
652 Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005
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We illustrate the importance of mass scales and their relation in the specific case of the linear sigma model
within the context of its one loop Ward identities. In the calculation it becomes apparent the delicate and
essential connection between divergent and finite parts of amplitudes. The examples show how to use mass
scales identities which are absolutely necessary to manipulate graphs involving several masses. Furthermore, in
the context of the Implicitly Regularization, finite(physical) and divergent (counterterms) parts of the amplitude
can and must be written in terms of a single scale which is the renormalization group scale. This facilitates,
e.g., obtaining symmetric counterterms and immediately lead to the proper definition of Renormalization Group
Constants.

I. INTRODUCTION

A field theory predictivity, or the ability to obtain results
valid to all orders of perturbation theory, relies on logical con-
ditions: the renormalization program has to be a systematic
and unambiguously fixed algorithm that satisfies the funda-
mental properties of locality and causality: it should corre-
spond to the addition of local counterterms to the Lagrangian
density. In general, any renormalization procedure involves
two steps [1]: 1) A choice of Regularization followed by a
subtraction procedure. 2) A set of renormalization conditions
in order to define the parameters of theory at a given scale.

This scale acquires a very crucial role. From the most
naive point of view it is an arbitrariness coming from the fact
that the separation of a divergent amplitude in a finite plus di-
vergent part is defined up to a constant. In several approaches
in the literature it appears in different ways, for example in Di-
mensional Regularization [2] it appears for dimensional rea-
sons. In Differential Renormalization [3] it appears as an inte-
gration constant. In our scheme it appears in the rather subtle
way, as we will see.

The purpose of this rather technical work is to perform an
analytical evaluation of all amplitudes at one loop level which
are necessary for anexplicit verification of the Ward identi-
ties of the chiral linear sigma model with fermions. In this
work we illustrate the importance of mass scales and their re-
lation in the specific case of this model within the context of
its one loop Ward identities. Besides, we use the unrenor-
malized amplitude to illustrate the communication between
finite(physical) and divergent (counterterms) parts of the am-
plitude in order to check the Ward identities. The examples
show how to use mass scales identities which are absolutely
necessary to manipulate graphs involving several masses. Fur-
thermore, in the context of the Implicitly Regularization [4]
[5][6], finite(physical) and divergent (counterterms) parts of
the amplitude can and must be written in terms of a single
scale which is the renormalization group scale. This facil-
itates, e.g., obtaining symmetric counterterms and immedi-
ately leads to the proper definition of Renormalization Group
Constants.

Our technique to handle such amplitudes is to assume only

implicitly the presence of a regulator in the integrals and al-
gebraically manipulate the integrand until such a separation is
achieved. The divergent parts are left in the form of integrals
which enable us to recover the result of any regularization pre-
scription.

The reason we have chosen the chiral model is related to
the presence of theγ5 matrix, and to show it can be handled in
4-dimensions without difficulties. The presence of three dif-
ferent masses in this model help us illustrate the scale change
mechanism in the context of Ward identities.

This work is organized as follows: in the section II we
present the model and the relevant Ward-Takahaski identities.
In section III we verify that chiral symmetry helps “taming”
the divergent content of this model. In the section IV we
briefly recall the Implicit Regularization Prescription. In the
section V we show the mechanism of using the relations be-
tween mass scales. Final comments can be found in section
VI.

