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A natural and very important development of constrained system theory is a detail study of the relation
between the constraint structure in the Hamiltonian formulation with specific features of the theory in the La-
grangian formulation, especially the relation between the constraint structure with the symmetries of the La-
grangian action. An important preliminary step in this direction is a strict demonstration, and thisis the aim of
the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the
same. Thisproved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter prob-
lemis, in some sense, simpler because the Hamiltonian action is afirst-order action. At the sametime, the study
of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can
see that the Lagrangian and Hamiltonian actions are dynamically equivalent. Thisiswhy, in the present article,
we consider from the very beginning a more general problem: how the symmetry structures of dynamically
equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal
symmetriesin general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate
that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions.
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I. INTRODUCTION

The most of contemporary particle-physics theories are for-
mulated as gauge theories. It is well known that within the
Hamiltonian formulation gauge theories are theories with con-
straints. This is the main reason for a long and intensive
study of the formal theory of constrained systems, see [1].
It still attracts considerable attention of researchers. From
the very beginning, it became clear that the presence of first-
class constraints among the complete set of constraintsin the
Hamiltonian formulation is a direct indication that the the-
ory is a gauge one, i.e., its Lagrangian action is invariant
under gauge transformations. A next natural, and very im-
portant, step would be a detail study of the relation between
the constraint structure and constraint dynamicsin the Hamil-
tonian formulation with specific features of the theory in the
Lagrangian formulation, especially the relation between the
constraint structure with the gauge transformation structure of
the Lagrangian action. An important problem to be solved
in this direction would be a strict demonstration, and this is
the aim of the present article, that the symmetry structures of
the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry
structure of the Hamiltonian action. The latter problemis, in
some sense, simpler because the Hamiltonian action is afirst-
order action. At the same time, the study of the symmetry of
the Hamiltonian action naturally involves Hamiltonian con-
straints as basic objects, see [2, 3]. It follows from the results
of the article [4] that the Lagrangian and Hamiltonian actions
are dynamically eguivalent. Thisiswhy in the present article
we consider from the very beginning a more general problem:
how the symmetry structures of dynamically equivalent ac-
tions are related. The article is organized as follows: In sec.
2, we present some necessary notions and relations concern-
ing infinitesimal symmetriesin general. A strict definition of

dynamically equivalent actions is given in sec. 3. Findly, in
sec. 4, we demonstrate that there exists an isomorphism be-
tween classes of equivalent symmetries of dynamically equiv-
aent actions.

II. SYMMETRIES
A. Basic notation and relations

We consider finite-dimensional systems which are de-
scribed by the generalized coordinates q = {g?; a =
1,2,...,n}. The space of the variables ¢!,

d
¢ = (&) g, 1 =0,1,....Na, (qa[olzqa) o= @

considered as independent variables, with finite N, , or with
someinfinite N, , iscalled the jet space. The mgjority of phys-
ical quantities are described by so-called local functions (LF)
which are defined on the jet space. The LF depend on o@ll! up
to some finite orders | < N > 0. The following notation is
often used[6]:

F (.. of2, ) =F (o) @

for the LF. In what follows, we also deal with so-called lo-
cal operators (LO). LO Up, are matrix operators which act on
columns of LF 2 producing columns FA of LF, FA = Uaa f2.
LO havetheform

K <oo

Upa= Y, s ()", )
k=0

where uf, are LF. We call the operator
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UM a= Y (—d)*u, (4)

the transposed operator with respect to Uaa. The following
relation holdstrue for any LF FA and fa:

FAUpaf2 = [(UT) 4 F* 12+ aQ, (5)

where Q isan LF. The LO Uy is symmetric (+) or antisym-
metric (—) respectively if (UT)_ = +Ug. Thus, for any an-
tisymmetric LO Uy, relation (5) is reduced to the following:
fay, f? = dQ/dt, where QisalLF.

Suppose the total time derivative of an LF vanishes. Then
this LF is a constant. Namely,

dF (al 1))
S

Indeed, let us suppose that N, are the orders of the coordinates
PinthelLF i.e F (q“]) =F ) Then according to
(6) the following relation holds true

a[k+1:| ]

The right hand side of the above relation does not depend on
o@Nat1l Thus, oF /og™el = 0, and therefore F (q“]> must
not depend on g@™el . In the same manner we can see that
F (q[']) must not depend on N~ and soon. If F (q[']> does

, then o(F (q“]

=0=—F (q“]) = const. (6)
( - gpNe]

Nt oF

8tF+Z Z 3K

IF aNa 1y _
aqa[N q

not depend on any q'! =0 aswell, and we
get F (q“]) = const.

