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High-power generation in backward-wave oscillators (BWO) of large section requires that the beam electrons
flowing close to the corrugated wall interact efficiently with surface waves supported by a periodic structure.
Such waves are described by the superposition of slow-wave space harmonics of the operating mode. The
present paper reports on design tools for BWOs operating in symmetric TM modes since these modes are
able to perturb the axial velocity and electron density on rectilinear beams confined by an external magnetic
field in slow-wave systems. Here we investigate whether a cylindrical guide with sinusoidally rippled wall can
provide strong coupling between the guide surface waves and mildly relativistic(∼ 500 keV) electron beams
in the 8-9 GHz frequency range for BWOs of large diameter (D ∼ 3λ). For this purpose, the characteristic
equation of a sinusoidally corrugated structure is derived on the basis of the Rayleigh-Fourier method, whereby
the field solution is represented by a single expansion of TM eigenmodes. From the dispersion diagrams thus
obtained we infer the appropriate periodic length and ripple amplitude of the guiding structure that optimize the
beam-wave interaction.

1 Introduction

The backward-wave oscillator (BWO) is a source of electro-
magnetic radiation in the centimeter and millimeter wave-
length bands, with its capability as a high-power microwave
source being demonstrated by the generation of 15 GW out-
put power at 3-cm and 3 GW at 8-mm wavelengths [1].
In the simple classical description, the BWO consists of a
spatially periodic waveguide into which a high-current elec-
tron beam (confined by a strong magnetic field) is injected
to drive and interact with azimuthally symmetric transverse
magnetic (TM) modes, as just these modes are able to per-
turb the axial velocity and electron density on rectilinear be-
ams. In many works [2-8] the periodic structure, in general
a sinusoidally rippled cylindrical guide, is merely displayed
in its final configuration, with no account as to how the ge-
ometry of the structure has been synthesized aiming at its
particular application. Adressing this basic question, here
we present design tools for the synthesis of sinusoidal profi-
les from the technical goals for the BWO, namely, the opera-
ting frequency and the beam energy. The analysis develops
on the basis of the Rayleigh-Fourier method, whereby the
field solution is represented by a single expansion of TM
space harmonics [10]. This method has been verified by
some authors [11-14] as the one (among the least-squares
and the integral methods) giving by far the best overall des-
cription of wave scattering from sinusoidal surfaces.

Consistent with the design requirements of enough
slowing of the TM wave and strong coupling impedance,
a sinusoidal profile is specifically synthesized for a 8.9 GHz

BWO driven by a 500 keV electron beam. The RF method
is also successfully applied in the analysis of a piecewise
continuous profile [7] (with semicircles separated by rec-
tangular grooves), which shows to yield a higher coupling
impedance upon comparison with the sinusoidal profile.

2 Dispersion relation of the cylin-
drical waveguide with sinusoidally
Rippled Wall

The corrugated structure that we consider consists of a cy-
lindrical waveguide with perfectly conducting wall of radius
Rw(z) sinusoidally rippled about the mean radiusR0 as that
commonly employed in high-power BWO experiments [8],
[9], i.e.,

Rw(z) = R0(1 + ε cos(
2π

d
z)) (1)

with ε andd defining the amplitude and the period of cor-
rugation, repectively. Due to the spatial periodicity of the
structure along the axial coordinate z, azimuthally symme-
tric TM electric fields in the cylindrical corrugated system
(r, ϕ, z) can be expanded in spatially harmonic series accor-
ding to Floquet,s theorem as

Ez(r, z, t) =
n=+∞∑
n=−∞

AnJ0(k⊥n r) exp(i kznz − iωt) (2)
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Er(r, z, t) = −i

n=+∞∑
n=−∞

An
kzn

k⊥n
J1(k⊥n r) exp(i kznz−iωt)

(3)
where

kzn = kz0 +
2π

d
n, 0 ≤ kz0 ≤ 2π

d
(4)

denotes the longitudinal wavenumber of the nth space har-
monic, which is related to the angular frequencyω and to
the transverse wavenumberk⊥n through

k2
⊥n =

ω2

c2
− k2

zn (5)

Assumingkz0 as the reference propagation constant, the
electric field phase shifts by exp (ikzn d ) in moving fromz
to z + d (at fixed r and ϕ), with the determination ofkz0

(and, hence,kzn) as function ofω being the central problem
of a slow-wave structure.

