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We study numerically superconductivity in a system characterized by the presence of a phenomenological
"pseudogap” Ey, in the energy spectrum, for< T < T°°. T* is a crossover temperature. As a simplification,

the pseudogap and the superconducting gap have the samave symmetry. We find that fofrE;, # 0

we require a critical value of the superconducting interactign,.to produce a finite superconducting critical
temperature]. and another one fal\, # 0.

1 Introduction present the pseudogap model, following the steps of Tifrea,
Grosu and Crisan[7]. In Section 3 we present our numerical

After their discovery by Bednorz and Muller[1] in 1986, the results. In Section 4 we present our discussion and conclu-

high—temperature superconductatsi(SC) are still attract- sions.

ing a lot of interest due to their unusual physical proper-

ties, both in the normal and in the superconducting phases.

For example, thé/T'SC' exhibit a pseudogap in the energy ” ”

spectrum in the temperature range< 7' < T*. T* is de- 2 The pSGUdogap model

fined by Maier et al.[2] as the crossover temperature where

the spin—susceptibility is a maximum. f
There is experimental evidence by the group of Tallon ENErgy are given by

and Loram[3] where the pseudogap persists bdlpvbeing

We assume[7] that thBG and the normal one—particle self—

independent of the superconducting gap. This interpreta- Z(E, W) = —EgGo(l; —iwy,) Q)
tion is in agreement with the experiment of energy gap evo-
lution in the tunneling spectra dBi2Sr2CaCu2g ;5 per- where G, (k, iw,) is the free one—particle Green function.

formed by Dipasupil et al.[4]. They find that the pseudogap

smoothly develops into the superconducting state gap with

no tendency to close &f.. Another proof that the pseudo-

gap and the superconducting gap are independent of eac

other is given in the experiments of Krasnov et al.[5] where

they apply a magnetic field to their superconducting samples 9 9

and they destroy the superconducting gap, but the pseudogap G(E i) = YE Uk )

remains. They conclude that the pseudogap and the super- e ’

conducting gap coexist iBi—2212 using intrinsic tunneling

spectroscopy. where we have chosen the pseudogap of pusymmetry,
Rubio Temprano, Trounov andMer[6] have recently  since we want to look for details overlooked in Ref. [7]. For

studied the isotope effects on the pseudogap in the high-example, the authors of Ref. [7] did not find critical pairing

k is the wave vector ang,, = 27T(n + 1/2) is the odd
Matsubara frequency, with an integer. With this choice of
elf-energy (Eq. (1)) is easy to show that thfeG” Green

nction is given by

iwy — By dwn + By

temperature superconductdi; g Hog 4570.15Cu04 by interactions to hav&, # 0 andA, # 0. These considera-
neutron crystal field spectroscopy. They have found evi- tions have been properly taken into account by Pistolesi and
dence for the opening of an electronic pseudogap-ats Nozieres[8] in a similar model to ours. A word of caution
60K, above the superconducting critical temperatliex is in order here. The model we are discussing here appear:
32K. to be more of a semiconductor type, as recognized in Ref.

We exploit the consequences of the psudogap on[8]. To transform the present model into a real pseudogap
two macroscopic quantities in the superconducting state,model, we should include a damping factor, as it has been
namely, the superconducting critical temperatdfg, and done by Andrenacci and Beck[9].
the superconducting order parametefat 0, A,. The superconducting state in tHéT'SC is obtained

This paper is organized as follows. In Section 2, we from the two twoBC'S equations as follows
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GV (kyiwn)G (K, iwn) + AF (K iw,) = 1 . 4 (F
e e G vy = S —2B_ g
A*G(k,iwy) — G (k, —iwn) F' (k,iw,) = 0 ,(3) = iwn, — wi(k)
whereG(k, iw,) and F'(k, iw,) are the diagonal and off— Flhiw) = A 6 ©)

diagonalBC'S Green functions, respectively. This interpre-

tation of thePG is equivalent to make the following choice

in the T-matrix approximation[10, 11, 12] for the supercon- \where
ducting self—energy:

) AP A2
Z(E i) = ( S(k, iwn) A > @ wi = El+ A7 | + |A| ‘ 4‘ @)
AT Blkien) W) = oyl ; w2</2> - —|w+|  ws() = o (8)
This assumption produces two gaps, one coming from the wa(k) = —lw_| ; Ei= (k) + B2, 9)

PG and the other one from\ in Eq. (4). Our approach

is completely different from the one in Refs. [13-16] where andg(ﬁ) = —2t(cos(k,) + cos(k,)) is the free tight bind-
they have an effective gap, given by, ;; = /A2 + Eﬁ- ing band in two dimensions. We are not considering here
the presence of the chemical potential, which we leave for
a future publication [17]. In Section 3 we choose= 1,

as our unit of energy. In Egs. (5-6), the spectral weights,

Their approach is equivalent to takidy = 0 in our Eq. (4)
and substituting2(k, iw,, ) by the diagonal self-energy (Eq.

(1), with B, —  / EZ + A2, ( ) (normal ones) and; (k) (superconducting ones), with
Solving Eq. (3), we obtain =1,2,3,4, are given by
]

<w1<z§>%+E; + wl(lg)%EE)_l <(W1)2 - (E(E))Q)
18 Fy e +

(w1(/§)%—E,; * wl(l;)%r&) B ((Wl)z - (E(E))2)
A8 wi(k )W

B <ws(1§)%rE,z i ws(g)%—E,;)l ((w3)2 - (E(E))z)

- <W3(%%E,; + (5)+E >_1 ((W3)2 - (6(’5))2>

AN wy(R)\ B2 + 182
(w1)? — (e(k))?
AN wi (k) (/B2 + 1BE
(w3)? — (e(k))? .
AN wy(k) /B2 + 1BF

ar(k) =

aslf) =

1N}

Q
N
—
!
~—

I

Bi(k) = —Pa(k) =

B3(k) = —Pu(k) = (10)

We have to solve th&, equation and the gap equation,
A,,atT = 0. They are given by 1 1

Vd ynmny 2\/ E +E2

2+ B2
t =F 11
xtanh 5 k‘B T ) (11)
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whenE, # 0, in order to haveA, # 0. From Fig. 2, for

Vi = ¥ 1 ~ Z ! E, = 0.50, Vf; ~ 3.00. Comparing Figs. 1 and 2, we see
¢ # XN oy 200, /A2 +AE] that for a fixed value of},, V,/ < Vi This resultimplies
that the rati®A, (V, E,)/kpT.(V, E;]) is well defined only
o A? _ B? (12) forvz= Ve, for a fixed value off,.

Ve + 42 (@ + B2

S- wave symmetry

B o LA e s s e B B
AABY) = EX+ % (AgiAo,/AgMEg) e T
1 3 N E
= E; + 5 (A(Q) 4+ Agff) (13) ; -4 EJt=00(8,/tx10) :

06 - 4
wherek, = 2n,7/N, andk, = 2n,7/N,, with n, = s b
0,1,..,N, — 1, andn, = 0,1,..., N, — 1, since we are oar ! E
solving our discrete system in two dimensions. We have o i ]
chosenN, = N, = 1000 in our numerical calculations. 02 | : E
V, is the absolute value of the pairing interaction. We have e/ ]
used a precision af0~° to solve Egs. (11-12). From these Oput g Av[éé
equations we conclude that? = AZ and B2 = 0 when /
E, =0. Figure 2.A, /t vs V;/t for several values of the pseudogap param-

eter,E, /t. The superconducting order parameter, wiign= 0/t
. has been re—escaled by a factor of 10. Egyt # 0 there is a crit-
3 Numerical results ical interaction potential//t = V> /t, below whichA, /t = 0.
For example, forE, /t = 0.50 we find V,/>° /t ~ 3.00 in units
In Fig. 1 we present, vs V, for several values of the pseu- of . ’
dogap parametet;,, for the case of pure—wave symme-
try. We observe that there is a critical value of the interac-
tion potential,V}, in order to havel,.. As we will see in
the results forA, vs Vy, there is also a critical value of the S
pairing potential below whicl\, = 0. In the case oV, . : 1
coming from theA, — 0, these two critical pairing interac- g 4
tions are different. These critical pairing interactions were [ Efi=01 ]
not discussed in Ref. [7]. However, they were considered in . e ]
a similar model by Pistolesi and Néxzes|[8]. o f T