II. THE LINEAR SIGMA MODEL

The linear sigma model has a renormalizable Lagrangian
constructed by J. Schwinger, J.C [9]. Polkingorne [11], M.
Gell-Mann and M.Levy [10]. In this model the fields are:
No(p,n) the nucleon isodublect (fermions),

→
πo (π1,π2,π3)

pion isotriplect (pseudoscalar),σo sigma (isoscalar). The chi-
ral symmetric Lagrangian is

Lo = iN̄o 6 ∂No +
1
2

[
(∂µσo)2 +(∂µ~πo)2] (1)

−µ2
o

2
(σ2

o +~π2
o)−

λo

4
(σ2

o +~π2
o)

2

−GoN̄o(σo + iγ5~τ.~πo)No

The chiral breaking term is usually

Lq = coσo (2)

whereco is a parameter.
The explicit chiral symmetry breaking terms, as is well

known, will give rise to a nonvanishing vacuum expectation
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value of the sigma field< σo >= vo. We therefore perform
a shift in order to have the Lagrangian in terms of fields with
zero expectation value as below.

so = σo−vo (3)

The redefined Lagrangian reads

LT = LF +LI (4)

where

LF = N̄o(i 6 ∂−Govo)No

+1/2[(∂µso)2− (µ2
o +3λov2

o)s
2
o]

+1/2[(∂µ~πo)2− (µ2
o +λov2

o)~π
2
o] (5)

and

LI = −GoN̄o(so + iγ5~τ.~πo)No

−λo/4(s2
o +~π2

o)
2

−λovo(s2
o +~π2

o)so (6)

We can now read off the nucleon, pion and sigma meson
masses

MN = Govo (7)

M2
π = µ2

o +λov2
o (8)

M2
σ = µ2

o +3λov2
o (9)

We also define, for purposes of Ward Identities, seven ver-
tices functions, with mesons having zero momentum and the
fermions on their mass shell

VNπN,VNσN,Vπ4,Vσ4,Vπ2σ2,Vπ2σ,Vσ3 (10)

The indices indicate the interaction involved. The set of Feyn-
man rules we have used are those of Ref. [8] withF =< σ >,
σ being the renormalized field. The renormalized quantities
are introduced as follows,

No =
√

ZFN

(so,vo,~πo) =
√

ZB(s,v,~π)

µ2
o =

1
ZB

(µ2 +δµ2)

Go = Zg/(ZF
√

ZB)G

λo = (Zλ/Z2
B)λ (11)

which are enough to render the model finite.

III. A LITTLE HELP FROM CHIRAL SYMMETRY

Now we will verify that chiral symmetry helps “taming”
the divergent content of the model. The Ward Identities re-
late three point functions (logarithmically divergent) with two

points functions (quadratically and linearly divergent). In a
general way this fact allows to establish algebraic relations
among the subtraction constants of the divergent Green func-
tions of a theory and, therefore, it is a useful tool in the renor-
malization procedure. Nevertheless Ward Identities can be
violated by some used regularization scheme [7] like gauge
symmetry in the Quantum Electrodynamics. For the linear
sigma model chiral symmetry it is really regularization inde-
pendent. In an explicit calculation of one loop amplitudes
we verify that all quadratically and linearly divergent inte-
grals cancel in the verification of the relative Ward Identities.
This cancellation occurs at the level of the evaluation of the
Dirac trace and therefore no specific regularization method is
required.

We will use the mass parametersµ, M andmcorresponding
respectively to the free fields of the pion, sigma and nucleon.
The first Ward identity that we consider is

−F [Vπ2σ(p,0)] = D−1
σ (p2)−D−1

π (p2) (12)

whereDσ(p2) andDπ(p2) are the sigma field propagator and
pion field respectively,Vπ2σ(p,0) is the three point function
with a pion leg at zero external momentum. The second Ward
identity can be written as

iF [VNπN(p,0)] =
1
2

{
τaγ5,S

−1(6 p)
}

. (13)

In the expression above{} means anticomutator,S(6 p) is the
nucleon propagator andVNπN(p,0) is another three point func-
tion. Only two point functions have quadratic and linear di-
vergences. We therefore conclude that the above two Ward
Identities will be enough to verify the one loop cancellation
of the integrals containing quadratic and linear divergences.

