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A natural and very important development of constrained system theory is a detail study of the relation
between the constraint structure in the Hamiltonian formulation with specific features of the theory in the La-
grangian formulation, especially the relation between the constraint structure with the symmetries of the La-
grangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of
the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter prob-
lem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study
of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can
see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article,
we consider from the very beginning a more general problem: how the symmetry structures of dynamically
equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal
symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate
that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions.
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I. INTRODUCTION

The most of contemporary particle-physics theories are for-
mulated as gauge theories. It is well known that within the
Hamiltonian formulation gauge theories are theories with con-
straints. This is the main reason for a long and intensive
study of the formal theory of constrained systems, see [1].
It still attracts considerable attention of researchers. From
the very beginning, it became clear that the presence of first-
class constraints among the complete set of constraints in the
Hamiltonian formulation is a direct indication that the the-
ory is a gauge one, i.e., its Lagrangian action is invariant
under gauge transformations. A next natural, and very im-
portant, step would be a detail study of the relation between
the constraint structure and constraint dynamics in the Hamil-
tonian formulation with specific features of the theory in the
Lagrangian formulation, especially the relation between the
constraint structure with the gauge transformation structure of
the Lagrangian action. An important problem to be solved
in this direction would be a strict demonstration, and this is
the aim of the present article, that the symmetry structures of
the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry
structure of the Hamiltonian action. The latter problem is, in
some sense, simpler because the Hamiltonian action is a first-
order action. At the same time, the study of the symmetry of
the Hamiltonian action naturally involves Hamiltonian con-
straints as basic objects, see [2, 3]. It follows from the results
of the article [4] that the Lagrangian and Hamiltonian actions
are dynamically equivalent. This is why in the present article
we consider from the very beginning a more general problem:
how the symmetry structures of dynamically equivalent ac-
tions are related. The article is organized as follows: In sec.
2, we present some necessary notions and relations concern-
ing infinitesimal symmetries in general. A strict definition of

dynamically equivalent actions is given in sec. 3. Finally, in
sec. 4, we demonstrate that there exists an isomorphism be-
tween classes of equivalent symmetries of dynamically equiv-
alent actions.

II. SYMMETRIES

A. Basic notation and relations

We consider finite-dimensional systems which are de-
scribed by the generalized coordinates q ≡ {qa; a =
1,2, ...,n}. The space of the variables qa[l],

qa[l] = (dt)
l qa , l = 0,1, ...,Na,

(
qa[0] = qa

)
, dt =

d
dt

, (1)

considered as independent variables, with finite Na , or with
some infinite Na , is called the jet space. The majority of phys-
ical quantities are described by so-called local functions (LF)
which are defined on the jet space. The LF depend on qa[l] up
to some finite orders l ≤ Na ≥ 0. The following notation is
often used[6]:

F
(

qa[0],qa[1],qa[2], ...
)

= F
(

q[]
)

(2)

for the LF. In what follows, we also deal with so-called lo-
cal operators (LO). LO ÛAa are matrix operators which act on
columns of LF f a producing columns FA of LF, FA = ÛAa f a .
LO have the form

ÛAa =
K<∞

∑
k=0

uk
Aa (dt)

k , (3)

where uk
Aa are LF. We call the operator
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(
ÛT )

aA =
K<∞

∑
k=0

(−dt)
k uk

Aa (4)

the transposed operator with respect to ÛAa. The following
relation holds true for any LF FA and fa:

FAÛAa f a =
[(

ÛT )
aA FA]

f a +dtQ , (5)

where Q is an LF. The LO Ûab is symmetric (+) or antisym-
metric (−) respectively if

(
ÛT

)
ab = ±Ûab . Thus, for any an-

tisymmetric LO Ûab relation (5) is reduced to the following:
f aÛab f b = dQ/dt , where Q is a LF.

Suppose the total time derivative of an LF vanishes. Then
this LF is a constant. Namely,

dF
(

q[l] (t)
)

dt
≡ 0 =⇒ F

(
q[l]

)
≡ const . (6)

Indeed, let us suppose that Na are the orders of the coordinates

qa in the LF, i.e. F
(

q[l]
)

= F
(
· · ·qa[Na]

)
. Then according to

(6) the following relation holds true

∂F

∂qa[Na] qa[Na+1] ≡−
[

∂tF +∑
a

Na−1

∑
k=0

∂F

∂qa[k] qa[k+1]

]
.

