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Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding
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We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a
wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters
and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to
investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion
properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric disper-
sion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the
cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient
and dispersion flattened which is suited for supercontinuum generation is designed.
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1. INTRODUCTION

It is well known that photonic crystal fibers (PCFs) or mi-
crostructured fibers or holey fibers which are optical fibers
with a complex microstructure in the transverse plane, of var-
ious types, can offer advantage in the design of fiber [1,2].
PCFs have emerged as an attractive researching object within
the area of fiber functional devices. Such holey claddings in
PCFs help controlling nonlinear coefficient and tuning dis-
persion slope in a way that was not possible in conventional
fibers [3-5]. In such PCFs, control of chromatic dispersion
keeping high nonlinear coefficient is crucial for practical ap-
plications to nonlinear optics.

High nonlinear PCFs are perfect nonlinear optical medium,
and the study of the nonlinearity of PCFs has been an impor-
tant branch in the field of nonlinear optics [6-8]. Using high
nonlinear PCFs, nonlinear effects including supercontinuum
generation and frequent conversion can be realized easily [9-
12]. High nonlinear PCFs can be efficiently used to generate
supercontinuum pumped by ultra fast laser pulses and longer
laser pulses. However, supercontinuum generation in PCFs
is restricted by dispersion properties. Therefore, not only ex-
tremely high nonlinear coefficient is necessary, but also flat-
tened dispersion and low loss are desired [13-15]. In this pa-
per, we propose a hybrid cladding PCFs which has high non-
linearity and flattened dispersion. The research is predomi-
nantly aimed at the design of PCFs with small core and proper
cladding structure parameters to obtain high nonlinearity and
some dispersion properties. One interesting finding from our
simulation is that we can obtain high nonlinear coefficient
of PCFs by using hybrid cladding and adjusting the cladding
structure parameters.

2. HYBRID CLADDING DESIGN

In conventional PCFs, the cladding structure is usually
formed by air holes with the same diameter arrayed in a regu-
lar triangular lattice [15-18]. The nonlinear coefficient of PCFs
can be tailored by changing the air filling rate of the cladding.
The chromatic dispersion profile can be easily engineered by
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varying the holes diameter and the pitch. However, using PCFs
with the entire same air-hole diameter in the cladding region, it
is difficult to gain both high nonlinear coefficient and flattened
dispersion coinstantaneous. We can obtain the high nonlin-
ear coefficient PCF, and also gain flattened dispersion prop-
erties by simply adjusting the cladding parameters. But they
have conditionality, when the nonlinear coefficient becomes
high the dispersion is not flattened, and when the dispersion
becomes flattened the nonlinear coefficient is not high. So it is
necessarily to use a suited cladding structure and have a trade-
off.

We propose the PCF which has hybrid cladding with differ-
ent air-holes arrayed fashions, air-holes diameters and pitches
to control both the dispersion and the nonlinearity. One is the
inner cladding with air-holes square array along the six axes,
the other is the outer cladding with air-holes hexagon distribut-
ing as shown in Fig. 1. Where d1 and Λ1 are the air-hole di-
ameter and the pitch of the inner cladding, d2 and Λ2 are the
air-hole diameter and the pitch of the outer cladding, respec-
tively.

The hybrid cladding can tailor the nonlinearity and dis-
persion of photonic crystal fibers by tuning the cladding
parameters. Because of higher order diffraction from the
outer cladding region, we get flattened dispersion. The inner
cladding can offer facility for obtain high nonlinearity.

3. SIMULATION RESULTS

3.1. Analysis method

We used the full-vector finite element method (FEM) with
the perfectly matched layer (PML) boundary conditions to an-
alyze the nonlinearity and dispersion of the proposed hybrid
cladding PCFs.

The nonlinear coefficient of PCFs and dispersion control are
rested with the design of the cladding structure parameters that
is condign flexibility and comparative freedom, the cladding
structure parameters mostly include air-hole diameter d, pitch
Λ and air filling rate f of cladding. The nonlinear coefficient γ

(λ) of PCFs can be expressed as

γ(λ) = 2πn2
/
(λAe f f ) (1)

where Ae f f is model effective area, and n2 = 3.0 ×
10−20m2/W , is the nonlinear index of silica.
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FIG. 1: The proposed hybrid cladding PCF. The inner cladding is
air-holes square array along the six axes and the outer cladding is
air-holes hexagon distributing.