Let us first analyze the identity in equation (12). The in-
verse of the pion propagator is given by

D−1
π (p2) = p2−µ2−Σπ

R(p2) (14)

where

Σπ
R(p2) = Σπ

CT(p2)+Σπ(p2) (15)

the indices indicate renormalized amplitudes R and countert-
erms are indicated by CT. Since the contribution comes from
only two diagrams, we write

Σπ(p2) = Σπ
1(p2)+Σπ

2(p2) (16)

where the indices 1 and 2 indicate the contributions of each
diagram. The explicit perturbative expressions for this contri-
butions are given in terms of Feynman amplitudes and can be
written as

iΣπ
1(p2) = 8G2[pµIµ

lin(p2,m2)− Iquad(p2,m2)] (17)

and

iΣπ
2(p2) = 4F2λ2Ilog(p2,µ2,M2) (18)

where

Iµ
lin(p2,m2) =

Z

Λ

d4k
(2π)4

kµ

(k2−m2)[(p−k)2−m2]
, (19)
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Iquad(p2,m2) =
Z

Λ

d4k
(2π)4

1
[(p−k)2−m2]

(20)

and

Ilog(p2,µ2,M2) =
Z

Λ

d4k
(2π)4

1
(k2−M2)[(p−k)2−µ2]

(21)

The indexΛ in the integral means only an implicit regulariza-
tion and a specific regulator needs never be used.

We also have the inverse sigma propagator at one loop or-
der.

D−1
σ (p2) = p2−M2−Σσ

R(p2) (22)

In the same way as before

Σσ
R(p2) = Σσ

CT(p2)+Σσ(p2) (23)

and since the contribution comes from three diagrams, we
write

Σσ(p2) = Σσ
1(p2)+Σσ

2(p2)+Σσ
3(p2). (24)

Here

iΣσ
1(p2) = 8G2[pµIµ

lin(p2,m2)

− Iquad(p2,m2)−2m2Ilog(p2,m2,m2)], (25)

iΣσ
2(p2) = 18F2λ2Ilog(p2,M2,M2) (26)

and

iΣσ
3(p2) = 6F2λ2Ilog(p2,µ2,µ2) (27)

The cancellation of the quadratically and linearly divergent
contributions can be seen in only the termsΣπ

1(p2) and
Σσ

1(p2). Since the integralsIquad(p2,m2) andIµ
lin(p2,m2) are

the same for both contributions (Σπ
1(p2) and Σσ

1(p2).) and
since the Ward Identity is given by the difference between
them, the cancellation is obvious and no specific regulariza-
tion method is required.

Let us to analyze the second Ward identity (13). In this
case we must consider the inverse of the nucleon propagator
including its one loop correction

S−1
F (6 p) =6 p−m+ΣN

R(6 p) (28)

(we used the notation6 p= γµpµ).In an analogous fashion as in
the preceding case, we have

ΣN
R(6 p) = ΣN

CT(6 p)+ΣN(6 p) (29)

and as the contribution comes from two diagrams, we get

ΣN(6 p) = ΣN
1 (6 p)+ΣN

2 (6 p) (30)

The explicit perturbative expressions for this contributions are
given in terms of Feynman amplitudes

iΣN
1 (6 p) = G2

Z

Λ

d4k
(2π)4

6 k+m
(k2−m2)[(p−k)2−M2]

(31)

and

iΣN
2 (6 p) = 3G2

Z

Λ

d4k
(2π)4

− 6 k+m
(k2−m2)[(p−k)2−µ2]

(32)

Since{γµ,γ5} = 0, by the Ward identity (13) one can see the
cancellation of the linearly divergent contributions and as be-
fore no specific regularization method is required.

