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We review the existing mass and decay width determinations of pentaquarks with QCD Sum Rules (QCDSR).
We give special attention to the intermediate assumptions and choices which we are obliged to do in this ap-
proach. As an example, we present the full calculation of the pentaquark mass with Borel sum rules and also
with Finite Energy Sum Rules (FESR). We also work out the calculation of the Θ decay width. We take the
opportunity to comment our publications on this subject and include new and unpublished material.
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I. INTRODUCTION

From june 2003 to august 2005 there was an intense the-
oretical activity devoted to understand the structure of a new
family of baryons: the pentaquarks. The interest for this sub-
ject was triggered by the announcement made by the LEPS
collaboration [1] reporting the observation of the Θ+(1540).
Since then, a flurry of theoretical [2] and experimental [3]
papers brought the pentaquarks to the main stage of hadron
physics.

The subsequent experimental searches, carried out in
dozens of different machines with different energies, differ-
ent beam and targets and different detection methods turned
out to be inconclusive, half of the experiments observing the
Θ+(1540) and the other half not observing it. This puzzling
situation began to change when, in the beginning of 2005
some groups which had previously found the pentaquark state
could not see it anymore in a second round of much more
careful experiments [4, 5]. Very fastly the community started
not to believe in the existence of the pentaquark. In august
2005, a statement made by Ted Barnes at the HADRON05
meeting, in Rio de Janeiro, reflected this new consensus [6].
He said: “the pentaquark is dead !”. Much experimental work
on the subject is still needed, not only to confirm the negative
result, but also to understand what was wrong before. In spite
of some isolated claims that the state really exists, today it
seems very likely that the final conclusion will give support to
the “death sentence” pronounced by Barnes. As for explain-
ing the previous positive results, some steps along this direc-
tion have been taken by Meier, Dzierba and Szczepaniak, who
tried to demonstrate that the signal observed by the CLAS col-
laboration at JLAB is a consequence, among other things, of
kinematical reflections [7].

On the theoretical side the situation became equally confus-
ing. The method able to give the best answers, lattice QCD,
was used by several groups to look for the pentaquark [8–10].
These “theoretical searches”, in the same way as the initial
experimental ones, turned out to be inconclusive, half of the
groups finding a signal and half not finding it. Quark models
were also extensively used in this context but they may give
answer to different questions. Due to their very nature, they
have to assume that a particle exists and then they may predict,
for example, its spatial and color configuration.

Between lattice QCD and quark models, in an intermedi-

ate position in the theoretical scenario, we have QCD sum
rules (QCDSR) [11–13], which, in principle are pure theory.
However, due to the option of keeping the calculation ana-
lytic and avoiding the “brute force” numerical work; due to
the option of trading a simulation of the QCD vacuum by the
phenomenological parameters known as condensates, the re-
sults start to depend on certain assumptions (like, for exam-
ple, the factorization hypothesis for higher dimension conden-
sates) which are made during the calculations. The first works
on Θ+(1540) with QCDSR [14–17] addressed the mass of
the state and could all obtain a reasonable value for the mass.
Later, a more careful analysis [18–20] revealed some prob-
lems with the previous calculations. In the mean time other
pentaquarks were observed: the Ξ−− and the Θc. These were
also studied with QCDSR [18, 21]. This time, with more rig-
orous criteria it was more difficult to reproduce the experimen-
tal data, i.e., the masses of the states (especially the Ξ−−). Fi-
nally, attempts to describe the extremely narrow decay width
pushed the method to the limit and the conclusion was that it
is very difficult to understand this decay in QCDSR [22].

If, in the near future, the non-existence of pentaquarks is
confirmed, the community might address to the QCDSR prac-
titioners the following justified and embarrassing question:
“how could you so nicely calculate the correct mass of some-
thing that does not exist?”

In this work we present a critical review of these QCDSR
calculations commenting their strong and weak points. In
reviewing these topics we present new material, which was
never published before.

The text is organized as follows. In the next section we
briefly mention some interesting facts and main ideas about
pentaquarks. In section 3 we present the main formulas of
QCDSR, show one complete calculation of a pentaquark mass
with all the inputs and assumptions. In section 4 we enumerate
the requirements that must be satisfied for a QCDSR calcula-
tion to be reliable and check whether this is case for the results
discussed in the preceding section. In section 5 we introduce
the finite energy sum rules (FESR) and present the results for
mΘ and mΞ obtained with this method. In section 6 we move
to the pentaquark decay width. Finally, in section 7 we present
our conclusions.
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II. THE PENTAQUARK STRUCTURE

Probably the most interesting physical question related to
pentaquarks is: how are these five quarks organized? The ex-
otic baryon with the K+n quantum numbers, the Θ+(1540),
first observed in [1], could not be a three quark state and
its minimal quark content had to be uudds. These quarks
could be in one of the following configurations: a) uncorre-
lated quarks inside a bag [23]; b) a K −N molecule bound
by a van-der Waals force [24]; c) a “K −N” bound state in
which uud and us are not separately in color singlet states
[14]; d) a diquark-triquark (ud)− (uds) bound state [25] and
e) a diquark-diquark-antiquark state [26]. This last possibility
has been by far the most explored, also in the QCD sum rules
framework.

According to Jaffe and Wilczek (JW), each diquark should
have spin zero and should be in the 3̄ representation of SU(3),
in color and flavor. The two diquark would then combine in a
P-wave orbital angular momentum to form a 3 state in color,
spin S = 0, and 6̄ in flavor. The resulting state would then
be combined with the antiquark to form a flavor antidecuplet
1̄0 f and octet 8 f , with spin S = 1/2. The Θ+ would be at the
top of the antidecuplet 1̄0 f and would have an isospin I = 0.
JW have also interpreted the lightest particle in the octet 8 f ,
[ud]2d̄, as the Roper resonance, since it has the same quantum
numbers of the nucleon. The Roper resonance would be thus
identical to the Θ+ except for the substitution of the strange
antiquark by a down antiquark. This would explain why the
mass difference between Θ+(1540) and N(1440) is so close
to the strange quark mass.