Werecall that Fa (q“) =0and g (q“) = 0 are equivalent
sets of equations whenever they have the same sets of solu-
tions. In what follows, we denote thisfact asF = 0 <y =

|

d

d d bi+y 9 ) _
578 0t — 3o <9t+§0q 5p | = (1= %0) 3y
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0. ViaO(F) we denote any LF that vanishes on the equations
Fa (q“) = 0. More exactly, we define O(F) = V°F,, where
VP isan LO. Besides, we denote viaU = O(F) any LO that
vanish on the equations F, (q“) = 0. That means that the LF

u that enter into (3) vanish on these equations, u = O(F), or
equivalently U f = O(F) for any LF f.
We consider Lagrangian theories given by an action S[q],

Zy,
Sl = Ldt, L=L(dl), ©)

t

where a Lagrange function L is defined as an LF on the jet
space]7]. The Euler-Lagrange equations are

55 CoL

Any LF of theform O(38S/8q) is called an extremal.
For any LFF (q“) the operation

daF N/ d\' oF
T <_&> 9 ©

is called the Euler—Lagrange derivative with respect to the co-
ordinate g?. One can see that the functiona derivative of the
action S coincides with the Euler—Lagrange derivative of the
Lagrange function,

35 dal
S dep

(10)

The Euler-L agrange derivative has the following property:

dg. d

dEdt (1D

To prove this, one may use therelation

d

d o

0 d
bil+1]
+ <at + |§Oq 3qb['] > aqa[k]

Thus, one gets

~ dt ogeiK

d
+(l—5ko)w.
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de d
do? dt

d

:az

B. Noether symmetries

Consider an infinitesimal inner[8] trajectory variation 8g?
(inner variations vanish together with al their time derivatives
at t; andty). Namely,

(1) — g (t) = o (t) + 8¢ (12)

We suppose that 82 = 8g2 (q“) isan LF. The correspond-
ing first variation of the action can be written as follows:

Z ¢
8S=

153

“SLat, (13)

where the operator 8, which will be called the transformation
operator, acts on the corresponding LF ag[9]

BZq

Two simple but useful relations follow from (14):

aqalk SE. (14)

862 =80%, Supq=Cosq- (15)

The variation (12) is a symmetry transformation of the ac-

tion S or simply asymmetry of theaction S, whenever the cor-

responding first variation of the Lagrange function is reduced

to the total time derivative of aLF. Namely, 8q is a symmetry

if

a dF

L=—,

8 dt’

where F is an LF. In this case the first variation (13) of the
action depends on the complete set of the variablesql att =t;
andt =t only,

(16)

Z 4
0S=

ty

2 A . t
SLdt = F|&2

d

d; 0
&= S ak+1 Y S alk]
dt Z‘gj T Ak T o

s d bi+y] 9 K] il +1]
5o = go[&q }a S+ %+ 3

B d)k d d (
k_zo< dt) ook dt go

_d ki_iz _d
S\ Tdt) aeek dt &\t

e al+ Y P+ sl
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d k+1 a
dt ) ol

d\* 9
+Z‘1<_dt> galk—1

k-1 p)
> 9ek1 ~ dtde@  dtdee

Any linear combination of symmetry transformations is a
symmetry.

Indeed, let &;q be some symmetry transformations, and
3q = ¢'§iq, where ¢' are some constants. Then, taking into
account (15), we obtain:

SgiqL:dditIéSggq e T,

Transformation operators that correspond to symmetry
transformations are called symmetry operators.

The above-described symmetry transformations are called
Noether symmetries.