The right hand side of the above relation does not depend on

qa[Na+1]. Thus, ∂F/∂qa[Na] ≡ 0, and therefore F
(

q[l]
)

must

not depend on qa[Na] . In the same manner we can see that

F
(

q[l]
)

must not depend on q[N−1] and so on. If F
(

q[l]
)

does

not depend on any q[l] , then ∂tF
(

q[l]
)
≡ 0 as well, and we

get F
(

q[l]
)

= const.

We recall that FA

(
q[]

)
= 0 and χα

(
q[]

)
= 0 are equivalent

sets of equations whenever they have the same sets of solu-
tions. In what follows, we denote this fact as F = 0 ⇐⇒ χ =

0 . Via O(F) we denote any LF that vanishes on the equations

Fa

(
q[]

)
= 0. More exactly, we define O(F) = V̂ bFb , where

V̂ b is an LO. Besides, we denote via Û = Ô(F) any LO that

vanish on the equations Fa

(
q[]

)
= 0. That means that the LF

u that enter into (3) vanish on these equations, u = O(F), or
equivalently Û f = O(F) for any LF f .

We consider Lagrangian theories given by an action S [q] ,

S [q] =
Z t2

t1
Ldt , L = L

(
q[]

)
, (7)

where a Lagrange function L is defined as an LF on the jet
space[7]. The Euler–Lagrange equations are

δS
δqa = ∑

l=0

(−dt)
l ∂L

∂qa[l] = 0 . (8)

Any LF of the form O(δS/δq) is called an extremal.
For any LF F

(
q[]

)
the operation

dELF
dqa =

Na

∑
l=0

(
− d

dt

)l ∂F

∂qa[l] (9)

is called the Euler–Lagrange derivative with respect to the co-
ordinate qa. One can see that the functional derivative of the
action S coincides with the Euler–Lagrange derivative of the
Lagrange function,

δS
δqa =

dELL
dqa . (10)

The Euler–Lagrange derivative has the following property:

dEL

dqa

d
dt

= 0 . (11)

To prove this, one may use the relation

∂
∂qa[k]

d
dt

=
∂

∂qa[k]

(
∂t + ∑

l=0

qb[l+1] ∂
∂qb[l]

)
= (1−δk0)

∂
∂qa[k−1]

+

(
∂t + ∑

l=0

qb[l+1] ∂
∂qb[l]

)
∂

∂qa[k] =
d
dt

∂
∂qa[k] + (1−δk0)

∂
∂qa[k−1] .

Thus, one gets
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dEL

dqa

d
dt

= ∑
k=0

(
− d

dt

)k ∂
∂qa[k]

d
dt

= − ∑
k=0

(
− d

dt

)k+1 ∂
∂qa[k] + ∑

k=1

(
− d

dt

)k ∂
∂qa[k−1]

=
d
dt ∑

k=0

(
− d

dt

)k ∂
∂qa[k] −

d
dt ∑

k=1

(
− d

dt

)k−1 ∂
∂qa[k−1] =

d
dt

dEL

dqa − d
dt

dEL

dqa = 0 .

B. Noether symmetries

Consider an infinitesimal inner[8] trajectory variation δqa

(inner variations vanish together with all their time derivatives
at t1 and t2). Namely,

qa (t) → q′a (t) = qa (t)+δqa . (12)

We suppose that δqa = δqa
(

q[]
)

is an LF. The correspond-

ing first variation of the action can be written as follows:

δS =
Z t2

t1
δ̂Ldt , (13)

where the operator δ̂, which will be called the transformation
operator, acts on the corresponding LF as[9]

δ̂ = ∑
k=0

δqa[k] ∂
∂qa[k] = δ̂δq . (14)

Two simple but useful relations follow from (14):

δ̂qa = δqa , δ̂ciδiq = ciδ̂δiq. (15)

The variation (12) is a symmetry transformation of the ac-
tion S, or simply a symmetry of the action S, whenever the cor-
responding first variation of the Lagrange function is reduced
to the total time derivative of a LF. Namely, δq is a symmetry
if

δ̂L =
dF
dt

, (16)

where F is an LF. In this case the first variation (13) of the
action depends on the complete set of the variables q[] at t = t1
and t = t2 only,

δS =
Z t2

t1
δ̂Ldt = F |t2t1 .