Understanding the organization of matter at the quark level
is of extreme importance. This can be done with the help of
lattice QCD and, to some extent, with QCDSR. In the follow-
ing section we describe the calculation of a pentaquark mass
with QCDSR.

III. CORRELATION FUNCTION, CURRENTS AND
MASSES

The purpose of this section is mainly to show the QCDSR
machinery at work, giving emphasis to the aspects which may
be potential sources of uncertainties.

In the QCDSR approach [12, 13], the short range pertur-
bative QCD is extended by an operator product expansion
(OPE) of the correlators, which results in a series in powers of
the squared momentum with Wilson coefficients. The conver-
gence at low momentum is improved by using a Borel trans-
form. The expansion involves universal quark and gluon con-
densates. The quark-based calculation of a given correlator
is equated to the same correlator, calculated using hadronic
degrees of freedom via a dispersion relation, providing sum
rules from which a hadronic quantity can be estimated. The
QCDSR calculation of hadronic masses centers around the
two-point correlation function given by

Π(q) ≡ i
∫

d4xeiq·x < 0|T η(x)η(0)|0 > (1)

where η(x) is an interpolating field (a current) with the quan-
tum numbers of the hadron we want to study.

In the next subsections we discuss the evaluation of (1) for
the cases of the Ξ−− and of the Θ+.

The basic ingredients in the particle mass determinations
from QCD spectral sum rules [11, 12] as well as from lat-
tice QCD calculations are the interpolating currents used to
describe the particle states. Contrary to the ordinary mesons,
where the form of the current is unique, there are different
choices of the pentaquark currents in the literature. We shall
list below some possible operators describing the isoscalar
I = 0 and J = 1/2 channel which would correspond to the
experimental candidate Θ(1540).

A. The Θ(1540) currents

Defining the pseudoscalar (ps) and scalar (s) diquark interpo-
lating fields as:

Qps
ab(x) =

[
uT

a (x)Cdb(x)
]

,

Qs
ab(x) =

[
uT

a (x)Cγ5db(x)
]

, (2)

where a, b, c are color indices and C denotes the charge con-
jugation matrix, the lowest dimension current built by two di-
quarks and one anti-quark describing the Θ as a I = 0, JP =
1/2+ S-wave resonance is [16]:

ηΘ
I = εabcεde f εc f gQps

abQs
deCs̄T

g , (3)

and the one with one diquark and three quarks is [14]:

ηΘ
II =

1√
2

εabcQs
ab {ues̄eiγ5dc − (u ↔ d)} . (4)

This later choice can be interesting if the instanton repulsive
force arguments [27] against the existence of a pseudoscalar
diquark bound state apply. Alternatively, a description of the
Θ as a I = 0, JP = 1/2+ P-wave resonance has been proposed
by [26] and used by [17] in the sum rule analysis:

ηΘ
III =

(
εabdδce + εabcδde

)
[Qs

ab(D
µQs

cd)−
(DµQs

ab)Q
s
cd ]γ5γµCs̄T

e . (5)

This current can be generalized by considering its mixing with
the following one having the same dimension and quantum
numbers:

ηΘ
IV = εabcεde f εc f gQps

abQs
deγµ(DµCs̄T

g ) . (6)

The evaluation of (1) with (6) revealed that [19], to leading
order in αs and in the chiral limit mq → 0, the contribution
to the correlator vanishes. This result justifies a posteriori the
unique choice of operator for the P-wave state used in [17].

B. The Ξ(1862) currents

Following the diquark-diquark-antiquark scheme, we can
write two independent interpolating fields with the quantum
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numbers of Ξ−− (I = 3/2, JP = 1/2−):

η1(x) =
1√
2

εabc(dT
a (x)Cγ5sb(x))[dT

c (x)Cγ5se(x)

+ sT
e (x)Cγ5dc(x)]CūT

e (x) (7)

η2(x) =
1√
2

εabc(dT
a (x)Csb(x))[dT

c (x)Cse(x)

+ sT
e (x)Cdc(x)]CūT

e (x) (8)

where a, b, c and e are color indices and C = −CT is the
charge conjugation operator.

As in the nucleon case, where one also has two independent
currents with the nucleon quantum numbers [28, 29], the most
general current for Ξ−− is a linear combination of the currents
given above:

ηΞ
I (x) = [tη1(x)+η2(x)] , (9)

with t being an arbitrary parameter. In the case of the nucleon,
the interpolating field with t = −1 is known as Ioffe’s current
[28]. With this choice for t, this current maximizes the over-
lap with the nucleon as compared with the excited states, and
minimizes the contribution of higher dimension condensates.
In the present case it is not clear a priori which is the best
choice for t.

We also employ the following interpolating field operator
for the pentaquark Ξ−− [10, 16] :

ηΞ
II(x) = εabcεde f εc f gsT

a (x)Cdb(x)
× sT

d (x)Cγ5de(x)CūT
g (x) (10)

It is easy to confirm that this operator produces a baryon
with J = 1/2, I = 3/2 and strangeness −2. The parts,
Sc(x) = εabcsT

a (x)Cγ5db(x) and Pc(x) = εabcsT
a (x)Cdb(x), give

the scalar S (0+) and the pseudoscalar P (0−) sd diquarks,
respectively. They both belong to the anti-triplet representa-
tion of the color SU(3). The scalar diquark corresponds to the
I = 1/2 sd diquark with zero angular momentum. It is known
that a gluon exchange force as well as the instanton mediated
force commonly used in the quark model spectroscopy give
significant attraction between the quarks in this channel.

C. The Ξ mass

Inserting Eq. (9) into the integrand of Eq. (1) we obtain

< 0|T η(x)η(0)|0 > = t2Π11(x) + tΠ12(x)
+ tΠ21(x)+Π22(x) (11)

Calling Γ1 = γ5 and Γ2 = 1 we get

Πi j(x) = < 0|T ηi(x)η j(0)|0 >

= εabcεa′b′c′CSe′e
T (−x)C{− Tr [ΓiSs

bb′(x)Γ jCST
aa′(x)C]

× Tr [ΓiSs
ee′(x)Γ jCST

cc′(x)C]+ ... (12)

where Sab(x) and Ss
ab(x) are the light and strange quark prop-

agators respectively. The above expression was included just
to show the ingredients of the calculation. The full version of
(12) can be found in [18].