Below, we list some properties of the transformation oper-
ators and of the symmetry transformations:

a) Any first variation of the Lagrange function can be pre-
sented as

dELL P, 3S dP
a
oL = oq at = ok 8qa+ gt (18)
where P isan LF of theform
Na Nasog\T " oL
_\" —1] _
P—Zarg,lp%qa[m L p;“;(—dJ s 19

One ought to remark that the sum (19) that presents P is run-
ning only over those a for which N5 > 0. However, it can be
extended over all a's since the momenta pJ' that correspond to
the degenerate coordinates are zero. Thus, the prime over the
sum above can be omitted.
b) Any transformation operator commutes with the total

time derivative:

~ d

8]0

The latter property isjustified by the following relations:

(20)

82
o agaKagel]’
_ds

ogPloced — dt
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¢) The commutator of any two transformation operators is
atransformation operator as well.
Namely, let 5,q = 80, and 6,0 = 60z. Then
{31782} =83, 830= 81502 — 2801 (21)

Indeed, one can write:

fx o]\ O akls pl] 9 0
815, = Iz (818q )Tqu +kJ2:08q1 8% 3 Pl 37K
d'(5:,808) 9 aks pl] 0 0
= 2 dtl a b[l] + z Sql 5% qu['] aqa[k] ’ (22)

i bijsakl 0 9
8251—2, (5825(?11 ) 3K 7+ 2 8, 5y ek agPll

_y dk (8828q1) 3

-0 Codtk ogl

ppj 0 9
(23)

+ 2 qa[k

Then subtracting Eqg. (23) from Eq. (22), we obtain the rela-
tion (21).

In other words, the set of all transformation operators form
alieagebra

d) The commutator of the Euler—Lagrange derivative and a
transformation operator is proportional to the Euler—Lagrange
derivative. Namely, if 5q = 8¢P, then

N e R N AR A

To prove this property, one may consider a sequence of
equalities,

“e LL (8':) 2t thSSth
ty deof cat = t1 ¢

z 73N z t2 4
— 85 Fdi+ 5
t1

Fdt
t SQ Sq

deLF

8@ 4q dt

Z4, d\K- oF Z
_ a _ _
_ % 2( dt) St

t1 k=0

e ¢ (882+Q2) Gep deu P

t1

dta (cha = Qa) )
where { (t) isan arbitrary inner variation, and F isan LF.

It is useful to keep in mind the following generalization of
relation (24):

d\“de 2] ~p L
(%@ ey -

which follows immediately from (20) and (24).
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€) The commutator of two symmetry operatorsis asymme-
try operator as well.

Indeed, let ,g =960, and 5 ,0 = 602 be symmetry transfor-
mations, i.e,, &L = dF;/dt, and SoL= dF,/dt. Then, taking
into account (20) and (21), we obtain

A A R d . R
Bude|L=8L= R, R=8iR-&R. (20

Thus, the set of symmetry operators of the action Sforms a
Lie subalgebra of the Lie algebra of all transformation opera-
tors.

f) Symmetry transformations transform extremals into ex-
tremals.

The validity of this assertion follows from the relations
proven below.

Suppose § is a symmetry operator; then the following rela-
tion takes place:

595 _ @3S
S ASgp
Indeed, by virtue of (10), (11), and (24), we can write

(27)

595 _gdel O (SL) _ aplecl
Bqa - dqa - dqa a dqb
_ G dF 58S 58S
= dT:‘aa Qaqu = Qa8qb~

A generalization of (27) based on the relation (24) reads:

J as
dtk 82

Ap 0S
a qu
g) Symmetry transformations transform genuine trajecto-

riesinto genuine trajectories.
Indeed, suppose that G2 be a genuine tragjectory, that is

Q (28)

&S

5|, 0, (29)

and 8g? be awmmetry transformation. Then the transformed
trgjectory 2 = G2 + 8g? is also a genuine one. Indeed, by
virtue of (27) and (29), we get:

- (52

4S 8S 2 0S
C. Trivial symmetries

— _«_67
39° | y—g15q S g OF

Below, we are going to describe so-called trivial symme-
tries transformations, which exist for any action.

A symmetry transformation is called a trivial symmetry
transformation whenever the corresponding trajectory varia-
tion hasthe form

b3S

8q_ 5b’

(30)
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where U is an antisymmetric LO, that is (UT)® = —J@ .
Thus, trivial symmetry transformations do not affect genuine
tragjectories. (One can prove, see below, that any symme-
try transformation that vanishes on the equations of motion,
dq? =0(8S/dq), istrivial, namely it hasthe form (30)). With
the help of relations (5) and (18), we can easily verify that (30)
is actually a symmetry transformation. Indeed,

dF
dt

aP _
dt

dELL "adeLL dP
dgP ~ doP oot

d(F+P)
SL = T
where F and P are some LF.

