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Parametrization of Bose-Einstein Correlations and Reconstruction of the Source Function in
Hadronic Z-boson Decays using the L3 Detector
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Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in
terms of various parametrizations. A good description is achieved using a Lévy stable distribution in conjunction
with a hadronization model having highly correlated configuration and momentum space, the τ-model. Using
these results, the source function is reconstructed.
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I. INTRODUCTION

In particle and nuclear physics, intensity interferometry
provides a direct experimental method for the determination
of sizes, shapes and lifetimes of particle-emitting sources (for
reviews see [1–5]). In particular, boson interferometry pro-
vides a powerful tool for the investigation of the space-time
structure of particle production processes, since Bose-Einstein
correlations (BEC) of two identical bosons reflect both geo-
metrical and dynamical properties of the particle radiating
source.

Here we study BEC in hadronic Z decay. We inves-
tigate various static parametrizations in terms of the four-
momentum difference, Q =

√
−(p1 − p2)2, and find that none

give an adequate description of the Bose-Einstein correlation
function. However, within the framework of models assum-
ing strongly correlated coordinate and momentum space, a
good description is achieved. We then reconstruct the com-
plete space-time picture of the particle emitting source in ha-
dronic Z decay.

The data used in the analysis were collected by the L3
detector [6–10] at an e+e− center-of-mass energy of

√
s �

91.2 GeV. Approximately 36 million like-sign pairs of well-
measured charged tracks of about 0.8 million hadronic Z de-
cays are used [11].

We perform analyses on the complete sample as well as
on two- and three-jet samples. The latter are found using
calorimeter clusters with the Durham jet algorithm [12–14]
with a jet resolution parameter ycut = 0.006. To determine the
thrust axis of the event we also use calorimeter clusters.

II. BOSE-EINSTEIN CORRELATION FUNCTION

The two-particle correlation function of two particles with
four-momenta p1 and p2 is given by the ratio of the two-
particle number density, ρ2(p1, p2), to the product of the two
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single-particle number densities, ρ1(p1)ρ1(p2). Since we
are here interested only in the correlation R2 due to Bose-
Einstein interference, the product of single-particle densities
is replaced by ρ0(p1, p2), the two-particle density that would
occur in the absence of Bose-Einstein correlations:

R2(p1, p2) =
ρ2(p1, p2)
ρ0(p1, p2)

. (1)

This ρ2 is corrected for detector acceptance and efficiency us-
ing Monte Carlo events, to which a full detector simulation
has been applied, on a bin-by-bin basis. An event mixing
technique is used to construct ρ0. This technique removes
all correlations, e.g., resonances and energy-momentum con-
servation, not just Bose-Einstein. Hence, ρ0 is corrected for
this [11, 15] using the JETSET Monte Carlo generator [16].

Since the mass of the two identical particles of the pair is
fixed to the pion mass, the correlation function is defined in
six-dimensional momentum space. Since Bose-Einstein cor-
relations can be large only at small four-momentum differ-
ence Q, they are often parametrized in this one-dimensional
distance measure. There is no reason, however, to expect the
hadron source to be spherically symmetric in jet fragmenta-
tion. Recent investigations have, in fact, found an elongation
of the source along the jet axis [15, 17–19]. While this effect
is well established, the elongation is actually only about 20%,
which suggests that a parametrization in terms of the single
variable Q, may be a good approximation.

This is not the case in heavy-ion and hadron-hadron in-
teractions, where BEC are found not to depend simply on
Q, but on components of the momentum difference sepa-
rately [5, 20–24]. However, in e+e− annihilation at lower
energy [25] it has been observed that Q is the appropriate
variable. We checked this and confirm that this is indeed
the case: We observe [11] that R2 does not decrease when
both q2 = (�p1 − �p2)2 and q2

0 = (E1 − E2)2 are large while
Q2 = q2 − q2

0 is small, but is maximal for Q2 = q2 − q2
0 = 0,

independent of the individual values of q and q0. The same
is observed in a different decomposition: Q2 = Q2

t + Q2
L,B,

where Q2
t = (�pt1 −�pt2)

2 is the component transverse to the
thrust axis and Q2

L,B = (pl1 − pl2)
2 − (E1 −E2)2 combines the

longitudinal momentum and energy differences. Again, R2 is
maximal along the line Q = 0, as is shown in Fig. 1. This is



1066 W.J. Metzger et al.

-0.4
-0.2

0
0.2

0.4
0.6

0
0.2

0.4
0.6

0.8
1

0.9

1

1.1

1.2

1.3

1.4

Q 2
L,B

Q
2 T

R
2

FIG. 1: R2 for two-jet events as function of the squares of the trans-
verse momentum difference and the combination of longitudinal mo-
mentum difference and energy difference.

observed both for two-jet and three-jet events. We conclude
that a parametrization in terms of Q can be considered a good
approximation for the purposes of this article.