In order to evaluate the correlation function Π(q) at the
quark level, we first need to determine the quark propagator in
the presence of quark and gluon condensates. Keeping track
of the terms linear in the quark mass and taking into account
quark and gluon condensates, we get [30]

Sab(x) = 〈0|T [qa(x)qb(0)]|0〉
=

iδab

2π2x4 /x− mqδab

4π2x2

− i
32π2x2 tA

abgsGA
µν(/xσµν +σµν/x)

− δab

12
〈qq〉

− mq

32π2 tA
abgsGA

µνσµν ln(−x2)

+
iδab

48
mq〈qq〉/x− x2δab

26 ×3
〈gsqσ·Gq〉

+
ix2δab

27 ×32 mq〈gsqσ·Gq〉/x

− x4δab

210 ×33 〈qq〉〈g2
s G2〉 (13)

where we have used the factorization approximation for the
multi-quark condensates, and we have used the fixed-point
gauge [30].

Inserting (13) into (12) we obtain a set of diagrams which
contribute to the OPE side of the correlation function.

Lorentz covariance, parity and time reversal imply that the
two-point correlation function in Eq. (1) has the form

Π(q) = Π1(q2)+Πq(q2)q/ . (14)

A sum rule for each scalar invariant function Π1 and Πq, can
be obtained. In [18] the chirality even structure Πq(q2) was
used to obtain the final results.

The phenomenological side is described, as usual, as a sum
of pole and continuum, the latter being approximated by the
OPE spectral density. In order to suppress the condensates of
higher dimension and at the same time reduce the influence
of higher resonances we perform a standard Borel transform
[12]:

Π(M2) ≡ lim
n,Q2→∞

1
n!

(Q2)n+1
(
− d

dQ2

)n

Π(Q2) (15)

(Q2 = −q2) with the squared Borel mass scale M2 = Q2/n
kept fixed in the limit.

For current II we repeat the steps mentioned above, substi-
tuting (10) into (1), making use of the expansion (13), picking
up the terms multiplying the structure q/ and finally perform-
ing a Borel transform (15).

After Borel transforming each side of Πq(Q2) and transfer-
ring the continuum contribution to the OPE side we obtain the
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following sum rule at order ms:

λ2
Ξ e−

m2
Ξ

M2 =
∫ s0

0
e−

s
M2 ρq

i (s)ds. (16)

where i(= I, II) refers to the current employed and the spectral
densities, up to order 6 are given by:

ρq
I (s) = c1

s5

5!5!2127π8 + c3
s3

5!210π6 ms < s̄s >

− c4
s3

5!28π6 ms < q̄q > +c2
s3

5!3!213π6 <
αs

π
G2 >

+ 7c4
s2

216π6 ms < q̄gsσ.Gq >

+ c2
s2

32211π4

(
< s̄s >2 + < q̄q >2)

+ c4
s2

3!28π4 < s̄s >< q̄q >

− c5
s2

4!3!211π6 ms < s̄gsσ.Gs >

− 3c4
s2

4!3!212π6 ms < q̄gsσ.Gq >

×
(

6ln(
s

Λ2
QCD

)− 43
2

)
,

(17)

with c1 = 5t2 +2t +5, c2 = (1− t)2, c3 = (t +1)2, c4 = t2−1,
c5 = t2 +22t +1, ΛQCD = 110 MeV and

ρq
II (s) =

s5

5!5!2107π8 +
s3

5!3!27π6 ms < s̄s >

+
s3

5!3!210π6 <
αs

π
G2 >

+
s2

4!3!29π6 ms < s̄gsσ.Gs > . (18)

To extract the Ξ−− mass, mΞ, we take the derivative of
Eq. (16) with respect to M−2 and divide it by Eq. (16). Re-
peating the same steps leading to (16), (17) and (18) for the
chirality odd structure Π1(q2) we arrive at

λ2
Ξ mΞ e−

m2
Ξ

M2 =
∫ s0

0
e−

s
M2 ρ1

i (s)ds. (19)

where

ρ1
I (s) = −c1

s4

5!4!210π6 < q̄q >

+ c1
s3

4!3!212π6 < q̄gsσ.Gq > (20)

and

ρ1
II (s) = − s4

5!4!27π6 < q̄q >

+
s3

4!3!29π6 < q̄gsσ.Gq > (21)

In the numerical analysis of the sum rules, the values
used for the condensates are: 〈qq〉 = −(0.23)3 GeV3, 〈ss〉 =
0.8〈qq〉, < s̄gsσ.Gs >= m2

0〈s̄s〉 with m2
0 = 0.8 GeV2 and

〈g2
s G2〉= 0.5 GeV4. The gluon condensate has a large error of

about a factor 2, but its influence on the analysis is relatively
small. We define the continuum threshold as:

s0 = (1.86+∆)2 GeV2 (22)

In the complete theory, the mass extracted from the sum
rule should be independent of the Borel mass M2. However,
in a truncated treatment there will always be some dependence
left. Therefore, one has to work in a region where the approx-
imations made are acceptable and where the result depends
only moderately on the Borel variables.

A comparison between results obtained with different cur-
rents is more meaningful when they describe the same phys-
ical state, i.e., those with the same quantum numbers. Con-
cerning spin, all currents considered in our work have the
same spin (= 1/2). Concerning the parity, the situation is more
complicated. In QCD sum rules, when we construct the cur-
rent, it has a definite parity. Current (9) has parity P =−1 and
current (10) has parity P = +1. However, currents can couple
to physical states of different parities. As well discussed in
[21], in order to know the parity of the state in QCDSR, we
have to analyze the chiral-odd sum rule. If the r.h.s of this
sum rule (containing the spectral density coming from QCD)
is positive, then the parity of the corresponding physical state
is the same as the parity of the current. If it is negative the
parity is the opposite of the parity of the current. Perform-
ing this analysis we might determine in both cases the parity
of the state. However it turns out that for both currents, in
the chiral-odd sum rule the OPE does not have good conver-
gence, i.e., terms containing higher order operators are not
suppressed with respect to the lowest order ones. This sum
rule is thus ill defined and nothing can be said about the parity
of the state. The comparative study of the currents is still valid
because we can compare other properties of these currents. A
possible outcome of this study might be that one current has
defects, which are so severe that we are forced to abandon it.
If this turns out to be case, the determination of the parity of
the associated states becomes irrelevant.