Since triviadl symmetry transformations are proportional to
the equations of motion, they do not change genuine trgjecto-
ries, as was already mentioned above.

The commutator of a symmetry operator and a trivial-
symmetry operator is a trivial-symmetry operator. Namely,
if

S1L = dFy /dt, 8oL = dFp/dt, 5,07 = 8,07 = V8S/8¢P,

3S

abg
quﬁ

8261qa = (82\7"’“3)

6S
SP
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then

dS

spr @D

[817 82} L=8sL, 830 = S3? =0 =

where V2 and U@ are some antisymmetric LO.

To verify (31), we remark that, according to (21), Ssisa
Ssymmetry operator, with 839 = 81820 — 628109, where 8;9 =
8102. The term 8,8, can be calculated with the help of (14),

()]

dtk
and the term 3281q can be calculated with the help of (27),

b 0S

3 (8209 S
dqP

9geN

818208 = >
k=0

6S
5P

- 59

ab

Thus, we obtain: 32 = 8302 = U®8S/80P, where U2 is an antisymmetric LO of the form

d
dt

"")
gl

o 2[

(@

We call two symmetry transformations 8;g and d2q equiv-
alent (619 ~ 020) whenever they differ by atrivial symmetry
transformation:

b3S

810 ~ 820 <= 810° — 8,07 = 5P

(32)

Here (UT)® = —.

Let G(S) bethe Lie agebraof all symmetries of the action
S The trivial symmetries form the ideal Gy (S) in the Lie
algebraG (S). Thentheclassesof equivalent symmetriesform
aLiealgebra Gp, (S) isomorphic to the quotient a gebra:

Gr (9 =G(9/CGu (S

[Il. DYNAMICALLY EQUIVALENT ACTIONS

Very often we encounter an action

Z

Seloyl = Le(dly))dt, (33)

) VCb+VaC(

d

dt

‘3 (qub) - Szvab.

8qC[k]

)

which contains two groups of coordinates gl and y!' such that
the Euler—Lagrange allow one to express all y via ql. It is
convenient to call Sz[q,y] the extended action. One can try to
eliminate the variables y from the extended action to get some
reduced action, which depends now only on g, and ask the
question: What is the relation between the extended and the
reduced actions? There exist a case when this question has a
definite answer [2, 5]. Namely, let us suppose that the Euler—
Lagrange 8 [q,y] /8y = O alow one to express uniquely the
variablesy as LF of the variables g,

0S(qy] ol
Sy 70<:>y7y<q). (34)
Then we define the reduced action S[q]
z
Sl =Sela. = Le(dly)di= (o). (@)

Let us compare the Euler—Lagrange that correspond to both
actions. First consider the variation of the reduced action
0S under arbitrary inner variations dq,
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Z
3Sld] = (85'22?’“

In virtue of (34), the Euler—Lagrange of the reduced action
read

dS[a]  8&[q,y]

5q dq

On the other hand, the Euler—Lagrange of the extended ac-
tion Sc[q,y] are

8%¢ayl _, 3%l
dq 8y

They are reduced to (37) in the g-sector. We can see that
the extended action and the reduced action lead to the same
Euler—Lagrange for g. Thisis why the variablesy are called
the auxiliary variables. The auxiliary variablesy can be elim-
inated from the action with the help of the Euler—Lagrange.
Further, we call the actions Sz[q,y] and Sq] the dynamically
equivalent actions.

One ought to stress that the above equivalence is a conse-
guence of the assumption that the variables y are expressed
via g by means of the equations 8S/8y = 0 only. If, for this
purpose, some of the equations 8S/8q = 0 are used as well,
then the above equivalence can be absent. Of course, the so-
lutions of the Euler—Lagrange for the reduced action, together
with the definition y =y, contain all solutions of the Euler—
Lagrange for the extended action (asit is easily seen from Eq.
(36)). However, the reduced action can imply additional solu-
tions.

Actions containing auxiliary variables and the correspond-
ing reduced actions have similar properties, in particular, there
exists a direct relation between their symmetry transforma-
tions.