Any linear combination of symmetry transformations is a
symmetry.

Indeed, let δiq be some symmetry transformations, and
δq = ciδiq, where ci are some constants. Then, taking into
account (15), we obtain:

δ̂δiqL =
dFi

dt
=⇒ δ̂δqL =

dF
dt

, F = ciFi . (17)

Transformation operators that correspond to symmetry
transformations are called symmetry operators.

The above-described symmetry transformations are called
Noether symmetries.

Below, we list some properties of the transformation oper-
ators and of the symmetry transformations:

a) Any first variation of the Lagrange function can be pre-
sented as

δ̂L = δqa dELL
dqa +

dP
dt

= δqa δS
δqa +

dP
dt

, (18)

where P is an LF of the form

P = ∑′
a

Na

∑
m=1

pm
a δqa[m−1] , pm

a =
Na

∑
s=l

(
− d

dt

)s−m
∂L

∂qa[s] . (19)

One ought to remark that the sum (19) that presents P is run-
ning only over those a for which Na > 0. However, it can be
extended over all a′s since the momenta pm

a that correspond to
the degenerate coordinates are zero. Thus, the prime over the
sum above can be omitted.

b) Any transformation operator commutes with the total
time derivative: [

δ̂ ,
d
dt

]
= 0 . (20)

The latter property is justified by the following relations:

d
dt

δ̂ = ∑
k=0

[
δqa[k+1] ∂

∂qa[k] +δqa[k] ∂
∂qa[k] ∂t

]
+ ∑

k,l=0

qb[l+1] δqa[k] ∂2

∂qa[k]∂qb[l] ,

δ̂
d
dt

= ∑
l=0

[
δ̂qb[l+1]

] ∂
∂qb[l] + δ̂∂t + ∑

k,l=0

δqa[k]qb[l+1] ∂2

∂qb[l]∂qa[k] =
d
dt

δ̂ .
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c) The commutator of any two transformation operators is
a transformation operator as well.

Namely, let δ̂1q = δq1, and δ̂2q = δq2. Then[
δ̂1, δ̂2

]
= δ̂3 , δ̂3q = δ̂1δq2 − δ̂2δq1 . (21)

Indeed, one can write:

δ̂1δ̂2 = ∑
l=0

(
δ̂1δqb[l]

2

) ∂
∂qb[l] + ∑

k,l=0

δqa[k]
1 δqb[l]

2
∂

∂qb[l]
∂

∂qa[k]

= ∑
l=0

dl(δ̂ε1δqb
2)

dtl

∂
∂qb[l] + ∑

k,l=0

δqa[k]
1 δqb[l]

2
∂

∂qb[l]
∂

∂qa[k] , (22)

δ̂2δ̂1 = ∑
k=0

(
δ̂ε2 δqa[k]

1

) ∂
∂qa[k] + ∑

l,k=0

δqb[l]
2 δqa[k]

1
∂

∂qa[k]
∂

∂qb[l]

= ∑
k=0

dk
(

δ̂ε2δqb
1

)
dtk

∂
∂qa[k] + ∑

k,l=0

δqa[k]
1 δqb[l]

2
∂

∂qb[l]
∂

∂qa[k] .

(23)

Then subtracting Eq. (23) from Eq. (22), we obtain the rela-
tion (21).