IV. RELIABILITY OF A QCD SUM RULE CALCULATION

Having presented the main formulas in the last section, the
next step is be to introduce numerical values for the masses
and condensates, choose reasonable values for the free (or
partially constrained) parameters, which are the continuum
threshold, the Borel mass at which the mass sum rule is
evaluated and, in the case of current (9), the value of t. As a
result we obtain values for mΞ. In doing these calculations we
must remember that it is not enough to obtain a pentaquark
mass consistent with the experimental number. There is a list
of requirements that must be fulfilled:
i) the physical observables, such as masses and coupling
constants, must be approximately independent of the Borel
mass (this is the so called Borel stability).
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ii) the right hand side (RHS) of the sum rules (16) and (19)
must be positive, since the left hand side (LHS) is manifestly
positive.
iii) the operator product expansion (OPE) must be convergent,
i.e., the terms appearing in (17) and (18) must decrease with
the increasing order of the operator.
iv) the pole contribution must be dominant, i.e., the integral
in (16) and in (19) must be at least 50 % of the integral over
the complete domain of invariant masses (s0 → ∞).
v) the threshold parameter s0 must be compatible with the
energy corresponding to the first excitation of an usual baryon.

A. current (9)

After an extensive search for best values of parameters and
optimal Borel window, we have realized that it is extremely
difficult to satisfy simultanously the conditions i)-v) given
above. In particular, when we have a very good OPE con-
vergence, the strength of the pole is very weak and vice versa.
We have to look for a compromise.

In order to illustrate these results, we consider ms = 0.10
GeV and ∆ = 0.44 GeV, and contruct, Figs. 1, 2 and 3, show-
ing the Borel mass dependence of mΞ, of the OPE terms (in
absolute value) and of the percentage of the pole contribution
respectively. For these choices the value of the current-state
overlap is:

λq
I � 5.4 × 10−9 GeV13 (23)

Restricting ourselves to the parameter combinations which
satisfy the requirements i) - v) and taking the average we ob-
tain:

mΞ = 1.85±0.05 GeV (24)

We have also used a current composed by scalar diquarks
only, i.e., η1. The motivation for studying this current is to
verify if it gives a smaller mass for the pentaquark than those
obtained with other currents. According to the instanton de-
scription of diquark dynamics, this should be the case. We
observe that, for same choices for ms and ∆, the masses found
with scalar diquark currents are only slightly smaller than the
others. This means either that instanton dynamics was not
captured by our choice of currents and diagrams or that the in-
teraction between the pseudoscalar diquarks (included in the
mixed currents) is more attractive than expected.

B. current (10)

Using the same numerical inputs quoted in the last subsec-
tion we evaluate now the sum rules obtained with current(10).
The same comments made in the previous subsection apply
here. Choosing ms = 0.10 GeV and ∆ = 0.24 GeV, we present
in Figs. 4, 5 and 6 the Borel mass dependence of mΞ, of the
OPE terms and of the percentage of the pole respectively. As it

can be seen, with current(10) we tend to overestimate mΞ, un-
less very low threshold parameters or quark masses are used.
Besides, the pole contribution is always smaller than 40 %.
On the other hand, the Borel stability seen in Fig. 4 is re-
markable. This suggests that we could choose a lower value
for the Borel mass, thereby increasing the pole contribution
without significantly changing mΞ. The average over the best
parameter choices leads to:

mΞ = 1.88±0.04 GeV (25)

Finally, for these parameters the current-state overlap is:

λq
II � 1.3 × 10−9 GeV13 (26)

Comparing (23) and (26) we observe that the coupling of
current I to the the Ξ state is four times larger than the coupling
of current II to this state. This speaks in favor of current I.
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FIG. 1: Ξ mass with current I. ms = 0.10GeV, t = 1 and ∆ = 0.44
GeV.
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FIG. 2: Leading terms of the R.H.S of (16) with current I. ms =
0.10GeV, t = 1 and ∆ = 0.44 GeV. Solid line: perturbative term;
dotted line: operators of dimension 4; dashed line:operators of di-
mension 6.
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FIG. 3: Relative strength of the pole (solid line) and the continuum
(dotted line) as a function of the Borel mass squared with current I.
ms = 0.10GeV, t = 1 and ∆ = 0.44 GeV.
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FIG. 4: Ξ mass with current II. ms = 0.10GeV and ∆ = 0.24 GeV.

V. FINITE ENERGY SUM RULES

As we have seen, the description of the phenomenological
side of the sum rules requires the definition of the spectral
density ρ, which is written as a sum of pole and continuum
contribution. The energy gap separating the ground state from
the first excited state (∆) or, equivalently, the squared mass of
the first excitation, s0, when not previously known from ex-
periment, must be guessed. This can be considered as a weak
point in the Borel sum rules. A way to reduce this arbitrariness
is to work in the large Borel mass limit and try to completely
determine s0. This variant of QCDSR is called Finite Energy
Sum Rules (FESR) [11, 32, 33].

We start from the general form taken by the QCDSR for
any two point correlator:

λ2 e−
m2

M2 =
∫ s0

0
e−

s
M2 ρ(s)ds. (27)

Taking the limit 1
M2 → 0 we get:

∑
n

(−m)2nλ2
(

1
M2

)n

= ∑
n

∫ s0

0
(−s)n

(
1

M2

)n

ρ(s)ds. (28)
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FIG. 5: Leading terms of the R.H.S of (16) with current II. ms =
0.10GeV and ∆ = 0.24 GeV. Solid line: perturbative term; dotted
line: operators of dimension 4; dashed line:operators of dimension 6.
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FIG. 6: Relative strength of the pole (solid line) and the continuum
(dotted line) as a function of the Borel mass squared with current II.
ms = 0.10GeV, t = 1 and ∆ = 0.24 GeV.

