tc and ∆o. We have found that for
Eg 6= 0 two critical pairing potentials emerge from our
calculations. In consequence, in order to define the ratio
R ≡ 2∆o(Vd, Eg)/kBTc(Vd, Eg) we need to be above the
bigger of the two critical pairing potentials. WhenEg = 0,
R ≈ 3.5 in theBCS–approximation. We have briefly dis-
cussed the case when both order parameters,Eg and ∆o,
have the same symmetry, namely, pures–wave symmetry.
However, thed–wave symmetry is not difficult to study and
we leave for a future publication. Another aspect we could
study is the crossover phase diagram from theBCS limit to
the Bose–Einstei regime[23].
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D. Garćıa–Gonźalez for helping us with the preparation of
the manuscript.

References

[1] J. G. Bednorz and K. A. M̈uller, Z. Phys. B64, 189–193
(1986).

[2] Th. A. Maier, M. Jarrel, A. Macridin, and F.-C. Zhang, cond–
mat/0208419 (submitted to Phys. Rev. Lett.).

[3] J. L. Tallon and J. W. Loram, Physica C349, 53 (2001).

[4] R. M. Dipasupil, M. Oda, N. Momono and M. Ido, J. Phys.
Soc. Jpn.71, 1535-1540 (2002).

[5] V. M. Krasnov et al. Phys. Rev. Lett.84, 5860 (2000)

[6] D. Rubio Temprano, V. Trounov and K. A. M̈uller, Phys. Rev.
B 66, 184506 (2002). See also, P. Häfliger, A. Podlesnyak, K.
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