III. PARAMETRIZATIONS OF BEC

With a few assumptions [2, 5, 26], the two-particle corre-
lation function, Eq. (1), is related to the Fourier transformed
source distribution:

R2(p1, p2) = γ
[
1+λ| f̃ (Q)|2](1+δQ) , (2)

where f (x) is the (configuration space) density distribution
of the source, and f̃ (Q) is the Fourier transform (character-
istic function) of f (x). The parameter λ is introduced to ac-
count for several factors, such as the possible lack of complete
incoherence of particle production and the presence of long-
lived resonance decays if the particle emission consists of a
small, resolvable core and a halo with experimentally unre-
solvable large length scales [27, 28]. The parameter γ and
the (1 + δQ) term parametrize possible long-range correla-
tions not adequately accounted for in the reference sample.
While there is no guarantee that (1 +δQ) is the correct form,
we will see that it does provide a good description of R2 in the
region Q > 1.5 GeV.

A. Gaussian distributed source

The simplest assumption is that the source has a
symmetric Gaussian distribution, in which case f̃ (Q) =
exp

(
iµQ− (RQ)2

2

)
and

R2(Q) = γ
[
1+λexp

(−(RQ)2)](1+δQ) . (3)
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FIG. 2: (Color online) The Bose-Einstein correlation function R2
for two-jet events with the result of a fit of (a) the Gaussian and (b)
the Edgeworth parametrizations, Eqs. (3) and (4), respectively. The
dashed line represents the long-range part of the fit, i.e., γ(1+δQ).

A fit of Eq. (3) to the data results in an unacceptably low
confidence level. The fit is particularly bad at low Q values,
as is shown in Fig. 2a for two-jet events and in Fig. 3a for
three-jet events, from which we conclude that the shape of the
source deviates from a Gaussian.

A model-independent way to study deviations from the
Gaussian parametrization is to use [5, 29, 30] the Edgeworth
expansion [31] about a Gaussian. Keeping only the first non-
Gaussian term, we have

R2(Q) = γ
(

1+λexp
(−(RQ)2)[

1+
κ
3!

H3(RQ)
])

(1+δQ) ,

(4)
where κ is the third-order cumulant moment and H3(RQ) ≡
(
√

2RQ)3 − 3
√

2RQ is the third-order Hermite polynomial.
Note that the second-order cumulant corresponds to the ra-
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FIG. 3: (Color online) The Bose-Einstein correlation function R2 for
three-jet events with the result of a fit of (a) the Gaussian and (b)
the Edgeworth parametrizations, Eqs. (3) and (4), respectively. The
dashed line represents the long-range part of the fit, i.e., γ(1+δQ).

dius R.
A fit of Eq. (4) to the two-jet data, shown in Fig. 2b, is in-

deed much better than the purely Gaussian fit. However, the
confidence level is still marginal, and close inspection of the
figure shows that the fit curve is systematically above the data
in the region 0.6–1.2 GeV and that the data for Q ≥ 1.5 GeV
appear flatter than the curve, as is also the case for the purely
Gaussian fit. Similar behavior is observed for three-jet events
(Fig. 3b) and for all events.

B. Lévy distributed source

The symmetric Lévy stable distribution is characterized by
three parameters: x0, R, and α. Its Fourier transform, f̃ (Q),
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FIG. 4: (Color online) The Bose-Einstein correlation function R2 for
two-jet events. The curve corresponds to the fit of the symmetric
Lévy parametrization, Eq. (6). The dashed line represents the long-
range part of the fit, i.e., γ(1+δQ). The dot-dashed line represents a
linear fit in the region Q > 1.5 GeV.

has the following form:

f̃ (Q) = exp
(

iQx0 − |RQ|α
2

)
. (5)

The index of stability, α, satisfies the inequality 0 < α ≤ 2.
The case α = 2 corresponds to a Gaussian source distribution
with mean x0 and standard deviation R. For more details, see,
e.g., [32].