The dispersion equation determining the dependence of
the reference wavenumberkz0 on the angular frequency fol-
lows from the boundary condition requiring that the compo-
nent of the electric field tangential to the corrugated surface
must vanish, i.e.,

[
Ez(r, z) + Er(r, z)

dRw(z)
dz

]

r=Rw

= 0 (6)

Substituting (2)-(3) in (6) and expanding the resulting ex-
pression in a Fourier integral over [0, 2π], we find an infinite
system of algebraic equations for the amplitude coefficients
An

n=∞∑
n=−∞

An Cn m(ω, kz0 ,ε , R0, d) = 0 (7)

where

c

Cn m =
[
1 +

2π

d
(n−m)

]
kzn

k2
⊥n

∫ d

0

dz J0(k⊥nRw(z))Cos

(
(n−m)

2π

d
z

)
(8)

d

The existence of a nontrivial solution to the amplitudes
of the space harmonics demands that the determinant of the
homogeneous equations (7) be zero. Thus, setting

det || Cn m ||= 0 (9)

yields the eingenvalue for at given corrugated parametersε,
R0 andd. Normalizing the dispersion relation and solving
for ω R0/c as function ofkz0 d/π the periodic structure is
described by two dimensionless parameters,ε andd/R0.

Although (9) involves an infinite matrix, in practice we
truncate the system to an adequate finite rank to obtain an
approximation of the exact eigenvalue equation. We have
verified that a 9 x 9 matrix gives (for the same structure)
eigenvalues differing by 0.1% from those calculated with a
higher order matrix. Therefore, in the ensuing calculations
the rank of the matrix in (9) (withn = m) is truncated at 9
(−4 ≤ n ≤ 4).

3 Fundamentals of the backward-
wave oscillator

Linear beam relativistic microwave devices are based on the
interaction of an electron beam and an electromagnetic fi-
eld containing slow-wave components. Such a field can
be realized in spatially periodic structures. Chiefly among
these devices, is the backward-wave oscillator (BWO) with
its essential characteristic of allowing electrical tuning, as
the operating frequency is approximately determined by the
synchronism condition: phase velocity of the wavevph =

electron velocityvz. A BWO schematic is shown in Fig. 1
with the corresponding dispersion diagram, i.e., the depen-
dence of the wave frequency onkzd, the phase shift per
period in a slow-wave structure of periodic lengthd that
supports a travelling wave of propagation constantkz.The
dashed line is the light lineω = kzc , which defines the
boundary between regions of fast (vph = ω/kz > c) and
slow (vph < c) waves. A passband refers to a frequency
band ranging from the lower frequency (the cutoff frequency
at pointskz = 0, 2π/d, ... ) and the upper frequency (at the
π point kz = π/d, 3π/d, ... ). As we shall see, in a sinu-
soidally rippled structure the passband narrows as the ripple
amplitudeε increases. The operating point is determined by
the intersection of the dispersion curve with the beam line
ω = kzvz, corresponding to the condition of Cherenkov
synchronismvph = vz. With the presence of the driving
electron beam, the BWO interaction takes place with the
slow space-charge wave,ω = kzvz − ωp (whereωp iden-
tifies the beam plasma frequency), a negative-energy wave
whose growth decreases the kinetic energy of the beam. In
the dispersion curve of the slow-wave structure, the BWO
operates in regions where the group velocityvg = dω/dkz

is negative (π/d < kz < 2π/d, etc) and amplify backward
waves, which propagate in the opposite direction as the elec-
tron beam and so provide an internal feedback mechanism.
By changing the operating beam voltage (electron velocity)
and/or the periodic lengthd one can in principle move the
point of intersection (of the beam Doppler line with the dis-
persion curve) to any point below the light line.
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Figure 1. BWO schematics and dispersion diagram showing the
first band.