In other words, the set of all transformation operators form
a Lie algebra.

d) The commutator of the Euler–Lagrange derivative and a
transformation operator is proportional to the Euler–Lagrange
derivative. Namely, if δ̂q = δqb, then

[
dEL

dqa , δ̂
]

= Q̂b
a

dEL

dqb , Q̂b
a = ∑

k=0

(
− d

dt

)k ∂
∂qa[k] δqb . (24)

To prove this property, one may consider a sequence of
equalities,

Z t2

t1

dEL

(
δ̂F

)
dqa ζadt =

Z t2

t1
δ̂ζδ̂Fdt

=
Z t2

t1
δ̂δ̂ζFdt +

Z t2

t1
δ̂δ̂ζδqFdt

=
Z t2

t1
ζa ∑

k=0

(
− d

dt

)k

δ̂
∂F

∂qa[k] dt +
Z t2

t1
δ̂ζδqb dELF

dqb dt

=
Z t2

t1
ζa

(
δ̂δb

a + Q̂b
a

) dELF
dqb dt ,

(
δ̂ζqa = ζa

)
,

where ζ(t) is an arbitrary inner variation, and F is an LF.
It is useful to keep in mind the following generalization of

relation (24):[(
d
dt

)k dEL

dqa , δ̂

]
=

(
d
dt

)k

Q̂b
a

dEL

dqb , (25)

which follows immediately from (20) and (24).

e) The commutator of two symmetry operators is a symme-
try operator as well.

Indeed, let δ̂1 q = δq1, and δ̂2q = δq2 be symmetry transfor-
mations, i.e., δ̂1L = dF1/dt , and δ̂2L = dF2/dt . Then, taking
into account (20) and (21), we obtain[

δ̂1, δ̂2

]
L = δ̂3L =

d
dt

F3 , F3 = δ̂1F2 − δ̂2F1 . (26)

Thus, the set of symmetry operators of the action S forms a
Lie subalgebra of the Lie algebra of all transformation opera-
tors.

f) Symmetry transformations transform extremals into ex-
tremals.

The validity of this assertion follows from the relations
proven below.

Suppose δ̂ is a symmetry operator; then the following rela-
tion takes place:

δ̂
δS
δqa = −Q̂b

a
δS
δqb . (27)

Indeed, by virtue of (10), (11), and (24), we can write

δ̂
δS
δqa = δ̂

dELL
dqa =

dEL

(
δ̂L

)
dqa − Q̂b

a
dELL
dqb

=
dEL

dqa

dF
dt

− Q̂b
a

δS
δqb = −Q̂b

a
δS
δqb .

A generalization of (27) based on the relation (24) reads:

δ̂
dk

dtk

δS
δqa = − dk

dtk Q̂b
a

δS
δqb . (28)

g) Symmetry transformations transform genuine trajecto-
ries into genuine trajectories.

Indeed, suppose that q̃a be a genuine trajectory, that is

δS
δqa

∣∣∣∣
q̃
= 0 , (29)

and δqa be a symmetry transformation. Then the transformed
trajectory q̃′a = q̃a + δqa is also a genuine one. Indeed, by
virtue of (27) and (29), we get:

δS
δqa

∣∣∣∣
q̃′=q̃+δq

=
δS
δqa

∣∣∣∣
q̃
+ δ̂

δS
δqa

∣∣∣∣
q̃
=

(
δb

a − Q̂b
a

) δS
δqb

∣∣∣∣
q̃
= 0 .

C. Trivial symmetries

Below, we are going to describe so-called trivial symme-
tries transformations, which exist for any action.

A symmetry transformation is called a trivial symmetry
transformation whenever the corresponding trajectory varia-
tion has the form

δqa = Ûab δS
δqb , (30)
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where Û is an antisymmetric LO, that is
(
ÛT

)ab = −Ûab .
Thus, trivial symmetry transformations do not affect genuine
trajectories. (One can prove, see below, that any symme-
try transformation that vanishes on the equations of motion,
δqa = O(δS/δq) , is trivial, namely it has the form (30)). With
the help of relations (5) and (18), we can easily verify that (30)
is actually a symmetry transformation. Indeed,

δ̂L =
dELL
dqb Ûab dELL

dqb +
dP
dt

=
dF
dt

+
dP
dt

=
d (F +P)

dt
,

where F and P are some LF.
Since trivial symmetry transformations are proportional to

the equations of motion, they do not change genuine trajecto-
ries, as was already mentioned above.

