
758 Brazilian Journal of Physics, vol. 33, no. 4, December, 2003

Unconventional Magnetic Properties of Cuprates
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Recently experiments on high critical temperature superconductors have shown that the doping levels and the
superconducting gap are usually not uniform properties but strongly dependent on their positions inside a given
sample. We show here that the large diamagnetic signal above the critical temperatureTc and the unusual
temperature dependence of the upper critical fieldHc2 with the temperature can be explained taking the inomo-
geneities and a distribution of different local critical temperatures into account.

There are increasing evidences that high critical tem-
perature superconductors (HTSC) are intrinsic inhomoge-
neous materials. This is probably the cause of several un-
conventional behavior. In particular, recent magnetic imag-
ing through a scanning superconducting quantum device
(SQUID) microscopy has displayed a static Meissner effect
at temperatures as large as three times theTc of an under-
doped LSCO film[1]. Following up SQUID magnetization
measurements on powder oriented YBCO and LSCO single
crystals[2, 3] have shown a rather high magnetic response
which, due to its large signal and structure, cannot be at-
tributed solely to the Ginzburg-Landau (GL) theory of fluc-
tuating superconducting magnetization[4, 8]. On the other
hand theH-T phase diagram of the HTSC possess, in cer-
tain cases, positive curvature forHc2(T ), with no evidence
of saturation at low temperatures [5]. These lack of satu-
ration at low temperatures may minimize the importance of
strong fluctuations of the order parameter.

In this paper we develop a unified view for all these
anomalous properties. The basic ideas are[9, 10]: the charge
distribution inside a HSCT is highly inhomogeneous and
may be divided in two types. A hole-poor branch which
represents the AF domains and a hole-rich which character-
izes the metallic regions. The width of the metallic distri-
bution decreases with the average doping since usually, the
samples becomes more homogeneous as the average doping
level or average charge density increases. Due to the spa-
tially varying local charge density, it is also expected that
the Tc, instead of being a single value as in usual metal-
lic superconductors, becomes locally dependent. Therefore

a given HTSC compound with an average charge density
nm possess a distribution of charge densityn(r), zero tem-
perature superconducting gap∆0(r) and superconducting
critical temperatureTc(r) where the symbol(r) means a
point inside the sample. In this scenario we identify the
largestTc(r) with the the pseudogap temperatureT ∗ of
the compound[11]. Metallic domains with low (high) dop-
ing level have high (low)Tc(r). Upon cooling belowT ∗

the superconducting regions develop at isolated regions as
droplets of rain in the air and, eventually they percolates
at the superconducting critical temperatureTc of the com-
pound at which superconducting long range order is estab-
lished.

1 The Model for the Magnetization

In order to estimate theM(B) we follow the ideas and the
procedures of the Critical State Model (CSM) to each su-
perconducting droplet. Upon applying an external magnetic
field, a critical current (Jc) is established which opposes the
field asJc(B) = α(T )/B according to Ohmer et al[6].

For simplicity we take these superconducting droplets
as cylinders of radiusR, which is sufficient small in or-
der to have a constant charge densityn and consequently
the critical temperatureTc(n) is the same within such cylin-
der region (As the temperature decreases, more droplets ap-
pear and the superconducting regions increase by aggrega-
tion of droplets of differentn). The CSM approach leads to
the magnetic field dependence of the magnetization in each
small cylinder as[7]:
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SinceTc(n) is constant inside a superconducting cylin-
drical droplet, the critical fields (Bc1 and Bc2) inside the
droplets will have their temperature dependence according
to the GL theory, e. g.,Bc1(T ) = Bc1(0)[(1 − T/Tc(n)]
andBc2(T ) = Bc2(0)[(1 − T/Tc(n)]. Taking the depen-
dence ofTc(n) on n as a linear relation, namelyTc(n) =
T0 − b(n − nc), wherenc = 0.05 is the onset of supercon-
ductivity andT0 is its maximum value, we arrive at the ex-
pressions for the critical fieldsBc1(T, n) andBc2(T, n). A
similar functional form is supposed forB∗ due to theα(T )
temperature dependence. Thus,

Bc1(T, n) = Bc1(0)[1− T

T0 − b(n− nc)
] (4)

Bc2(T, n) = Bc2(0)[1− T

T0 − b(n− nc)
] (5)

B∗(T, n) = B∗(0)[1− T

T0 − b(n− nc)
]. (6)

When a given sample is submitted to an applied external
magnetic fieldB, the superconducting droplets with carrier
concentrationn for which the applied field is higher than
their second critical fieldBc2(T, n) = Bc2(0)[(1−T/(T0−
b ∗ (n−nc)], do not contribute to the sample magnetization.
This condition is verified for droplets for whichn > nmax,
wherenmax(Bc2) = nc +T0/b− (T/b)/[1−B/Bc2(0)] is
obtained inverting Eq.5. SinceTc(n) is a decreasing func-
tion of n, only the droplets withn bigger thannmax do not
contribute to the sample’s magnetization because their su-
perconductivity is destroyed by the fieldB. Thus we expect
that