4 Synthesis and analysis of a sinusoi-
dal profile

The results which follow are primarily concerned with si-
nusoidal corrugations of small amplitudeεR0 < λ/4 in
oversized cylindrical waveguides of average radiusR0 lar-
ger than the free-space wavelengthλ of the radiation. To
assure single-mode operation in such oversized guides we
keep the operating point close to the upper edge of the pass-
band, theπ point. In this region, the smallness of the group
velocity can make the diffractionQ factor (of the mode of
interest)Q = ωd/vg large enough to favour excitation of the
nominal mode against higher-order competing modes [7].
Then the practical problem we shall discuss relates to the
synthesis of a sinusoidally rippled profile for a BWO de-
signed to operate in the TM01 mode over the 8-9 GHz fre-
quency range and to be driven by an electron beam at the
injection energy ofWb = 500 keV. Eigenfrequencies and
phase velocities for TM01 mode operating close to theπ-
point are shown as function of the normalized ripple ampli-
tudeε in Figs. 2 and 3, where the normalized periodic length
d/R0 is taken as parameter. In the plots, the beam energy is
set atWb = (γ − 1) mc2 = 500 keV, with γ = 1.978
which gives an electron velocity of0.86 c, wherec is the
vacuum light speed. The requirement that the phase velo-
city of synchronous space harmonic should be slightly less
than0.86 c places a constraint on the corrugation period, na-
mely d/R0 |max≤ 0.35. Then takingd/R0 = 0.35, for
instance, and0.03 ≤ ε ≤ 0.07 the associated frequencies
lie within the specified 8-9 GHz frequency range (Fig. 2),
yet from Fig. 3 the phase velocity remains above0.85 c
and, therefore, adequate slowing of the wave for interacting
with the beam is barely achieved. On the other hand, fixing
d/R0 = 0.30 poses two constraints onε, the first of which

requires0.065 ≤ ε ≤ 0.085 so as to keep the design fre-
quency in the 8-9 GHz range, whereas the second constraint
demandsvph ≤ 0.86 c to satisfy the synchronism condition.
So we select from Fig. 3ε = 0.07 at d/R0 = 0.30 to ob-
tain vph = 0.82 c and the operating frequency of 8.6 GHz
(Fig. 2).

Figure 2. TM01-mode upper cutoff frequencies (π− point) as func-
tion of the ripple amplitudeε with the normalized period d/R0 as
parameter.

Figure 3. TM01-mode phase velocity (at theπ−point) as function
of the ripple amplitudeε.

To put into perspective the attributes of the sinusoidal
profile so far synthesized, we compare its performance with
an experimentally tested periodic structure [7] designed to
support surface waves in an overmoded 8.3 GHz BWO ope-
rating at mildly relativistic beam energy (500 keV). With
periodic lengthd = 1.4 cm, the longitudinal profile of
such structure is composed of semicircles of radius 0.5
cm separated by rectangular grooves with optimized height
h = 0.1 cm. To compare the performance of the sinusoid,
we set its minimal and maximal radii at 4.2 cm and 4.8
cm to fit the piecewise continuous profile as illustrated in
Fig. 4. The TM01-mode dispersion diagrams for both profi-
les are compared in Fig. 5 covering the propagation cons-
tant(normalized) from 0 toπ. We see that the curves are



1580 Joaquim P. Leite Neto and Joaquim J. Barroso

virtually coincident up tokzod/π ' 0.8, with the π-point
frequencies differing by 2% at the upper edge of the pass-
band intercepted by the Doppler beam line (vz = 0.86 c) .
But from the point of view of coupling impedance (defined
asE2/2k2

z0P whereE is the average RF electric field at the
beam position, andP the power flow on the structure), it
becomes apparent from Fig. 6, which shows atz = 0 the
radial dependence of the electric field, that the field strength
near to the corrugated wall is substantially higher in the pie-
cewise profile than in the sinusoidal counterpart.

Figure 4. Sinusoidal (R0 = 4.5 cm, ε = 1/15, Rmin = 4.2
cm,Rmax = 4.8cm) and piecewise (semicircle radius 0.5 cm and
rectangle height 0.1 cm) profiles with periodic lengthd = 1.4 cm.

Figure 5. TM01-mode dispersion diagram corresponding to the si-
nusoidal and piecewise profiles in Fig. 4. Dashed and dotted lines
are the light line and the 500 keV-beam Doppler line (vz = 0.86c).

Figure 6. Radial dependence of the TM01-mode electric field on
section z=0.0 of sinusoidal and piecewise profiles shown in Fig. 4.