The commutator of a symmetry operator and a trivial-
symmetry operator is a trivial-symmetry operator. Namely,
if

δ̂1L = dF1/dt , δ̂2L = dF2/dt, δ̂2qa = δ2qa = V̂ abδS/δqb ,

then

[
δ̂1, δ̂2

]
L = δ̂3L , δ̂3qa = δ3qa = Ûab δS

δqb , (31)

where V̂ ab and Ûab are some antisymmetric LO.

To verify (31), we remark that, according to (21), δ̂3 is a
symmetry operator, with δ3q = δ̂1δ2q− δ̂2δ1q, where δ1q =
δ̂1qa. The term δ̂1δ2q can be calculated with the help of (14),

δ̂1δ2qa = ∑
k=0

∂(δ2qa)
∂qc[k]

[
dk

dtk

(
V̂ cb δS

δqb

)]
,

and the term δ̂2δ1q can be calculated with the help of (27),

δ̂2δ1qa =
(

δ̂2V̂ ab
) δS

δqb +V̂ abδ̂2
δS
δqb =

(
δ̂2V̂ ab

) δS
δqb −V̂ abQ̂c

b
δS
δqc .

Thus, we obtain: δ̂3qa = δ3qa = ÛabδS/δqb, where Ûab is an antisymmetric LO of the form

Ûab = ∑
k=0

[
∂(δ2qa)

∂qc[k]

(
d
dt

)k

V̂ cb +V̂ ac
(
− d

dt

)k ∂
(
δ2qb

)
∂qc[k]

]
− δ̂2V̂ ab.

We call two symmetry transformations δ1q and δ2q equiv-
alent (δ1q ∼ δ2q) whenever they differ by a trivial symmetry
transformation:

δ1q ∼ δ2q ⇐⇒ δ1qa −δ2qa = Ûab δS
δqb . (32)

Here
(
ÛT

)ab = −Ûab .
Let G(S) be the Lie algebra of all symmetries of the action

S. The trivial symmetries form the ideal Gtr (S) in the Lie
algebra G(S). Then the classes of equivalent symmetries form
a Lie algebra GPh (S) isomorphic to the quotient algebra:

GPh (S) = G(S)/Gtr (S) .

III. DYNAMICALLY EQUIVALENT ACTIONS

Very often we encounter an action

SE[q,y] =
Z

LE

(
q[],y[]

)
dt , (33)

which contains two groups of coordinates q[] and y[] such that
the Euler–Lagrange allow one to express all y via q[]. It is
convenient to call SE[q,y] the extended action. One can try to
eliminate the variables y from the extended action to get some
reduced action, which depends now only on q, and ask the
question: What is the relation between the extended and the
reduced actions? There exist a case when this question has a
definite answer [2, 5]. Namely, let us suppose that the Euler–
Lagrange δSE [q,y]/δy = 0 allow one to express uniquely the
variables y as LF of the variables q,

δSE [q,y]
δy

= 0 ⇐⇒ y = ȳ
(

q[]
)

. (34)

Then we define the reduced action S [q]

S [q] = SE[q, ȳ] =
Z

LE

(
q[], ȳ[]

)
dt =

Z

L
(

q[]
)

dt . (35)

Let us compare the Euler–Lagrange that correspond to both
actions. First consider the variation of the reduced action
δS under arbitrary inner variations δq,
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δS[q] =
Z (

δSE [q,y]
δqi

∣∣∣∣
y=ȳ

δqi +
δSE [q,y]

δyα

∣∣∣∣
y=ȳ

δȳα

)
dt =

Z δS [q]
δqi δqidt . (36)

In virtue of (34), the Euler–Lagrange of the reduced action
read

δS [q]
δq

=
δSE [q,y]

δq

∣∣∣∣
y=ȳ

= 0 . (37)

On the other hand, the Euler–Lagrange of the extended ac-
tion SE [q,y] are

δSE [q,y]
δq

= 0 ,
δSE [q,y]

δy
= 0 ⇐⇒ y = ȳ

(
q[]

)
.

They are reduced to (37) in the q-sector. We can see that
the extended action and the reduced action lead to the same
Euler–Lagrange for q. This is why the variables y are called
the auxiliary variables. The auxiliary variables y can be elim-
inated from the action with the help of the Euler–Lagrange.
Further, we call the actions SE [q,y] and S[q] the dynamically
equivalent actions.