Equating the coefficients of the polynomial in 1
M2 we get sim-

ply:

m2nλ2 =
∫ s0

0
snρ(s)ds, n = 0,1,2... (29)

The mass can be easily obtained by dividing two of such equa-
tions with subsequent values of n:

m2 =
∫ s0

0 sn+1ρ(s)ds∫ s0
0 snρ(s)ds

, n = 0,1,2... (30)

In contrast to the method discussed in the previous sections,
the FESR have the advantage of giving correlations between
the mass (and also λ) and the QCD continuum threshold s0,
avoiding inconsistencies in the values of these parameters.
Ideally, we can find a stability in the function m(s0) thus hav-
ing a good criterion for fixing both s0 and m.

On the other side, making 1
M2 → 0 takes the sum rule to a

region (high M2) where the pole contribution is almost zero
(which can be seen quite clearly in figure 7).
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FIG. 7: mΘ obtained with the FESR for various currents up to di-
mension 5 condensates and up to dimension 9 in the case of ηΘ

I . The
values at the stability regions are indicated on the left.

A. The Θ+ (1540) mass

We proceed by applying the FESR to the currents in Eqs.
(3), (4) and (5). This has been done fully for ηΘ

I and ηΘ
III in

[19]. So we are going to omit the analytical expressions for
these and concentrate in the FESR for ηΘ

II , which are new. The
FESR results for all three currents are presented here for the
sake of comparison.

Performing the FESR analysis for the Πq(q2) structure, we
notice that, at the approximation where the OPE is known (di-
mension ≤ 6), we do not have stability in s0 for any of the cur-
rents. Therefore, we used the Π1(q2) structure for the FESR.

To get the FESR for current (4) we start with the OPE ex-
pansion given in [14] and make 1

M2 → 0. We get:

∫ s0

0
ρ1̂

II(s)ds =
mss6

0
1415577600π8 − 〈s̄s〉s5

0
29491200π6

− 7〈q̄q〉s5
0

14745600π6 +
〈s̄gσGs〉s4

0
4718592π6

+
7〈q̄gσGq〉s4

0
2359296π6 (31)

∫ s0

0
sρ1̂

II(s)ds =
mss7

0
1651507200π8 − 〈s̄s〉s6

0
35389440π6

− 7〈q̄q〉s6
0

17694720π6 +
〈s̄gσGs〉s5

0
5898240π6

+
7〈q̄gσGq〉s5

0
2949120π6 (32)

The mass is obtained dividing eq. (32) by eq.(31). The
results are shown on figure 7 together with the results for cur-
rents (3) and (5) [19].

We can see in figure 7 that ηΘ
I has the best agreement with

the experimental candidate mass. The result from ηΘ
II is a lit-

tle high but still compatible with the experiments. The mass
obtained with ηΘ

III is so high that we are led to think that this
current couples to an angular excitation [19]. This interpreta-
tion is reinforced by the derivatives in eq.(5). We should also
note that ηΘ

I stabilizes for very low values of s0, especially
when calculated in dimension 9, case in which ∆s0 is very
close to zero.

Summing up the results we have (the errors have been esti-
mated for ηΘ

I and ηΘ
III in [19], here we assume an error of the

same magnitude for ηΘ
II):

mΘ
I = (1.51±0.11)GeV (33)

mΘ
II = (1.63±0.16)GeV (34)

mΘ
III = (1.99±0.19)GeV (35)

B. The Ξ−− (1862) mass

In this subsection we repeat the steps above using the cur-
rents given by Eq.(9) and Eq.(10). As before, we have stability
only in the structure Π1(q2). For ηΞ

I we obtain:∫ s0

0
ρ1̂

I (s)ds = − c1〈q̄q〉s5
0

14745600π6 +
c1〈q̄gσGq〉s4

0
2359296π6 . (36)

∫ s0

0
sρ1̂

I (s)ds = − c1〈q̄q〉s6
0

17694720π6 +
c1〈q̄gσGq〉s5

0
2949120π6 , (37)

where c1 = 5t2 +2t +5. For ηΞ
II :∫ s0

0
ρ1̂

II(s)ds = − 〈q̄q〉s5
0

1843200π6 +
〈q̄gσGq〉s4

0
294912π6 (38)

∫ s0

0
sρ1̂

II(s)ds = − 〈q̄q〉s6
0

2211840π6 +
〈q̄gσGq〉s5

0
368640π6 (39)

Once again the masses are obtained dividing (37) by (36) and
(39) by (38). The results are show in figure 8.

The figure shows clearly that both currents give the same re-
sults in this aproximation of the OPE, and both are bellow the
candidate mass. It should be noted that this result may change
a lot for ηΞ

I if we add higher dimension condensates. In this
aproximation both contributions had the same polynomial in
t (c1) thus eliminating the dependence in t. This coincidence
will hardly be repeated in higher dimensions.

To summarize: we have found that due to the slow conver-
gence of the OPE and to the relative importance of the QCD
continuum contribution into the spectral function, the mini-
mal duality ansatz “one resonance + QCD continuum” is not
sufficient for finding a sum rule window where the results are
optimal. These features penalize all existing sum rule results
in the literature, which then become unreliable despite the fact
that the mass predictions reproduce quite well the expected
number.
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FIG. 8: mΞ obtained with the FESR up to dimension 5 condensates.
The values at the stability regions are indicated on the left.

VI. Θ DECAY

We turn now to the pentaquark decay Θ −→ nK+. One
of the most puzzling characteristics of the pentaquark is its
extremely small width (much) below 10 MeV which poses a
serious challenge to all theoretical models. Many explanations
for this narrow width have been advanced [3]. In this section
we review the calculation of the Θ decay with QCDSR.