IV. THE IMPLICIT REGULARIZATION

Now a word about the Implicit Regularization Technique
which we are using are in order. A simple example of its work-
ing procedure can be found in several references [4][5][6], and
we give here a simple illustration. In order to illustrate the pro-
cedure, consider the following divergent amplitude, typical of
one loop order:

Z

Λ

d4k
(2π)4

1
[(k+ p)2−m2](k2−m2)

· (33)

The symbolΛ under the integral sign presupposes, as dis-
cussed, an implicit regularization. Now, in order to separate
the logarithmic divergence from the finite part, we use the fol-
lowing identity in the factor involving the external momentum
p:

1
[(k+ p)2−m2]

=
N

∑
j=0

(−1) j (p2 +2p·k) j

(k2−m2) j+1

+
(−1)N+1(

p2 +2p ·k)N+1

(k2−m2)N+1 [(k+ p)2−m2]
· (34)

In the above expressionN is chosen so that the last term is
finite under integration overk. Notice also that in the first
term in equation (34), the external momentum appears only in
the numerator and thus after integration it can yield at most
polynomials inp multiplied by divergences. For our present
example we needN = 0, since we are dealing with a logarith-
mic divergence. We can rewrite (33) using (34) as

I =
Z

Λ

d4k
(2π)4

1
(k2−m2)2−

Z
d4k

(2π)4

p2 +2p·k
[(k+ p)2−m2](k2−m2)2 ·

(35)
Now only the first of these two integrals is divergent. The
others can be easily integrated out to yield

I = Ilog(m2)− i
(4π)2 Z0(m2, p2) (36)

where

Ilog(m2) =
Z

Λ

d4k
(2π)4

1
(k2−m2)2 (37)

and

Z0(m2, p2) =
Z 1

0
dzln

( p2z(1−z)−m2

−m2

)
.· (38)
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Note that, since no explicit form for the regulator has been
used, one can make immediate contact with other regulariza-
tions. Details of calculations of several one loop amplitudes
and their associated Ward identities by using this method can
be found in [5].

V. SCALE CHANGE MECHANISM

In this section we will present the mechanism of using the
relations between mass scales skillfully. We will see how it is
possible in this scheme to change scales in the Feynman am-
plitudes and how this change is intimately connected to the fi-
nite parts of these same contributions. In fact, this mechanism
is quite general and comes stems from the freedom we have
when separating , by means of an identity, a finite from a di-
vergent contribution in a Feynman amplitude. This becomes
specially useful and adequate in theories involving different
masses, as is the case of the linear sigma model or the SU(3)
version of the Nambu and Jona Lasinio model. As we will see,
this mechanism is rather essential in order to verify the Ward
identities by using the complete amplitude, i.e., divergent plus
finite contributions.

Let us begin by using the two definitions already used in the
IRT [4]. We start with a definition for basic divergent object.
The log divergent quantity :

Ilog(ξ2
1) =

Z

Λ

d4k
(2π)4

1

(k2−ξ2
1)2

(39)

as explained in the previous section , the indexΛ in the inte-
gral means only an implicit regularization andξ1 is any mass.
Alternatively we can use the identity

1

(k2−ξ2
1)

=
1

(k2−ξ2
2)
− (ξ2

2−ξ2
1)

(k2−ξ2
2)(k2−ξ2

1)
(40)

and integrate without restrictions the finite integrals in order
to obtain the identity

Ilog(ξ2
1) = Ilog(ξ2

2)−
i

(4π)2 ln

(
ξ2

1

ξ2
2

)
. (41)

Notice that in a theory without mass an infra-red regulator can
always be introduced using the identity (40) withξ1 = 0 . The
function which identifies all one loop finite parts can always
be written as

Z0(ξ2
1,ξ

2
2, p2;ξ2

2)=
Z 1

0
dxln

(
p2x(1−x)+x(ξ2

1−ξ2
2)−ξ2

1

(−ξ2
2)

)
,

(42)
where the functionZ0(ξ2

1,ξ
2
2, p2;ξ2

2) is defined havingξ2 as
mass scale and then we can use the identity

Z0(ξ2
1,ξ

2
2, p2;ξ2

2) = Z0(ξ2
2,ξ

2
1, p2;ξ2

1)+ ln

(
ξ2

1

ξ2
2

)
. (43)

to change the scale of the functions. For an arbitrary scaleη
we will have

Z0(ξ2
1,ξ

2
2, p2;η2) = Z0(ξ2

1,ξ
2
2, p2;ξ2

2)+ ln

(
ξ2

2

η2

)
. (44)