One ought to stress that the above equivalence is a conse-
quence of the assumption that the variables y are expressed
via q by means of the equations δS/δy = 0 only. If, for this
purpose, some of the equations δS/δq = 0 are used as well,
then the above equivalence can be absent. Of course, the so-
lutions of the Euler–Lagrange for the reduced action, together
with the definition y = ȳ, contain all solutions of the Euler–
Lagrange for the extended action (as it is easily seen from Eq.
(36)). However, the reduced action can imply additional solu-
tions.

Actions containing auxiliary variables and the correspond-
ing reduced actions have similar properties, in particular, there
exists a direct relation between their symmetry transforma-
tions.

As was mentioned above, we are going to relate the sym-
metry properties of the extended and reduced actions. To this
end, it is convenient to make an invertible coordinate replace-

ment, (qa,yα) → q̃A = (qa,zα), y = z + ȳ
(

q[l]
)

, in the ex-

tended action. In fact, we are going to consider a modified
extended action S̃[q̃], which is obtained from the extended ac-
tion SE[q,y] as follows:

S̃[q̃] =
Z

L̃
(

q̃[]
)

dt = SE[q,z+ ȳ] =
Z

LE

(
q[],z[] + ȳ[]

)
dt .

(38)
The extended action SE[q,y] and the modified extended ac-
tion S̃[q̃] are completely equivalent. They lead to completely
equivalent Euler–Lagrange. Thus, it is sufficient to study the
relation between the symmetry properties of the modified ex-
tended action S̃[q̃] and the reduced action S [q] .

Note that

S [q] = S̃[q̃]
∣∣
z=0 , L

(
q[]

)
= L̃

(
q̃[]

)∣∣∣
z=0

. (39)

Besides, the action (38) can be presented in the form

S̃[q̃] = S [q]+∆S [q̃] , ∆S [q̃] =
Z

∆Ldt ,

= LE

(
q[],z[] + ȳ[]

)
−LE

(
q[], ȳ[]

)
. (40)

The variables z are auxiliary ones for the action S̃[q̃], and, in
particular, z = 0 on the Euler–Lagrange. Indeed,

δS̃[q̃]
δz

= 0⇐⇒ δSE[q,y]
δy

= 0 =⇒ y = ȳ
(

q[]
)

=⇒ z = 0 . (41)

The latter implies:

δS̃
δzα =

δ∆S
δzα = Ûαβzβ = 0 . (42)

Since equation (41) has the unique solution z = 0, one can
easily verify that Û is an invertible LO. The equation (42)
implies

∆L = zαK̂αβzβ +
d
dt

F , (43)

where K̂ is a symmetric LO, and F is an LF. Besides, one can
write

zα =
(
Û−1)αβ δ∆S

δzβ =
(
Û−1)αβ δS̃

δzβ . (44)

On the other hand, due to the property (11), one can write

δ∆S
δqa =

dEL∆L
dqa =

dEL

dqa

[
zαK̂αβzβ

]
.

Then, taking into account (43, 44), and the definition of the
Euler–Lagrange derivative, we get the following useful rela-
tion:

δ∆S
δqa = Λ̂α

a
δ∆S
δzα , Λ̂α

a = ∑
l=0

(
− d

dt

)l

zν ∂K̂νβ

∂qa[l]

(
Û−1)βα

, (45)

where Λ̂α
a is an LO.

IV. SYMMETRIES OF THE EXTENDED AND THE
REDUCED ACTIONS

There exists a one-to-one correspondence (isomorphism)
between the symmetry classes of the extended action S̃[q̃] and
the reduced action S [q] . Below, we prove a set of assertions,
which justify, in fact, this correspondence.
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i) If the transformation

δq̃A =
(

δ′qa

δzα

)
, (46)

is a symmetry of the extended action S̃, then the transforma-
tion

δqa = δ′q
∣∣
z=0 (47)

is a symmetry of the reduced action S.
Indeed, let (46) be a symmetry of the action S̃. Then