As was mentioned above, we are going to relate the sym-
metry properties of the extended and reduced actions. To this
end, it is convenient to make an invertible coordinate replace-

ment, (¢f,y%) — @ = (@), y=z+(d), in the ex-
tended action. In fact, we are going to consider a modified
extended action Sq], which is obtained from the extended ac-
tion Sg[q,y] asfollows:

. Z
Sd) =

=o. (37)
y=y

:o(:)y:y(q[g _

Z
i (q”) dt = S[a.z+y =  Le (q”,zH +37ﬂ) dt.
(38)
The extended action S[q,y] and the modified extended ac-
tion S are completely equivalent. They lead to completely
equivalent Euler—Lagrange. Thus, it is sufficient to study the
relation between the symmetry properties of the modified ex-
tended action S§] and the reduced action S[q] .
Note that
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Z
5;70‘> dt = S%?]Sqi dt. (36)

Besides, the action (38) can be presented in the form
Z
S|G) = S[a] +AS[d] , AS[d] = ALdt,

=Le (ol 2 4+) e (al.57) (40)

The variables z are auxiliary ones for the action ], and, in
particular, z= 0 on the Euler—Lagrange. Indeed,

856 _,,_, 3y
) oy
The latter implies:

:0=>y:)7<q“) — 2=0. (41)

88 8AS -

Since equation (41) has the unique solution z= 0, one can
easily verify that U is an invertible LO. The equation (42)
implies

X d
Asz“KaBZB-l—aE (43)

where K isasymmetric LO, and F isan LF. Besides, one can
write

Z(x:(U,l)(xBSAS_ op 8S

-0 ) 5

On the other hand, due to the property (11), one can write

(44)

SAS o dELAL o dE|_ ~
5~ e~ do 2 Ko?]
Then, taking into account (43, 44), and the definition of the

Euler—Lagrange derivative, we get the following useful rela-
tion:

| R
8AS .+, 0AS vaKVB

- d
- = — o _ -
s~ Mg A ;6( dt) 2 o]

(G (a5)

where A% isan LO.

IV. SYMMETRIESOF THE EXTENDED AND THE
REDUCED ACTIONS

There exists a one-to-one correspondence (isomorphism)
between the symmetry classes of the extended action S§] and
the reduced action S[qg]. Below, we prove a set of assertions,
which justify, in fact, this correspondence.
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i) If the transformation

N 8/ a
o= (3 ), (46)

is a symmetry of the extended action S, then the transforma-
tion

3q? = 8'ql,_, (47)

isasymmetry of the reduced action S. .
Indeed, let (46) be a symmetry of the action S. Then

A oood =
8aal = 5 F (48)

where F isan LF. Considering (48) at z= 8z = 0, we get

d a /
g 8 =94
where L is given by (39). Thus, any symmetry of the action
Simplies a symmetry of the action S. The symmetry 8q ob-
tained in such away can be called the symmetry reduction of
the extended action.

ii) If the transformation d8q is a symmetry of the reduced
action S, then the transformation

3" = (ggj),az“:—(AT)Zaqa, (49)

6551" = z=0" F= F‘Z:O ’

where the LO f\Ndefined by Eq. (45) is a symmetry of the
extended action S.

To prove this assertion, let us consider the first variation
Sﬁql: of the Lagrange function L . Since 8q is a symmetry of
the reduced action S, the relation SaqL dF/dt , whereF is
an LF, holds true. Thus, with the help of the property (15),
one may write the variation 85qL intheform

83l = (8oq+552) L j Fot (8sq+85) AL, (50)

Now, we present the variations SanL and SSZAL with the help
of relation (18). Besides, taking into account the expression
(49) for the variation 6z, we get

fgl = &

I (F+Py+P) +382

2 0AS ~T\0 o a] OAS
52 [(A )ad } S

(51)
where Py and P, are some LF. Using (45) and (5), we may
write

8205 _ pepaz 245

5 25z T

0AS  dG
}620‘ dt (52)

=[(A")5s

where G is an LF. Thus, the variation 5s4L is reduced to the
total derivative of an LF,

Sl = &

5 (F+P+P1G).
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Thus, 5Gis asymmetry of the extended action S,
iii) Any symmetry of the form

sa-( 5 ) 3

of the extended action Sistrivial. )
Since &4 is a symmetry of the action S, one can write

~ ~ dF
Soql = ol = e (54)
where F is an LF. Taking into account (18), we may rewrite
Eq. (54) as

8S  dF’

where F’ isan LF. The left-hand side of equation (55) can be
transformed, with the help of (42) and (5), to the form