Then R2 has the following, relatively simple, form [33]:

R2(Q) = γ [1+λexp(−(RQ)α)] (1+δQ) . (6)

From the fit of Eq. (6) to the two-jet data, shown in Fig. 4,
it is clear that the correlation function is far from Gaussian:
α = 1.34 ± 0.04. The confidence level, although improved
compared to the fit of Eq. (3), is still unacceptably low, in
fact worse than that for the Edgeworth parametrization. The
same is true for three-jet events (Fig. 5) and for all events. The
values of α are 1.39±0.04 for three-jet and 1.43±0.03 for all
events, respectively.

Both the symmetric Lévy parametrization and the Edge-
worth parametrizations do a fair job of describing the re-
gion Q < 0.6 GeV, but fail at higher Q. R2 in the region
Q ≥ 1.5 GeV is nearly constant (≈ 1). However, in the region
0.6–1.5 GeV R2 has a smaller value, dipping below unity [59],
which is indicative of an anti-correlation. This is clearly seen
in Figs. 4 and 5 by comparing the data in this region to an
extrapolation of a linear fit, Eq. (6) with λ = 0, in the region
Q ≥ 1.5 GeV. The inability to describe this dip in R2 is the
primary reason for the failure of both the Edgeworth and sym-
metric Lévy parametrizations.
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FIG. 5: (Color online) The Bose-Einstein correlation function R2 for
three-jet events. The curve corresponds to the fit of the symmetric
Lévy parametrization, Eq. (6). The dashed line represents the long-
range part of the fit, i.e., γ(1+δQ). The dot-dashed line represents a
linear fit in the region Q > 1.5 GeV.

C. Time dependence of the source

The parametrizations discussed so far, which have proved
insufficient to describe the BEC, all assume a static source.
The parameter R, representing the size of the source as seen
in the rest frame of the pion pair, is a constant. It has, how-
ever, been observed that R depends on the transverse mass,
mt =

√
m2 + p2

t =
√

E2 − p2
z , of the pions [34, 35]. It has

been shown [36, 37] that this dependence can be understood
if the produced pions satisfy, approximately, the (general-
ized) Bjorken-Gottfried condition [38–43], whereby the four-
momentum of a produced particle and the space-time position
at which it is produced are linearly related:

xµ = dkµ . (7)

Such a correlation between space-time and momentum-
energy is also a feature of the Lund string model as incor-
porated in JETSET, which is very successful in describing de-
tailed features of the hadronic final states of e+e− annihila-
tion.

In the previous section we have seen that BEC depend, at
least approximately, only on Q and not on its components sep-
arately. This is a non-trivial result. For a hydrodynamical type
of source, on the contrary, BEC decrease when any of the rela-
tive momentum components is large [5, 23]. Further, we have
seen that R2 in the region 0.6–1.5 GeV dips below its values at
higher Q.

A model which predicts such a Q-dependence while incor-
porating the Bjorken-Gottfried condition is the so-called τ-
model, described below.

1. The τ model

A model of strongly correlated phase-space, known as the
τ-model [44], explains the experimentally found invariant rel-
ative momentum dependence of Bose-Einstein correlations in
e+e− reactions. This model also predicts a specific transverse
mass dependence of R2, that we subject to an experimental
test here.

In this model, it is assumed that the average production
point in the overall center-of-mass system, x = (t,rx,ry,rz),
of particles with a given four-momentum k is given by

xµ(kµ) = dkµ . (8)

In the case of two-jet events,

d = τ/mt , (9)

where mt is the transverse mass and τ =
√

t2 − r2
z is the lon-

gitudinal proper time [60]. For isotropically distributed par-
ticle production, the transverse mass is replaced by the mass
in Eq. (9), while for the case of three-jet events the relation
is more complicated. The second assumption is that the dis-
tribution of xµ(kµ) about its average, δ∆(xµ(kµ)− xµ(kµ)), is
narrower than the proper-time distribution. Then the emission
function of the τ-model is

S(x,k) =
∫ ∞

0
dτH(τ)δ∆(x−dk)ρ1(k) , (10)

where H(τ) is the longitudinal proper-time distribution, the
factor δ∆(x−dk) describes the strength of the correlations be-
tween coordinate space and momentum space variables and
ρ1(k) is the experimentally measurable single-particle spec-
trum.