M(T, B) =
∫ nmax(Bc2)

nc

P (n)M(B, T, n)dn. (7)

WhereP (n) is the distribution function for the charge
level inside a given HTCS inferred in Ref.[10]. However, in
the context of the CSM, depending on the intensity of the
applied field, there are different possibilities in which each
domain contributes toM(B). In the low field regime the su-
perconducting clusters will contribute to the magnetization
of the sample in three forms: there are some clusters, which
are not penetrated by the fieldB, that isB ≤ Bc1(T, n) and
they contribute to the magnetization with perfect diamag-
netism (Eq.1). These clusters have their carrier concentra-
tion in the interval,n < nc+T0/b−(T/b)/[1−B/Bc1(0)].
The second group of clusters have theirBc1(T, n) lower
than the applied field butB is also lower thanB∗(n, T ).
This group is partially penetrated by the field and they con-
tribute toM(B) according Eq.2. These domains have their
carrier concentration in the intervalnc +T0/b− (T/b)/[1−
B/Bc1(0)] < n < nc + T0/b − (T/b)/[1 − B/B∗(0)].
Lastly, there are some superconducting granules for which
the applied field is higher thanB∗(T, n) but also lower than
Bc2(T, n). These domains contribute to the magnetization
according Eq.3. Therefore, for a sufficient low applied field,
the general expression for theM(B) is given by:

M(T, B) =
∫ nmax(Bc1)

nm

P (n)M1(B, T, n)dn

+
∫ nmax(B∗)

nmax(Bc1)

P (n)M2(B, T, n)dn

+
∫ nmax(Bc2)

nmax(B∗)
P (n)M3(B, T, n)dn (8)

.

The above theory was developed to model the mea-
sured magnetization curves of theLa1−xSrxCuO4 fam-
ily of compounds. In Fig. 1 we plot the results of our
model with the parameter which corresponds to anm = 0.1.
The qualitative features of the measurements are entirely re-
produced and are simply explained by our model; at low
fields the perfect diamagnetism is expected for droplets for
which the fields are lower than theirBc1. We expectBc1

to be weak because the superconducting regions formed
aboveTc are small and isolated and the penetration depth
λ is large for HTCS. By the same token, the droplets pen-
etrating fieldB∗ should not be very strong what decreases
rapidly the overall diamagnetic signal for field much weaker
thanBc2. As the applied field increases, the magnetic re-
sponse dies off and is reduced to the fluctuations. This is
the reason whyM(B) has a minimum at very low applied
fields. In order to obtain a reliable value ofM(B) and to
compare with the experimental results, we have incorpo-
rated the fluctuation magnetizations induced by the super-
conducting order parameter, an effect which should be al-
ways present, regardless whether the superconductor is more
or less inhomogeneous. As noted in reference[7], for super-
conducting droplets with a homogeneous order parameter
and with dimensionsd approximately equal to the coher-
ent lengthξ(T ), the Ginzburg-Landau model provides an
exact solution forMfluct(B). Here we use a simplified
”zero-dimensional” for superconducting clusters of radius
d smaller or near the coherence lengthξ(T ), namely[2]:

Mfluct(T,B) = − 2/5kB(πξT )2B
Φ2(T/Tc − 1) + (πξBd)2

(9)

wherekB is the Boltzmann constant,Φ0 is the quantum flux
and d ≈ ξ ∝ (T − Tc)/Tc. This last expression yields
a linearMfluct(B) dependence for low fields and it has
been incorporated in our calculations. The specific results
for Mfluct are shown in the inset of Fig.1.

We can see that the up-turn field is nearBup = 0.001T
which agrees with the experimental values[3]. It is worth-
while to mention that previously estimation for the up-turn
field considering only the Lawrence-Doniach fluctuations[4]
in a layered superconductor[2] yields expected values near
Bup = 10T. These figures bring out the importance of the
CSM applied to the superconducting islands aboveTc to ex-
plain the experimental results.
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Figure 1. Magnetization for parameters appropriated to the under-
doped LSCO as calculated from Eqs. 7-11. The inset shows how
the anomolous magnetization is almost vanishing forT = 36.1K
and evolves into a sole fluctuation regime atT = 37K. This result
is to be compared with the measurements from ref.[3].

2 The Model for Hc2

In the case of an external magnetic field parallel to the
c-direction, i.e. perpendicular to theCuO2 planes (ab-
direction), the Ginzburg-Landau (GL) upper critical field
may be given by[7]

Hc2(T ) =
Φ0

2πξ2
ab(T )

(10)

whereΦ0 = hc/2e is the flux quantum andξab(T ) is the GL
temperature dependent coherence length in theab plane. In
terms of the GL parameters the coher ence length is given

ξ2
ab(T ) =

~2

2mα(T )
= ξ2

ab(0)
(

Tc

Tc − T

)
(T < Tc) (11)

where ξ2
ab(0)=~2/2mabaTc is the extrapolated coherence

length,mab is the part of the mass tensor for theab plane
anda is a constant[12]. Therefore,

Hc2(T ) =
Φ0

2πξ2
ab(0)

(
Tc − T

Tc

)
. (T < Tc) (12)

For the LSCO series a coherence length ofξab(0)=30Å was
adopted.