As we have seen in the preceding sections, a common prob-
lem of all QCDSR pentaquark mass determinations is the
large continuum contribution which has its origin in the high
dimension of the interpolating currents and results in a strong
dependence on the continuum threshold. Another problem
is the irregular behavior of the operator product expansion
(OPE), which is dominated by higher dimension operators and
not by the perturbative term as it should be.

Here we review the sum rule determination [22] for the
decay width based on a three-point function for the decay
Θ → nK+. In this way it is possible to extract the coupling
gΘnK , which is directly related to the pentaquark width. The
pentaquark is treated as a diquark-diquark-antiquark with one
scalar and one pseudoscalar diquark in a relative S-wave.

In [19, 31] it has been argued that such a small decay width
can only be explained if the pentaquark is a genuine 5-quark
state, i.e., it contains no color singlet meson-baryon contribu-
tions and thus color exchange is necessary for the decay. The
analysis presented both in [19] and in [31] is only qualitative.
The narrowness of the pentaquark width can then be attributed
to the non-trivial color structure of the pentaquark which re-
quires the exchange of, at least, one gluon. In [22] we have
done a quantitative test of the conjecture advanced in [19] and
[31].

A. The three- point functions

The investigation of the pentaquark decay width requires a
three-point function which we define as

Γ(p, p,) =
∫

d4xd4ye−iqy eip,x Γ(x,y) ,

Γ(x,y) = 〈0|T{ηN(x) jK(y)η̄Θ(0)}|0〉 , (40)

where ηN , jK and ηΘ are the interpolating fields associated
with neutron, kaon and Θ, respectively [22].

We next consider the expression (40) in terms of hadronic
degrees of freedom and write the phenomenological side of
the sum rule. Treating the kaon as a pseudoscalar particle,
the interaction between the three hadrons is described by the
following Lagrangian density:

L = igΘnKΘ̄γ5Kn for P = +
L = igΘnKΘ̄Kn for P = − (41)

Writing the correlation function (40) in momentum space and
inserting complete sets of hadronic states we obtain an expres-
sion which depends on the following matrix elements:

−iV (p, p′) = < n(p′,s′)|Θ(p,s)K(q) >,

〈0|ηN |n(p′,s′)〉 = λNus′(p′) ,
〈K(q)| jK |0〉 = λK ,

〈Θ(p,s)|η̄Θ|0〉 = λΘūs(p) for P = +
〈Θ(p,s)|η̄Θ|0〉 = −λΘūs(p)γ5 for P = − (42)

Using the simple Feynman rules derived from (41) we can
rewrite V (p, p′) as

V (p, p′) = −gΘnKūs′(p′)γ5us(p) P = +

V (p, p′) = −gΘnKūs′(p′)us(p) P = − (43)

The coupling constants λN and λΘ can be determined from the
QCD sum rules of the corresponding two-point functions. λK
is related to the kaon decay constant through

λK =
fKm2

K
mu +ms

. (44)

Combining the expressions above we arrive at

Γphen =
−gΘnKλΘλNλK

(p′2 −m2
N)(q2 −m2

K+)(p2 −m2
Θ)

× ΓE + continuum (45)

with

ΓE = σµνγ5qµ p′ν − imN 
qγ5

+ i(mN ∓mΘ) 
 p′γ5

+ iγ5(p′2 ∓mΘmN −qp′) (46)

We have worked with the σµνγ5qµ p′ν structure because, as
it was shown in [34], this structure gives results which are
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less sensitive to the coupling scheme on the phenomenologi-
cal side, i.e., to the choice of a pseudoscalar or pseudovector
coupling between the kaon and the baryons.

Coming back to (40) we write the interpolating fields in
terms of quark degrees of freedom as

jK(y) = s̄(y)iγ5u(y) ,

ηN(x) = εabc(dT
a (x)Cγµdb(x))γ5γµuc(x) ,

η̄Θ(0) = −εabcεde f εc f gsT
g (0)C

× [d̄e(0)γ5CūT
d (0)][d̄b(0)CūT

a (0)] . (47)

The pentaquark current above (proposed in [16]) contains a
pseudoscalar and a scalar diquark. With these diquarks the
two point function might receive a significant contribution
from instantons. In [35] we have studied a situation in which
these instanton contributions affected the two-point function
but gave a negligible contribution to the three-point function.
Moreover, in [36] we have observed that instantons give a neg-
ligible contribution to heavy baryon weak decays. Motivated
by these results, in this first calculation we have neglected in-
stantons.

Inserting the currents into (40), the resulting expression
involves the quark propagator in the presence of quark and
gluon condensates (13). Using it we arrive at a final com-
plicated expression for the correlator, which is represented
schematically by the sum of the diagrams of Fig. 9.

Let us consider the phenomenological side (45) and, fol-
lowing [37], rewrite it generically as:

Γ(q2, p2, p′2) = Γpp + Γpc1 + Γpc2 + Γcc (48)

where Γpp(q2, p2, p′2) stands for the pole-pole part and reads

Γpp =
−gΘnK ≪

(p2 −m2
Θ)(p′2 −m2

N)(q2 −m2
K)

(49)

The continuum-continuum term Γcc can be obtained as usual,
with the assumption of quark-hadron duality [22].

The pole-continuum transition terms are contained in Γpc1
and Γpc2. They can be explicitly written as a double dispersion
integral:

Γpc1 =
∫ ∞

m2
K∗

b1(u, p2)du
(m2

N − p′2)(u−q2)
,

Γpc2 =
∫ ∞

m2
N∗

b2(s, p2)ds
(m2

K −q2)(s− p′2)
. (50)

Since there is no theoretical tool to calculate the unknown
functions b1(u, p2) and b2(s, p2) explicitly, one has to employ
a parametrization for these terms. We will use two different
parametrizations: one with a continuous function for the Θ
and one where the pole term is singled out.

We assume here that the functions b1 and b2 have the fol-
lowing form:

b1(u, p2) = b̃1(u)
∫ ∞

m2
Θ

dω
b1(ω)
ω− p2

b2(s, p2) = b̃2(s)
∫ ∞

m2
Θ

dω
b2(ω)
ω− p2 (51)

with continuous functions b1,2(w), starting from m2
Θ. This is

our parametrization A. The functions b̃1(u) and b̃2(s) de-
scribe the excitation spectra of the kaon and the nucleon, re-
spectively. After Borel transform, the pole-continuum term
contains one unknown constant factor which can be deter-
mined from the sum rules.