The two-pion distribution, ρ2(k1,k2), is related to S(x,k),
in the plane-wave approximation, by the Yano-Koonin for-
mula [45]:

ρ2(k1,k2) =
∫

d4x1d4x2S(x1,k1)S(x2,k2)

·(1+ cos
(
[k1 − k2] [x1 − x2]

))
. (11)

Approximating the function δ∆ by a Dirac delta function, the
argument of the cosine becomes

(k1 − k2)(x̄1 − x̄2) = −0.5(d1 +d2)Q2 . (12)

Then the two-particle Bose-Einstein correlation function is
approximated by

R2(k1,k2) = 1+λReH̃2
(

Q2

2mt

)
, (13)

where H̃(ω) =
∫

dτH(τ)exp(iωτ) is the Fourier transform of
H(τ). Thus an invariant relative momentum dependent BEC
appears. Note that R2 depends not only on Q but also on the
average transverse mass of the two pions, mt.

Since there is no particle production before the onset of
the collision, H(τ) should be a one-sided distribution. We
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choose a one-sided Lévy distribution, which has the charac-
teristic function [33] (for α �= 1)

H̃(ω)= exp
[
−1

2
(
∆τ|ω|)α

(
1− isign(ω) tan

(απ
2

))
+ iωτ0

]
(14)

where the parameter τ0 is the proper time of the onset of parti-
cle production and ∆τ is a measure of the width of the proper-
time distribution. For the special case α = 1, see, e.g., [32].
Using this characteristic function in Eq. (13) yields

R2(Q,mt) = γ

[
1+λcos

(
τ0Q2

mt
+ tan

(απ
2

)(
∆τQ2

2mt

)α)

· exp

(
−

(
∆τQ2

2mt

)α)]
(1+δQ) . (15)

2. The τ model for average mt

Before proceeding to fits of Eq. (15), we first consider a
simplification of the equation obtained by assuming (a) that
particle production starts immediately, i.e., τ0 = 0, and (b) an
average mt-dependence, which is implemented in an approx-
imate way by defining an effective radius, R =

√
∆τ/(2mt).

This results in:

R2(Q) = γ
[
1+λcos

[
(RaQ)2α]

exp
(−(RQ)2α)]

(1+δQ) ,
(16)

where Ra is related to R by

R2α
a = tan

(απ
2

)
R2α . (17)

Fits of Eq. (16) are first performed with Ra as a free parameter.
The fit results obtained, for two-jet, three-jet, and all events
are listed in Table I and shown in Fig. 6 for two-jet events and
in Fig. 7 for three-jet events. They have acceptable confidence
levels, describing well the dip below unity in the 0.6–1.5 GeV
region, as well as the low-Q peak.

The fit parameters for the two-jet events satisfy Eq. (17).
However, those for three-jet and all events do not. We note
that the values of the parameters α and R do not differ greatly
between 2- and 3-jet samples, the most significant difference
appearing to be nearly 3σ for α. However, these parameters
are rather highly correlated (in the fit for all events, the cor-
relation coefficients are ρ(λ,R) = 0.95, ρ(λ,α) = −0.67 and
ρ(R,α) = −0.61, which makes the simple calculation of the
statistical significance of differences in the parameters unreli-
able.

Fit results imposing Eq. (17) are given in Table II. For two-
jet events, the values of the parameters are the same as in the
fit with Ra free—only the uncertainties have changed. For
three-jet and all events, the imposition of Eq. (17) results in
values of α and R closer to those for two-jet events, but the
confidence levels are very bad, a consequence of incompati-
bility with Eq. (17), an incompatibility that is not surprising
given that Eq. (9) is only valid for two-jet events. Therefore,
we only consider two-jet events in the remaining sections of
this article.
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FIG. 6: (Color online) The Bose-Einstein correlation function R2 for
two-jet events. The curve corresponds to the fit of the one-sided Lévy
parametrization, Eq. (16). The dashed line represents the long-range
part of the fit, i.e., γ(1+δQ).
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FIG. 7: (Color online) The Bose-Einstein correlation function R2 for
three-jet events. The curve corresponds to the fit of the one-sided
Lévy parametrization, Eq. (16). The dashed line represents the long-
range part of the fit, i.e., γ(1+δQ).