005

S- wave symmetry .
IS e s s e s e s s s s s B I [ -

)
=
.
3
b

o EJt=000(T/tx10)

0‘8f =--x EJt=050

+—e Ejt=100 Figure 3. A, vs V; for several values of the pseudogap parame-

. ter, E,. Following the approximation of Ref. [7], we have taken
] B, =0

0.6j 4 Eft=150

«.-= EJt=200
d

04—

] From Fig. 3 we plotA, /t vs V,/t for several values of

. the pseudogap parametér, /t, when we adopt the aproxi-

; 1 mation of Ref. [7], namelyB,/t = 0. This approximation

‘ L AN, does not produce a critical value of the interaction potential.
vt In consequencd,/dA“/t =0,V E,/t. As our Eq. (11) does

not have the presence of the fact8y/¢, we cannot perform

Figure 1. T./t vs Va/t for several values of the pseudogap this approximation. Because of thi, /¢ always needs a

parameter,E, /t, for the case of pure-wave symmetry. For  critical value of the interaction, for E,/t # 0.

E,/t # 0 there is a critical interaction potentidl;/t = VdT’g /t,

below whichT./ = 0. For example, forE, /¢ = 0.50 we find ] ) )

VI /t ~ 2.25 in units oft. 4 Discussion and conclusions

In Fig. 2 we preseni\, vs V; for several values of;,

when the pseudogap and the superconducting order paramin this paper we have considered that the pseudogap and the
eter, atT = 0, have the same symmetry, namely, psre superconducting order parameter both have the same sym-

wave. We need a critical interaction potentigy:e # 0,
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metry, namely, pure—wave symmetry. This is not a crazy  [3] J. L. Tallon and J. W. Loram, Physica329, 53 (2001).

idea, because it has been shown that the.observed symmetry[4] R. M. Dipasupil, M. Oda, N. Momono and M. Ido, J. Phys.
of the order parameter cannot be fitted with only the lowest Soc. Jpn71, 1535-1540 (2002)

harmonics of thel-wave order parameter[18, 19, 20, 21]. ’ '

Furthermore, a recent experiment with twisted Josephson [5] V- M. Krasnov et al. Phys. Rev. Let®4, 5860 (2000)
junctions in theBi—cuprates[22], is in favor of an extended  [6] D. Rubio Temprano, V. Trounov and K. A. ler, Phys. Rev.
s—wave order parameter, and has shown the absencé-of a B 66, 184506 (2002). See also, Riftiger, A. Podlesnyak, K.
wfav%I part in the order r|§>aramk§ater. However, the indcl#sioln Conder and A. Furrer, PSl<ich Internal Report (2003).

of order parameters with another symmetry is not a difficult . . .

taskin oﬁr working scheme. With tﬁ/is pointyofview in mind [7] 1. Tifrea, I. Grosu and M. Crisan, Physica371, 104 (2002).
and following the model of Tifrea, Grosu and Crisan[7] we [8] F. Pistolesi and Ph. Nozies, Phys. Rev. B6, 054501

have studied their model to treat delicate points like the crit- (2002).
ical interaction potential. . _ [9] N. Andrenacci and H. Beck, cond—mat/0304084; ibidem,
In summary, we have numerically implemented a model Physica C (to be published, Proceedings of the M2S-HTSC—

which has a pseudogap (really, it is a semiconductor gap, VL.
since damping effects have been neglected in our calcula- . N .
tions) in the one—particle energy spectrum of quasi—particles!t0] M- H. Pedersen, J. J. Rdduez-Nifez, H. Beck, T. Schnei-
in the temperature rangé < 7' < T*. We have in- der and S. Schafroth, Z. Phys.1B3 21-28 (1997).
vestigated the effect of/, on the two basic parameters [11] S.SchafrothandJ.J. Raguez-Nifiez, Z. Phys. B02, 493
of the BC'S theory, T, and A,. We have found that for 499 (1997).