δ̂δq̃L̃ =
d
dt

F̃ , (48)

where F̃ is an LF. Considering (48) at z = δz = 0, we get

δ̂δqL =
d
dt

F , δqa = δ′q
∣∣
z=0 , F = F̃

∣∣
z=0 ,

where L is given by (39). Thus, any symmetry of the action
S̃ implies a symmetry of the action S. The symmetry δq ob-
tained in such a way can be called the symmetry reduction of
the extended action.

ii) If the transformation δq is a symmetry of the reduced
action S, then the transformation

δq̃A =
(

δqa

δzα

)
, δzα = −(

Λ̂T )α
a δqa , (49)

where the LO Λ̂ defined by Eq. (45) is a symmetry of the
extended action S̃.

To prove this assertion, let us consider the first variation
δ̂δq̃L̃ of the Lagrange function L̃ . Since δq is a symmetry of

the reduced action S, the relation δ̂δqL = dF/dt , where F is
an LF, holds true. Thus, with the help of the property (15),
one may write the variation δ̂δq̃L̃ in the form

δ̂δq̃L̃ =
(

δ̂δq + δ̂δz

)
L̃ =

d
dt

F +
(

δ̂δq + δ̂δz

)
∆L . (50)

Now, we present the variations δ̂δq∆L and δ̂δz∆L with the help
of relation (18). Besides, taking into account the expression
(49) for the variation δz, we get

δ̂δq̃L̃ =
d
dt

(F +Pq +Pz)+δqa δ∆S
δqa −

[(
Λ̂T )α

a δqa
] δ∆S

δzα ,

(51)
where Pq and Pz are some LF. Using (45) and (5), we may
write

δqa δ∆S
δqa = δqaΛ̂α

a
δ∆S
δzα =

[(
Λ̂T )α

a δqa
] δ∆S

δzα +
dG
dt

, (52)

where G is an LF. Thus, the variation δ̂δq̃L̃ is reduced to the
total derivative of an LF,

δ̂δq̃L̃ =
d
dt

(F +Pq +Pz +G) .

Thus, δq̃ is a symmetry of the extended action S̃.
iii) Any symmetry of the form

δq̃ =
(

0
δz

)
(53)

of the extended action S̃ is trivial.
Since δq̃ is a symmetry of the action S̃, one can write

δ̂δq̃L̃ = δ̂δzL̃ =
dF
dt

, (54)

where F is an LF. Taking into account (18), we may rewrite
Eq. (54) as

δzα δS̃
δzα =

dF ′

dt
, (55)

where F ′ is an LF. The left-hand side of equation (55) can be
transformed, with the help of (42) and (5), to the form

δzα δS̃
δzα = δzαÛαβzβ =

[(
ÛT )

βα δza
]

zβ +
dF ′′

dt
,

where F ′′ is an LF. Thus, the equation (55) may be reduced to

zβ fβ =
dΦ
dt

, fβ =
(
ÛT )

βα δza , (56)

where f
(

Q[]
)

and Φ
(

Q[]
)

are some LF. Let us present the

LF Φ as

Φ
(

Q[]
)

= Φ0

(
q[]

)
+Φ1

(
Q[]

)
,

Φ0 = Φ|z=0 , Φ1|z=0 =
N

∑
k=0

Φα(k)

(
Q[]

)
zα[k] , N < ∞ . (57)

It follows from equation (56) that dΦ0/dt ≡ 0. According to
(6), the latter implies Φ0 ≡ const . From (56), we get the equa-
tion

N+1

∑
k=0

ϕα(k)z
α[k] = 0 , (58)

where

ϕα(0) = fα − Φ̇α(0) , ϕα(N+1) = −Φα(N) ,

ϕα(k) = −[
Φα(k−1) + Φ̇α(k)

]
, k = 1, ...,N . (59)

The general solution of Eq. (58) is

ϕα(k) =
N+1

∑
l=0

mα(k)|β(s)l zβ[s], mα(k)|β(s)l = −mβ(s)|lα(k) , (60)

where mα(k)|β(s)l

(
Q[]

)
are some LF. Then the LF Φα(k) and

fα can be found from Eq. (59):