In order to investigate the role played by the Θ continuum,
we explicitly force the phenomenological side to contain only
the pole part of the Θ, both in the pole-pole term and in the
pole-continuum terms. This can formally be done by choosing
b1(ω) = b2(ω) = δ(ω−m2

Θ) in (51) and the functions then
read:

b1(u, p2) =
b̃1(u)

m2
Θ − p2

,

b2(s, p2) =
b̃2(s)

m2
Θ − p2

. (52)

This is our parametrization B. In this case we have the Θ
in the ground state. Again, in the final expressions this gives
additional constants which can be calculated.

B. Decay sum rules

The sum rule may be written identifying the phenomeno-
logical and theoretical descriptions of the correlation func-
tion. As mentioned above, we work with the σµνγ5qµ p′ν struc-
ture. In the case of the three-point function considered here,
there are two independent momenta and we may perform ei-
ther a single or a double Borel transform. We first consider
the choice:

(I) q2 = 0 p2 = p′2 (53)

and perform a single Borel transform: p2 = −P2 and P2 →
M2. In this case we take m2

K � 0 and single out the 1/q2-terms.
The second choice is:

(II) q2 
= 0 p2 = p′2 . (54)

Here we perform two Borel transforms: p2 = −P2 and
P2 → M2 and also q2 = −Q2 and Q2 → M

′2. We have also
considered the choice q2 = p2 = p′2 = −P2, performing
one single Borel transform (P2 → M2). However, we were
not able to find a stable sum rule. Introducing the notation
G = −gΘnKλΘλNλK and using (I) and (II) we obtain the fol-
lowing sum rules:

Method I:

Γpp(M2)+Γpc2(M2) =
∫ s0

0
dsρth(s)e−s/M2

(55)

with

Γpp(M2) = G
e−m2

Θ/M2 − e−m2
N/M2

m2
Θ −m2

N
(56)
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and for the pole-continuum part we obtain

Γpc2(M2) = Ae−m2
N∗/M2

param. A

Γpc2(M2) = Ae−m2
Θ/M2

param. B (57)

In both parametrizations the term Γpc1 is exponentially sup-
pressed and, as discussed in [37], has been neglected. A is an
unknown constant and can be determined from the sum rules.

Method II

Γpp(M2,M
′2)+Γpc2(M2,M

′2) = (58)

∫ u0

0
du

∫ s0

0
dsρth(s,u)e−s/M2

e−u/M
′2

(59)

with

Γpp = Ge−m2
K/M

′2 e−m2
Θ/M2 − e−m2

N/M2

m2
Θ −m2

N
(60)

and with

Γpc2 = Ae−m2
K/M

′2
e−m2

N∗/M2
(61)

for parametrization A and

Γpc2 = Ae−m2
K/M

′2
e−m2

Θ/M2
(62)

for parametrization B. Also in this case Γpc1 is exponentially
suppressed. In the above expressions ρth is the double discon-
tinuity computed directly from the theoretical (OPE) descrip-
tion of the correlation function (see [22] for details and also
[38]) and s0 is the continuum threshold of the nucleon defined
as s0 = (mN + ∆N)2.

C. Decay width

The hadronic masses are mN = 938 MeV, mN∗ = 1440 MeV,
mK = 493 MeV and mΘ = 1540 MeV. For each of the sum
rules above (Eqs. (55) and (58)) we can take the derivative
with respect to 1/M2 and in this way obtain a second sum
rule. In each case we have thus a system of two equations and
two unknowns (G and A) which can then be easily solved.

The couplings constants λN and λΘ are taken from the cor-
responding two-point functions:

λN = (2.4±0.2)×10−2 GeV3 (63)

λΘ = (2.4±0.3)×10−5 GeV6 (64)

The coupling λK is obtained from (44) with fK = 160 MeV,
ms = 100 MeV and mu = 5 MeV:

λK = 0.37GeV2 . (65)

In Fig. 9, among these OPE diagrams there are two dis-
tinct subsets. In the first two lines of the figure there is no

gluon line connecting the “petals” and therefore no color ex-
change. A diagram of this type we call color-disconnected. In
the second subset of diagrams, in the third line of the figure,
we have color exchange. If there is no color exchange, the
final state containing two color singlets was already present
in the initial state, before the decay, as noticed in [20]. In
this case the pentaquark had a component similar to a K − n
molecule. In the second case the pentaquark was a genuine 5-
quark state with a non-trivial color structure. We may call this
type of diagram a color-connected (CC) one. In our analy-
sis we write sum rules for both cases: all diagrams and only
color-connected. The former case is standard in QCDSR cal-
culations and therefore we omit details and present only the
results. The latter case implies that the pentaquark is a gen-
uine 5-quark state and the evaluation of gΘnK is thus based
only on the CC diagrams. We work in the Borel window given
by 1GeV2 ≤ M2(M′2) ≤ 1.5GeV2. Since the strange mass is
small, the dominating diagram is Fig. 9b of dimension three
with one quark condensate. In the range considered, the di-
mension 5 condensates are substantially suppressed compared
to this term.

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (J)

FIG. 9: The main diagrams which contribute to the theoretical side
of the sum rule in the relevant structure. a) - g) are the color-
disconnected diagrams, whereas h) - j) are the color-connected di-
agrams. The cross indicates the insertion of the strange mass.

We have found out that the contribution from the pole-
continuum part is of a similar size as the pole part. For lower
values of M2 around 1 GeV2, the pole contribution dominates,
however, for larger values of M2 the importance of the pole-
continuum contribution grows and eventually becomes larger
than the pole part. This is an additional reason to restrict the
analysis to small values for the Borel parameters.