Figure 7. TM01-mode dispersion diagram for an oversized guide
with longitudinal profile sinusoidally corrugated. The four curves
are associated with distinct values of average radiusR0 and ripple
amplitudeε, but keeping in all casesRmin= 4.2 cm andd = 1.4
cm. Dashed line is the light line.

Nevertheless, the field strength and the breadth of the
passband (for the sinusoid) can be adjusted by proper va-
riation of the corrugation parametersε andR0. To clarify
this point, we show in Fig. 7 dispersion curves related to
four sinusoidal profiles characterized by 1)R0 = 4.50 cm,
ε = 0.0667; 2) R0 = 4.55 cm, ε = 0.0769; 3) R0 = 4.60
cm, ε = 0.0869; 4) R0 = 4.65 cm, ε = 0.0968. Given by
R0, the lower cutoff frequency atkzod = 0 is the same for
all the curves, while the upper critical frequency, determined
by ε, assumes distinct values on each curve. We see that a
dispersion curve flattens asε increases, and sodω/dkz de-
creases accordingly. Because of this effect, and illustrated
in Fig. 8, the field amplitude increases as the corrugation
deepens. In fact, inspection of Fig. 8 indicates that the fi-
eld intensity atz = 4.3 cm is four times as high for the
deeper corrugation (ε = 0.097), although the cojoinedπ-
point frequency lies below 8.0 GHz (Fig. 7). In view of this
trade-off relation, the sinusoidal profile that meets the de-
sign specifications is identified by the corrugation parame-
tersR0 = 4.50 cm,d = 1.4 cm, andε = 0.067 which yield
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the critical frequency of 8.9 GHz corresponding to the phase
velocity of0.82 c for the synchronous space harmonic.

Figure 8. Radial dependence of the TM01-mode electric field (on
section z=0.0) in sinusoidally rippled waveguides.

To address the issue of mode competition concerning the
symmetric modes TM01, TM02, and TM03, Fig. 9 plots (to-
gether with the 500-keV beam line) their respective disper-
sion curves associated with the synthesized sinusoidal pro-
file. We see that the beam line crosses the dispersion cur-
ves of the higher-order modes (TM02, TM03) at frequen-
cies above 10GHz, significantly higher than the 8.9-GHz
frequency of the nominal TM01 mode. Well isolated and
having the largestQ factor, this makes the TM01 mode to be
excited more readily than its nearest competitors.

Figure 9. Calculated dispersion diagrams for low-order TM01

modes in the sinusoidally corrugated waveguide (R0 = 4.5 cm,
ε = 1/15, d = 1.4 cm) shown in Fig. 4. Light and beam lines are
indicated by dotted and dashed lines.

Finally, to ascertain the validity of the numerical results
obtained here from the Rayleigh-Fourier (RF) method, we
compare in the Tab. 1, critical frequencies calculated from
the RF method and those provided by a simulation com-
puter code [7] used to optimize the piecewise profile com-
bined with semicircles and rectangles. So we see that the

Rayleigh-Fourier results fit the WaveSym calculation wihin
an accuracy better than 1%.

TABLE 1. Critical frequencies (in GHz) calculated from the Wa-
veSym code and from the RF method

h/cm WaveSym Code Rayleigh-Fourier Method
0.1 8.82 8.82

0.2 8.30 8.28

0.3 7.82 7.89

0.4 7.33 7.40

5 Conclusions

A systematic procedure has been given to synthesize, con-
sistently with the required operating frequency and injec-
tion beam energy, an overmoded sinusoidally corrugated
waveguide with application as a slow-wave structure on
backward-wave oscillators. The corrugation parameters are
selected so that the waveguide when driven by a 500- keV
electron beam operates close to the upper cutoff frequency
on the first space harmonic of the lower order TM01 mode.
Consistent with single-mode operation, the periodic struc-
ture here designed supports a surface wave that is synch-
ronous with a 500-keV electron beam and simultaneously
exhibits a large coupling impedance, which is a measure of
the RF field strength at the beam position. The surface wave
is crucial to avoiding mode competition, while large cou-
pling impedance is important for high-efficiency interaction.

The mathematical formalism used in the paper relies on
the Rayleigh-Fourier method, which has shown excellent
performance even when used on the analysis of a piecewise
continuous profile made from a combination of semicircles
and rectangles.
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