Starting with Maxwell’s curl equations, the vector equation
for the magnetic field vector H, can be derived as:

∇×
(
ε
−1
r ∇×H

)
− k2

0µrH = 0 (2)

where εr and µr are the dielectric permittivity and magnetic
permeability tensors, respectively. k0 = 2π/λ is the wave num-
ber in the vacuum, λ is operation wavelength.

The curvilinear hybrid edge/nodal elements based on lin-
ear tangential and quadratic normal vector basis functions are
adopted to accomplish the computational window divisions
and PML is incorporated as the boundary condition to absorb
waves out of the computational window. Applying the finite
element procedure to equation (2), the following eigenvalue
equation

[A]{H}= n2
e f f [B]{H} (3)

is obtained. Where [A] and [B] are the global finite element
matrices. The eigenvector {H} and the eigenvalue n2

e f f pro-
vide, respectively, the full vector magnetic field distribution on
the cross section of PCFs and the effective index of the mode.
The dispersion of PCFs can also be divided two types, one of
which is material dispersion Dm (λ), and it is expressed as

Dm(λ) =−λ

c
d2nm

dλ2 (4)

where nm (λ) can be computed by Sellmeier formula. Other
is waveguide dispersion Dw(λ), and it has compact relation on
the cladding structure parameters. So the total dispersion of
PCFs can be expressed as

D(λ)≈ Dw(λ)+Dm(λ) (5)

the slope of dispersion is expressed as

S0(λ) =
dD
dλ

(6)

The cladding regions of PCFs are considered as two-
dimension photonic crystal structure that possesses infinity pe-
riodicity arranged hexagon and doesn’t have center defect. To-
ward this circular cell with symmetry boundary condition, we
use the vector theory electromagnetic wave to compute. We
can get the expression of waveguide dispersion Dw (λ)

Dw(λ) =−λ

c
d2Re(ne f f )

dλ2 (7)

where ne f f is the cladding effective index of PCFs. The vari-
ety disciplinarian of cladding effective index, ne f f , versus ω is
expressed as

ne f f (ω) =
√

n2
Si +u2 (ω)c2/ω2 (8)

3.2. Structure analysis

We can adjust the cladding structure parameters: d1, d2, Λ1
and Λ2 to gain high nonlinear coefficient and flattened disper-
sion. Above all, we analyze the relation that the nonlinear co-
efficient γ (λ) and the waveguide dispersion Dw(λ) of PCFs
versus wavelength for different structure parameters.
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FIG. 2: Nonlinear coefficient γ (λ) curves as a function of wavelength
for hybrid cladding PCFs.

To keep the optimum matching of the inner cladding and
the outer cladding, we set the Λ2/Λ1 is 1.4. We firstly analyze
the case when d1/Λ1 and d2/Λ2 are fixed. Fig. 2 and fig.
3 show the results for Λ2/Λ1 = 1.4, d2/d1 = 1.4, d1/Λ1 =
0.6, Λ1 is 0.8, 0.9, 1.0, 1.1, 1.2 and 1.5µm respectively. Fig. 2
shows the nonlinear coefficient versus wavelength for different
Λ1 and constant d1/Λ1. When Λ1 becomes small, nonlinear
coefficient increases, and it is very evidence especially at short
wave. Fig. 3 is the waveguide dispersion versus wavelength,
we can see when Λ1 becomes small, the curve of waveguide
dispersion becomes steep; the inflexion at short wave shifts up
and at long wave shifts down. We can find Λ1 is small, γ (λ)
is high, but the curve of waveguide dispersion is steep, so we
select Λ1 is 1.1µm.

We secondly analyze the case when Λ1 is fixed for differ-
ent d1/Λ1, and we also set the Λ2/Λ1 is 1.4. Fig. 4 and fig. 5
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FIG. 3: Waveguide dispersion Dw(λ) curves as a function of wave-
length for hybrid cladding PCFs.
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FIG. 4: Nonlinear coefficient curves as a function of wavelength for
hybrid cladding PCFs.

show the simulating result d1/Λ1 is 0.5, 0.55, 0.6, and 0.65
respectively. Where fig. 4 is the nonlinear coefficient ver-
sus wavelength, and fig. 5 is the waveguide dispersion versus
wavelength. From fig. 4, we can see when the d1/Λ1 increases,
the nonlinear coefficient also increases. From fig. 5, we can see
when d1/Λ1 increases, the waveguide dispersion curve shifts
along long wave and shifts up, but it has little influence on
the tendency of the waveguide dispersion curves. We can find
d1/Λ1 is large, γ (λ) is high, but the curve of waveguide dis-
persion shifts along long wave and different to keep the total
dispersion flattened, so we select d1/Λ1 is 0.6.