3. The τ model with mt dependence

Fits of Eq. (15) to the two-jet data are performed in several
mt intervals. The resulting fits are shown for several mt in-
tervals in Fig. 8, and the values of the parameters obtained in
the fits are listed in Fig. 9. The quality of the fits is seen to
be statistically acceptable and the fitted values of the model
parameters, α, τ0 and ∆τ, are stable and within errors in-
dependent of mt, confirming the expectation of the τ-model.
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TABLE I: Results of fits of Eq. (16) for two-jet, three-jet, and all
events. The uncertainties are only statistical.

parameter 2-jet 3-jet all
α 0.42 ± 0.02 0.35 ± 0.01 0.38 ± 0.01
λ 0.67 ± 0.03 0.84 ± 0.04 0.73 ± 0.02
R (fm) 0.79 ± 0.04 0.89 ± 0.03 0.81 ± 0.03
Ra (fm) 0.59 ± 0.03 0.88 ± 0.04 0.81 ± 0.02
δ 0.003 ± 0.002 –0.003 ± 0.002 0.003 ± 0.001
γ 0.979 ± 0.005 1.001 ± 0.005 0.997 ± 0.003
χ2/DoF 97/94 102/94 98/94
confidence level 40% 27% 37%

TABLE II: Results of fits of Eq. (16) imposing Eq. (17) for two-jet,
three-jet, and all events. The uncertainties are only statistical.

parameter 2-jet 3-jet all
α 0.42 ± 0.01 0.44 ± 0.01 0.45 ± 0.01
λ 0.67 ± 0.03 0.77 ± 0.04 0.69 ± 0.03
R (fm) 0.79 ± 0.03 0.84 ± 0.04 0.79 ± 0.03
δ 0.003 ± 0.001 0.010 ± 0.001 0.009 ± 0.001
γ 0.979 ± 0.005 0.972 ± 0.001 0.973 ± 0.001
χ2/DoF 97/95 174/95 175/95
confidence level 42% 10−6 10−6

We conclude that the τ-model with a one-sided Lévy proper-
time distribution describes the data with parameters τ0 ≈ 0 fm,
α ≈ 0.38±0.05 and ∆τ ≈ 3.5±0.6 fm. These values are con-
sistent with the fit of Eq. (16) in the previous section, includ-
ing the value of R, which, combined with the average value of
mt (0.563 GeV), corresponds to ∆τ = 3.5 fm. Just as in the fit
of Eq. (16), the parameters of the Lévy distribution are highly
correlated. Typical values of the correlation coefficients are
ρ(λ,∆τ) = 0.95, ρ(λ,α) = −0.67 and ρ(∆τ,α) = −0.9.

IV. THE EMISSION FUNCTION OF TWO-JET EVENTS

Within the framework of the τ-model, we now reconstruct
the space-time picture of the emitting process for two-jet
events. The emission function in configuration space, S(x),
is the proper time derivative of the integral over k of S(x,k),
which in the τ-model is given by Eq. (10). Approximating δ∆
by a Dirac delta function, we find

S(x) =
d4n

dτd3r
=

(mt

τ

)3
H(τ)ρ1

(
k =

mtr
τ

)
. (18)

To simplify the reconstruction of S(x) we assume that it can
be factorized in the following way:

S(r,z, t) = I(r)G(η)H(τ) , (19)

where I(r) is the single-particle transverse distribution, G(η)
is the space-time rapidity distribution of particle production,
and H(τ) is the proper-time distribution. With the strongly
correlated phase-space of the τ-model, η = y and r = ptτ/mt.
Hence,

G(η) = Ny(η) , (20)

I(r) =
(mt

τ

)3
Npt(rmt/τ) , (21)
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FIG. 8: (Color online) The results of fits of Eq. (15) to two-jet data
for various intervals of mt.
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FIG. 9: The fit parameters from fits of Eq. (15) to two-jet data for
various intervals of mt.

where Ny and Npt are the single-particle inclusive rapidity and
pt distributions, respectively. The factorization of transverse
and longitudinal distributions has been checked. The distri-
bution of pt is, to a good approximation, independent of the
rapidity [11].

With these assumptions and using H(τ) as obtained from
the fit of Eq. (15) (shown in Fig. 10) together with the inclu-
sive rapidity and pt distributions [11], the full emission func-
tion is reconstructed. Its integral over the transverse distrib-
ution is plotted in Fig. 11. It exhibits a “boomerang” shape
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FIG. 11: (Color online) The temporal-longitudinal part of the source
function normalized to the average number of pions per event.

with a maximum at low t and z but with tails reaching out to
very large values of t and z, a feature also observed in hadron-
hadron [46] and heavy ion collisions [47].