The final result of the IRT manipulation for integral

Z

Λ

d4k
(2π)4

1

(k2−ξ2
1)[(p−k)2−ξ2

2]
(45)

can be written as

Ilog(ξ2
2)−

i
(4π)2 Z0(ξ2

1,ξ
2
2, p2;ξ2

2) (46)

or

Ilog(ξ2
1)−

i
(4π)2 Z0(ξ2

2,ξ
2
1, p2;ξ2

1) (47)

or

Ilog(η2)− i
(4π)2 Z0(ξ2

2,ξ
2
1, p2;η2) (48)

Let us now proceed to the explicit verification of the Ward
identities (12) and (13) and show that an exchange of mass
(scale) in the finite part (43) precisely corresponds to a mass
exchange in the counterterms (41). After all calculations we
can write the one loop Ward identity (12) as

−16m2G2[Ilog(m2)− i
(4π)2 Z0(m2,m2, p2;m2)]

+F2λ2{18[Ilog(M2)− i
(4π)2 Z0(M2,M2, p2;M2)]

+6[Ilog(µ2)− i
(4π)2 Z0(µ2,µ2, p2;µ2)]

−4[Ilog(M2)− i
(4π)2 Z0(µ2,M2, p2;M2)]} (49)

must be equal to

−16m2G2[Ilog(m2)− i
(4π)2 Z0(m2,m2, p2;m2)]

+F2λ2{[14Ilog(M2)+6Ilog(µ2)]

+
i

(4π)2 [4Z0(µ2,M2, p2;M2)

−18Z0(M2,M2, p2;M2)−6Z0(µ2,µ2, p2;µ2)]} (50)

Note that in the last term of eq.(49) we have the freedom to
write it as

−4[Ilog(µ2)− i
(4π)2 Z0(M2,µ2, p2;µ2)] (51)

One can easily verify that whatever the choice of scale (in-
cluding an arbitrary one), in the finite part by the relation (43),
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the counterterms are automatically adjusted by the relation
(41) in such a way that the Ward identity is always completely
satisfied. This becomes more clear in the Ward Identity (13),
which can be expressed as

τaγ5mG2{3[Ilog(m2)− i
(4π)2 Z0(µ2,m2, p2;m2)]

−[Ilog(m2)− i
(4π)2 Z0(M2,m2, p2;m2)]} (52)

which must be equal to

τaγ5mG2{[Ilog(m2)− i
(4π)2 Z0(M2,m2, p2;m2)]

+[Ilog(m2)− i
(4π)2 Z0(µ2,m2, p2;m2)]

+
i

(4π)2 2[Z0(M2,m2, p2;m2)−Z0(µ2,m2, p2;m2)]} (53)

where we have used the fermion mass for commodity only.

VI. CONCLUSION

In the calculation it becomes apparent the delicate and es-
sential connection between divergent and finite parts of ampli-
tudes and the examples show how to use mass scales identities
which are absolutely necessary to manipulate graphs involv-
ing several masses in a way as to show its equivalence to oth-
ers involving different (than the previous) masses.

One of the advantages of the present technique is that we
have all counterterms in an explicit form. This simplifies the
renormalization procedure, since this can be done directly in
the Lagrangian. The renormalization procedure due to some
symmetry require counterterms with the same mass and then
we can introduce the arbitrary scale, which has been shown to
play the role of the sliding scale of the theory (see Ref.[5]).
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don and Breach. New York, 1971) 119.

[9] J. Schwinger, Ann. Phys.2, 407 (1957).
[10] M. Gell-Mann and M. Levy, Nuovo Cimento16, 705 (1960).
[11] J.C. Polkinghorne, Nuovo Cimento8, 179, 781 (1958).