S dF”
52 5 = 52002 = [ (OT) 1, 07 2+

where F” isan LF. Thus, the equation (55) may be reduced to

zBfB_ — fp=(07), 82, (56)

where f (Q“) and @ (QU) are some LF. Let us present the
LF® as

o) (QH) =d, (q[]) + @ (QH) ,
Do = q)|z:0 ) q)1|z:0 = i q)a(k) (QH) 2 N <. (57)
k=0

It follows from equation (56) that ddg/dt = 0. According to
(6), the latter implies @y = const. From (56), we get the equa-
tion

N+1

Y QapM =0, (58)
k=0

where

Po(0) = fa —‘ba(ow PaN+1) = PNy

Qu() = — [Po(k—1) + Pori] » K=1,...,N. (59
The general solution of Eq. (58) is

N+1

Pat) = .

My pisi 2% Mugpst = —Mp(sjiaq > (60)

where Mok (s (QH> are some LF. Then the LF @, and
fo can be found from Eq. (59):

—kN+1 d\™m Al
D) = — Z Z‘ ~dt [%<k+m+1)\ﬁ(l> } ’

NEL 7 g\ i
fo= (*a) [”b(m)\sa)zﬁm} =mp?,  (61)

m,|=0
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where 1y, is an antisymmetric LO. Thus, we get from (56)
op OS ap I § L PPN
52 = NP 2. M o L I T A )

where M?® s an antisymmetric LO. Therefore, the symmetry
(53) istrivial.

iv) Suppose both transformations 86, and 8¢ to be sym-
metries of the extended action S such that their reductions co-
incide, that is

8/ql|2:0 = 8lQ2’2:0 = 8q (63)
Then these symmetries are equivalent,
86 ~ 862, (64)

which means that 8¢, and ¢, differ by atrivial symmetry.
Thus, we have to prove that the transformation

f en an Ad =8q1— 8
A =0G—04 = (AZZSZl*SZZ A, =0,

isatrivial symmetry of the extended action S. In virtue of Eq.
(63), the LF Aq’ may be presented as

Aq® = G2, (65)

where mis an LO. With the help of (44), we get for Aq' the
following expression:

-5 0
AqR =M= 66
q — (66)
whereM = riJ tisan LO.
Let us present the transformation A§ in the form A§ =
A1G+ A26, where

Ari= MABE)qB N ( ) (,\7(|)T)0tb M;B ) R

and
Aofi= ( N ) (69)
The transformations A1§ isatrivial symmetry sincethe LO

NI“B is antisymmetric, that is (MT)*® = —NI"B. Thus, A,
is a symmetry of the extended action S. Besides, the latter
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symmetry has a special form (68). It was proven in item c)
that any symmetry of such a form is trivial. Therefore, the
symmetry Agistrivia aswell.

v) Let atransformation 6§ be a trivial symmetry of the ex-
tended action S. Then itsreduction 8q isatrivial symmetry of
the reduced action S.

According to this assumption, we may write

1@ — \jab 85 | njaB 88
SqA: <8q M As-gb;hﬁ/lé SZﬁAaB 5& >7 (69)
87 =—(MT) s TMP g

where the local operators M2 and M*? are antisymmetric.
Then the reduction 8q = &q|,_, of the transformation (69)
reads

dS -
a__ & 3 _ p\pab
8 = i® 5P’ AP =M o (70)

The LO A is antisymmetric. Thus, (70) is atrivial sym-
metry of the reduced action S.

vi) Let asymmetry 8q of areduced action Sbetrivial. Then
any extension of this symmetry to the symmetry 84 of the ex-
tended action Sistrivial aswell.

Since dq isatrivia symmetry, one can write

ab 0S
a_ A

where i is an antisymmetric LO. Consider the following
extension of the symmetry 5g?:

/ b 0S
80 = ( 80q ) V=i (7)
which is a trivial symmetry of the extended action S Any
other extension of 8q differs from 8¢, by atrivia symmetry,
according to item (iv). Therefore, any extension of the trivia
symmetry isatrivia symmetry aswell.

Concluding, we can see that there exists an isomorphism
between classes of equivalent symmetries of dynamically
equivalent actions. Since the Lagrangian and Hamiltonian ac-
tions are dynamically equivalent, one can study the symme-
try structure of any singular theory considering the first-order
Hamiltonian action.
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