The transverse part of the emission function is obtained by
integrating over z and azimuthal angle. Figure 12 shows the
transverse part of the emission function for various proper
times. Particle production starts immediately, increases
rapidly and decreases slowly. A ring-like structure, similar to
the expanding, ring-like wave created by a pebble in a pond,
is observed. These pictures together form a movie that ends
in about 3.5 fm, making it the shortest movie ever made of
a process in nature. An animated gif file covering the first
0.3 fm (10−24 sec) is available [48].

V. DISCUSSION

BEC of all events as well as two- and three-jet events are
observed to be well-described by a Lévy parametrization in-
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FIG. 12: (Color online) The transverse source function normalized
to the average number of pions per event for various proper times.

corporating strong correlations between configuration- and
momentum-space. A Lévy distribution arises naturally from
a fractal, or from a random walk or anomalous diffusion [49],
and the parton shower of the leading log approximation of
QCD is a fractal [50–52]. In this case, the Lévy index of sta-
bility is related to the strong coupling constant, αs, by[53, 54]

αs =
2π
3

α2 . (22)

Assuming (generalized) local parton hadron duality [55–57],
one can expect that the distribution of hadrons retains the fea-
tures of the gluon distribution. For the value of α found in fits
of Eq. (16) we find αs = 0.37± 0.04 for two-jet events, This
is a reasonable value for a scale of 1–2 GeV, which is where
the production of hadrons takes place. For comparison, from
τ decay, αs(mτ ≈ 1.8 GeV) = 0.35±0.03 [58].

It is of particular interest to point out the mt dependence
of the “width” of the source. In Eq. (15) the parameter as-
sociated with the width is ∆τ. Note that it enters Eq. (15) as
∆τQ2/mt. In a Gaussian parametrization the radius R enters
the parametrization as R2Q2. Our observance that ∆τ is in-
dependent of mt thus corresponds to R ∝ 1/

√
mt and can be

interpreted as confirmation of the observance [34, 35] of such
a dependence of the Gaussian radii in 2- and 3-dimensional
analyses of Z decays. The lack of dependence of all the pa-
rameters of Eq. (15) on the transverse mass is in accordance
with the τ-model.

Using the BEC fit results and the τ-model, the emission
function of two-jet events is reconstructed. Particle produc-
tion begins immediately after the collision, increases rapidly
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and then decreases slowly, occurring predominantly close to
the light cone. In the transverse plane a ring-like structure
expands outwards, which is similar to the picture in hadron-

hadron interactions but unlike that of heavy ion collisions.
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[16] T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).
[17] OPAL Collab., G. Abbiendi et al., Eur. Phys. J. C 16, 423

(2000).
[18] DELPHI Collab., P. Abreu et al., Phys. Lett. B 471, 460 (2000).
[19] ALEPH Collab., A. Heister et al., Eur. Phys. J. C 36, 147

(2004).
[20] NA22 Collab., N.M. Agababyan et al., Z. Phys. C 71, 405

(1996).
[21] Ron A. Solz, Two-Pion Correlation Measurements for

14.6A·GeV/c 28Si+X and 11.6A·GeV/c 197Au+Au, Ph.D. the-
sis, Massachusetts Inst. of Technology (1994).

[22] E-802 Collab., L. Ahle et al., Phys. Rev. C 66, 054906 (2002).
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entific, Singapore, 1999).

[36] A. Białas and K. Zalewski, Acta Phys. Pol. B 30, 359 (1999).
[37] A. Białas, M. Kucharczyk, H. Palka, and K. Zalewski, Phys.

Rev. D 62, 114007 (1999).
[38] K. Gottfried, Acta Phys. Pol. B 3, 769 (1972).
[39] J.D. Bjorken, in Proc. Summer Inst. on Particle Physics, Vol. 1,

p. 1 (SLAC-R-167, 1973).
[40] J.D. Bjorken, Phys. Rev. D 7, 282 (1973).
[41] K. Gottfried, Phys. Rev. Lett. 32, 957 (1974).
[42] F.E. Low and K. Gottfried, Phys. Rev. D 17, 2487 (1978).
[43] J.D. Bjorken, in Proc. XXIV Int. Symp. on Multiparticle Dy-

namics, ed. A. Giovannini et al., p. 579 (World Scientific, Sin-
gapore, 1995).
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