E, 7 0 two critical pairing potentials emerge from our 151 s, schafroth, J. J. Roiluez-Nifiez and H. Beck, J. Phys.:
calculations. In consequence, in order to define the ratio Condens. Matte®, L111-L118 (1997).

R = 2A,(Vy, Ey)/ksT.(Vy, E;) we need to be above the

bigger of the two critical pairing potentials. Whé#), = 0, [13] Y.-J. Kao, A. P. lyengar, Q. Chen and K. Levin, Phys. Rev. B
R =~ 3.5 in the BC S—approximation. We have briefly dis- 140505(R) (2001).

cussed the case when both order parametggsand A,, [14] 1. Kosztin, Q. Chen, B. Jarik and K. Levin, cond-
have the same symmetry, namely, pyr@vave symmetry. mat/9805065.

However, thei-wave symmet(y is not difficult to study and [15] K. Levin, Q. Chen, I. Kosztin, B. Jadkand A. lyngar, cond—
we leave for a future publication. Another aspect we could : ’ ' '

. . L t/0107275.
study is the crossover phase diagram fromMBs limit to ma
the Bose—Einstei regime[23]. [16] Y.-J. Kao, A. P. lyengar, J. Stajic, and K. Levin, cond—
mat/0207004 v2.
Acknowledgments [17] J.J. Rodiguez-Nifiez, L. $inchez, D. Romero and H. Beck
We are very grateful to |. Tifrea, J. A. Budagosky— (submitted).

Marcilla, P. Martn, E. V. L. de Mello, J. Ferreira, |. Bonalde, . .

R. Medina, M. Valera, S. Aquino, M. Rofjjuez, H. Ma- [18] V. M. Loktev, R. M. Quick and S. G. Sharapov, Physics Re-
teu, E. Orozco, J. Konior, C. Chiang, O. Alvarez—Llamoza ports349, 1-123 (2001).

and M. A. Surez, for interesting discussions. The numeri- [19] J. Mesot, M. R. Norman, H. Ding et al., Phys. Rev. L&8,
cal calculations were performed at SUPERCOMP (Departa- 840-843 (1999), ibidem., cond-mat/9812377.

mento de ksica—FACYT-UC). We thank'.D.C.H.-U.C.— ]

Venezuela (Project 2001-013F'ON ACY T-Venezuela [20] R. Gat, S. Christensen, B. Frazer et al., cond—-mat/9906070.
(Project S1-2002000448) addA P RG/S—Brazil for par- [21] G. G. N. Angilella, A. Sudbo, and R. Pucci, Eur. Phys. J. B
tial financial support. One of the authorg.{.R.N.) is a 15, 269 (2000)

Fellow of the Venezuelan Program of Scientific Research ’ ' .

(PPI-II), a Senior Associatd C'T P-Italy (2003-2008))  [22] R. A.Klemm, G. Arnold, A. Bille et al, Int. Mod. Phys. B3,
and a Visiting Scientist afV /C-Venezuela. We thank M. 3449-3454 1999).

E]'e(?na;ﬁagg?pqalez for helping us with the preparation of [23] M. B. Soares, F. Kokubun, J. J. Riogwnez-Nifiez and O.
' Rondn, Phys. Rev. B5, 174506 (2002); see also, A. Perali,
P. Pieri, and G. C. Strinati, Phys. Rev6B, 066501 (2003);
J. Quintanilla and B. L. Gyrffy, J. Phys. A: Math. Gen36,

References 9375 (2003).
[1] J. G. Bednorz and K. A. Mller, Z. Phys. B64, 189-193 [24] J.J. Rodiguez-Nifiez, O. Alvarez, E. Orozco, O. Rood, F.
(1986). Kokubun and M. B. Soares Phys. Rev6B, 066502 (2003);
] o 0. Alvarez—Llamoza, E. Orozco and J. J. Rgdez-Nifiez

[2] Th. A. Maier, M. Jarrel, A. Macridin, and F.-C. Zhang, cond— (submitted).

mat/0208419 (submitted to Phys. Rev. Lett.).