We have evaluated the sum rules for the coupling constant
computed with all diagrams of Fig. 9 and we have found that
they are very stable. We give the values of the coupling ex-
tracted at M2 = 1.5 GeV2 and M′2 = 1 GeV2 in Table I. We
present our results for the coupling constant gΘnK obtained
with the color connected diagrams only. In Fig. 10 we show
the coupling, given by the solution of the sum rule I A (55), as
a function of the Borel mass squared M2. Different lines show
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FIG. 10: |gΘnK | in case I A with three different continuum threshold
parameters. Solid line: ∆N = 0.5 GeV, dotted line:∆N = 0.4 GeV,
dash-dotted line: ∆N = 0.6 GeV.
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FIG. 11: |gΘnK | in case II A. Solid line: ∆N = 0.5 GeV. Dotted line:
∆N = 0.4 GeV. Dashed line: ∆N = 0.6 GeV. M

′2 = 1 GeV2.

different values of the continuum threshold ∆N . As it can be
seen, gΘnK is remarkably stable with respect to variations both
in M2 and in ∆N . In Fig. 11 we show the coupling obtained
with the sum rule II A (58). We find again fairly stable results
which are very weakly dependent on the continuum threshold.
In Fig. 12 we show the results of the sum rule I B. In Fig. 13
we present the result of the sum rule II B. The meaning of
the different lines is the same as in the previous figures. The
results are similar to the cases before.

TABLE I: Table I:gΘnK for various cases gΘnK for various cases

case |gΘnK | (CC) |gΘnK | (all diagrams)
I A 0.71 2.59
II A 0.82 3.59
I B 0.84 3.24
II B 0.96 4.48
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FIG. 12: |gΘnK | in case I B with three different continuum threshold
parameters. Solid line: ∆N = 0.5 GeV, dotted line:∆N = 0.4 GeV,
dash-dotted line: ∆N = 0.6 GeV.
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FIG. 13: |gΘnK | in case II B. Solid line: ∆N = 0.5 GeV. Dotted line:
∆N = 0.4 GeV. Dashed line: ∆N = 0.6 GeV. M

′2 = 1 GeV2.

In Table I we present a summary of our results for gΘnK
giving emphasis to the difference between the results obtained
with all diagrams and with only the color-connected ones. For
the continuum thresholds we have employed ∆N = ∆K = 0.5
GeV.

For our final value of gΘnK we take an average of the sum
rules I A - II B. It is interesting to observe that the influence of
the continuum threshold is relatively small, especially when
compared to the corresponding two-point functions.

Considering the uncertainties in the continuum thresholds,
in the coupling constants λK,N,Θ and in the quark condensate
we get an uncertainty of about 50%. Our final result then
reads:

|gΘnK |(all diagrams) = 3.48 ±1.8 ,

|gΘnK |(CC) = 0.83 ±0.42 . (66)

Including all diagrams, the prediction for ΓΘ is then 13 MeV
(652 MeV) for a positive (negative) parity pentaquark. In the
CC case we get a width of 0.75 MeV (37 MeV) for a positive
(negative) parity pentaquark. The measured upper limit of the
width is around 5-10 MeV both in the Kn channel (considered
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here) and in the Kp channel.
To summarize: we have presented a QCD sum rule study

of the decay of the Θ+ pentaquark using a diquark-diquark-
antiquark scheme with one scalar and one pseudoscalar di-
quark. Based on the evaluation of the relevant three-point
function, we have computed the coupling constant gΘnK . In
the operator product expansion we have included all diagrams
up to dimension 5. In this particular type of sum rule a com-
plication arises from the pole-continuum transitions which
are not exponentially suppressed after Borel transformation
and must be explicitly included. The analysis was made for
two different pole-continuum parametrizations and in two dif-
ferent evaluation schemes. The results are consistent with
each other. In addition, we have tested the ideas presented
in [19, 31] by including only diagrams with color exchange.
Our final results are given in eq. (66). We conclude that for a
positive parity pentaquark a width much smaller than 10 MeV
would indicate a pentaquark which contains no color-singlet
meson-baryon contribution. For a negative parity pentaquark,
even under the assumption that it is a genuine 5-quark state,
we could not explain the narrow width of the Θ.

VII. CONCLUSION

In this review we have discussed only our works on pen-
taquarks in a somewhat critical perspective. Most of the other
calculations, most of them quoted here, have the same suc-
cesses and difficulties as ours. Looking back and taking dis-
tance, we might say that the work done over the last two years
has undergone continuous improvements in quality. At the
very beginning, in the heat of the discovery hours, some works
were done in rush and with a certain negligence in various as-
pects. For example, in the very first paper [14] reproducing
the Θ mass, no analysis of the OPE convergence was pre-
sented and neither an estimate of the continuum contribution
was performed. The second round of calculations went much
deeper in the details of QCDSR procedures. However it was
not just a matter of “doing better” what we already knew how
to do. The method had to face new challenges. For example:

in the pentaquark study, for the first time, we were dealing
with a system that could be composed by independent sub-
systems, like two non-interacting hadrons. In [20] this con-
figuration was dubbed “two-hadron reducible” component. It
has been a subject of debate how to disentangle and subtract
this component from the final results. Also, the more quarks
we have, the less unique is the definition of the interpolating
current. Increasing the number of lines introduces new tech-
nical complications for the evaluation of the OPE. The efforts
of the community to overcome all these problems were very
productive. All in all, we can say that pentaquarks have done
more for QCDSR than these have done for pentaquarks.

To conclude we come back to the question raised in the in-
troduction.”How could we calculate the correct mass of some-
thing that does not exist?” In the light of the discussion pre-
sented in the last sections, a sober answer would be: although
we started reproducing unfounded experimental results, it was
just a matter of time until we would reach a situation where,
reproducing these data would be so artificial as it was to use
the notion of “aether” in the years of the birth of special rela-
tivity. At some point we would be obliged to push and twist
the method so far, that some more audacious groups would be
brave enough to go against the “experimental evidence” and
put doubts on the experiments. This attitude was already taken
by some phenomenologists [7, 39], by some experimentalists
[40] and by lattice theorists.

The final feeling is that all this work was fruitful and there
is nothing to be regretted.
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