Φα(k) = −
N−k

∑
m=0

N+1

∑
l=0

(
− d

dt

)m [
mα(k+m+1)|β(l)z

β[l]
]

,

fα =
N+1

∑
m,l=0

(
− d

dt

)m [
mα(m)|β(l)z

β[l]
]
≡ m̂αβzβ , (61)
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where m̂αβ is an antisymmetric LO. Thus, we get from (56)

δzα = M̂αβ δS̃

δzβ , M̂αβ =
[(

ÛT )−1
]αγ

m̂γδ
(
Û−1)δβ

, (62)

where M̂αβ is an antisymmetric LO. Therefore, the symmetry
(53) is trivial.

iv) Suppose both transformations δq̃1 and δq̃2 to be sym-
metries of the extended action S̃ such that their reductions co-
incide, that is

δ′q1
∣∣
z=0 = δ′q2

∣∣
z=0 = δq . (63)

Then these symmetries are equivalent,

δq̃1 ∼ δq̃2 , (64)

which means that δq̃1 and δq̃2 differ by a trivial symmetry.
Thus, we have to prove that the transformation

∆q̃ = δq̃1−δq̃2 =
(

∆q′ = δ′q1 −δ′q2
∆z = δz1 −δz2

)
, ∆q′

∣∣
z=0 = 0 ,

is a trivial symmetry of the extended action S̃ . In virtue of Eq.
(63), the LF ∆q′ may be presented as

∆q′a = m̂a
αzα , (65)

where m̂ is an LO. With the help of (44), we get for ∆q′ the
following expression:

∆q′a = M̂aβ δS̃

δzβ , (66)

where M̂ = m̂Û−1 is an LO.
Let us present the transformation ∆q̃ in the form ∆q̃ =

∆1q̃+∆2q̃, where

∆1q̃ = M̂AB δS̃
δq̃B , M̂AB =

(
0 M̂aβ

−(
M̂T

)αb
0

)
, (67)

and

∆2q̃ =
(

0
∆σ′′

)
. (68)

The transformations ∆1q̃ is a trivial symmetry since the LO

M̂AB is antisymmetric, that is
(
M̂T

)AB = −M̂AB. Thus, ∆2q̃
is a symmetry of the extended action S̃. Besides, the latter

symmetry has a special form (68). It was proven in item c)
that any symmetry of such a form is trivial. Therefore, the
symmetry ∆q̃ is trivial as well.

v) Let a transformation δq̃ be a trivial symmetry of the ex-
tended action S̃. Then its reduction δq is a trivial symmetry of
the reduced action S.

According to this assumption, we may write

δq̃A =

(
δ′qa = M̂ab δS̃

δqb + M̂aβ δS̃
δzβ

δzα = −(
M̂T

)bα δS̃
δqb + M̂αβ δS̃

δzβ

)
, (69)

where the local operators M̂ab and M̂αβ are antisymmetric.
Then the reduction δq = δ′q|z=0 of the transformation (69)
reads

δqa = m̂ab δS
δqb , m̂ab = M̂ab

∣∣∣
z=0

. (70)

The LO m̂ab is antisymmetric. Thus, (70) is a trivial sym-
metry of the reduced action S.

vi) Let a symmetry δq of a reduced action S be trivial. Then
any extension of this symmetry to the symmetry δq̃ of the ex-
tended action S̃ is trivial as well.

Since δq is a trivial symmetry, one can write

δqa = m̂ab δS
δqb ,

where m̂ab is an antisymmetric LO. Consider the following
extension of the symmetry δqa:

δq̃1 =
(

δ′q
0

)
, δ′qa = m̂ab δS̃

δqb , (71)

which is a trivial symmetry of the extended action S̃. Any
other extension of δq differs from δq̃1 by a trivial symmetry,
according to item (iv). Therefore, any extension of the trivial
symmetry is a trivial symmetry as well.

Concluding, we can see that there exists an isomorphism
between classes of equivalent symmetries of dynamically
equivalent actions. Since the Lagrangian and Hamiltonian ac-
tions are dynamically equivalent, one can study the symme-
try structure of any singular theory considering the first-order
Hamiltonian action.
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