Now, assuming that each isolated or connected super-
conducting region displays a localHi

c2 which is given by
the above linearized GL equation, the totalHc2 is the sum
of these contributions. Since a given local superconducting
region “i” has a local temperatureTc(i) and probabilityPi,
it will contribute to the upper critical field with a local linear
upper critical fieldHi

c2(T ) nearTc(i). Therefore, the to-
tal contribution of the local superconducting regions to the
upper critical field is the sum of all theHi

c2(T )’s. Thus,

applying Eq.(12), theHc2 for an entire sample is

Hc2(T ) =
Φ0

2πξ2
ab(0)

1
W

N∑

i=1

Pi

(
Tc(i)− T

Tc(i)

)

=
1
W

N∑

i=1

PiH
i
c2(T ) (T < Tc(i) ≤ Tc)(13)

where N the number of superconducting regions, or su-
perconducting islands each with its localTc(i)≤ Tc and
W =

∑N
i=1 Pi is the sum of all thePi’s. As we have al-

ready mentioned, at temperatures aboveTc there are iso-
lated superconducting regions, while belowTc these regions
percolate and the system may hold a dissipationless current.
SinceHc2 is experimentally measured atT < Tc(H=0),
it is the field which destroys the superconducting clusters
with T < Tc(i) ≤ Tc, leading the system without per-
colation. The first superconducting regions which are de-
stroyed by the external field are the weakest ones, that is,
those which have critical temperaturesTc(i)’s lower than
the critical temperatureTc(H=0).
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Figure 2. Theoretical results ofHc2(T ) (solid lines) of the LSCO
series considering the distribution of Ref. [10] together with the
experimental data of Ref. [5]. The dashed line is a GL fitting of
Eq.(12). In a) the result for a linear normalized distribution (dotted
line) is also shown.
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The mechanism is the following: at a temperatureT <
Tc most of the system is superconducting and a small
applied field destroys first the superconducting regions at
lower Tc(i)’s, without loss of long range order. Increasing
the applied field causes more regions to become normal and
eventually when the regions withTc(i) ≈ Tc turn to the
normal phase, the system is about to have a nonvanishing
resistivity. This value of the applied field is taken as the
Hc2 in our theory, and it is the physical meaning of Eq.(13).
Thus, at a given temperatureT , we sum the superconducting
regions withT < Tc(i) ≤ Tc, with their respective proba-
bilities.

The experimental upper critical fieldHc2 of the HTSC
may be obtained from the resistivity measurements as it is
the field relative to a fraction of the “normal-state” resistiv-
ity [5]. By definition, Honset from the resistive measure-
ments is defined as the magnetic field at which the resistiv-
ity ρ first is detected to deviate from the zero in theρ vs H
curves, and this is the assumption used in Eq.(13) and, there-
fore, it is our definition ofHc2(T ). Below we plotHc2(T )
with the measuredHonset for the cases ofn=0.15 (Fig. 2a)
andn=0.17 (Fig. 2b) of the LSCO series. For the case of
n=0.08 (Fig. 2c) we compared our results withH90 since
this field vanishes atTc ≈ 24K, which is the value ofTc

obtained from the phase diagram of Ref [10], whileHonset

vanishes atT ≈ 12K.
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Figure 3. Theoretical results ofHc2(T ) (dot-dashed line) for the
n = 0.20 of the LSCO series together with the Nersnt signal mea-
surements curve of Ref. [14] (solid line). The dashed line is a GL
fitting.

In Fig. 3 one can see the results forn=0.20 com-
pared withH∗ from the Nernst-signal measurements of
Ref. [13, 14]. By the same token, for the Nernst signal[13]
measurements of Ref. [14],H∗ may be considered the upper
critical field since it represents an intrinsic field which con-
trols the onset of the flux-flow dissipation and vanishes at a
temperature close toTc. Therefore,H∗ may be compared
with Honset. Also, in Fig. 2a we plot the results of a lin-
ear normalized charge distribution together with the bimodal

distribution of Ref. [10]. As one can see, both distributions
yield very similar results, which shows that the calculations
do not depend on the details of the charge distribution.

3 Conclusion

We have been able to reproduce the qualitative features of
two nonconventional behavior of HTSC: the unusual dia-
magnetic signal aboveTc and theHc2 dependence with the
temperature. The basic hypothesis is the non-uniform dis-
tribution of charge which was introduced before and which
was used to interpret the HTSC phase diagram. Our results
demonstrated that the measured normal state magnetization
curves, theBc2 fields, Nernst signal and the STM magnetic
imaging results may be interpreted through the formation
of static superconducting islands at temperatures above the
sample’sTc and belowT ∗.
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