We lastly analyze the case when Λ1 and d1/Λ1 are fixed,
and d2/Λ2 is not equal to d1/Λ1. Fig. 6 and fig. 7 show the
simulating result for the case that Λ1 is 1.1µm, Λ2/Λ1 = 1.4,
d1/Λ1 = 0.6, d2/Λ2 = 0.60, 0.65, 0.70, and 0.75, respec-
tively. Where fig. 6 is the nonlinear coefficient versus wave-
length, and fig. 7 is the waveguide dispersion versus wave-
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FIG. 5: Waveguide dispersion curves as a function of wavelength for
hybrid cladding PCFs.
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FIG. 6: Nonlinear coefficient curves as a function of wavelength for
hybrid cladding PCFs.

length. From fig. 6, we can see when the d2/Λ2 increases, the
nonlinear coefficient also increases, but the increment is less.
From fig. 7, we can see when d2/Λ2 increases, the waveguide
dispersion curve only has a little change. We can find d2/Λ2
is large, γ (λ) is high, and the curve of waveguide dispersion
is also suitable for holding the total dispersion flattened, so we
select d2/Λ2 is 0.75.

Based on the analysis above, we can find that the cladding
structure parameters Λ1, d1/Λ1 and d2/Λ2 all have influence
on the nonlinear coefficient and the waveguide dispersion. The
pitch Λ1 has decisive influence on the value of nonlinear coeffi-
cient and the tendency of waveguide dispersion curves, d1/Λ1
also influences the value of nonlinear coefficient and the size
and the position of waveguide dispersion, and d2/Λ2 generally
influences the value of nonlinear coefficient and has a little
effect on the size and position of waveguide dispersion. By re-
ducing Λ1 or increasing d1/Λ1, we can obtain high nonlinear
coefficient of PCFs, and properly increasing d2/Λ2 can obtain
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higher nonlinear coefficient and maintain the dispersion flat-
tened.
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FIG. 7: Waveguide dispersion curves as a function of wavelength for
hybrid cladding PCFs.

3.3. Adjusted results

Now we have an example that designs PCFs with high non-
linearity and flattened dispersion properties. In order to predi-
gest designing, the total dispersion are expressed as

D(λ)≈ Dw(λ)− (−Dm(λ)) (9)

where Dm(λ) is the material dispersion. Because the diversi-
fication of material dispersion versus wavelength don’t suffer
the influence of the cladding structure parameters, so we can
obtain flattened dispersion properties by adjusting Dw(λ) to
balance −Dm(λ). Combining the computed result above, we
can separate the design of flattened dispersion high nonlinear-
ity PCF into three steps. Firstly, by adjusting Λ1 we can find
the tendency of waveguide dispersion that close the diversi-
fication of −Dm(λ) curves, secondly, by changing d1/Λ1 we
can adjust waveguide dispersion, thirdly properly increasing
d2/Λ2 we can gain higher nonlinear coefficient, finally we can
properly change Λ1, d1/Λ1 and d2/Λ2 to obtain flattened dis-
persion high nonlinearity PCF.

Fig. 8 is the total chromatic dispersion, wave dispersion and
material dispersion for modified structure parameters that we
design for gaining high nonlinearity dispersion flattened hy-
brid cladding PCF. This high nonlinearity dispersion flattened
hybrid cladding PCF has the cladding structure parameters:
Λ1 = 1.1m, Λ2/Λ1 = 1.4, d1/Λ1 = 0.6, and d2/Λ2 = 0.75.
From fig. 8, we can see this hybrid cladding PCF has a flat-
tened dispersion profile.

By adjusting the cladding structure parameters, we can ob-
tain the high nonlinearity dispersion flattened hybrid cladding
PCF. Fig. 9 shows three high nonlinearity dispersion flattened
hybrid cladding PCF with different structure parameters. The
high nonlinearity hybrid cladding PCF A has the structure pa-
rameters: Λ1 = 1.1µm, d1 = 0.65µm, Λ2 = 1.54µm, and d2 =
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FIG. 8: The total chromatic dispersion, wave dispersion and mate-
rial dispersion curves as a function of wavelength for hybrid cladding
PCF.

1.05µm; the high nonlinearity hybrid cladding PCF B has the
structure parameters: Λ1 = 1.1µ, d1 = 0.65µm, Λ2 = 1.55µm,
and d2 = 1.15µm; the high nonlinearity hybrid cladding PCF
C has the structure parameters: Λ1 = 1.1µm, d1 = 0.65µm,
Λ2 = 1.58µm, and d2 = 1.25µm. The hybrid cladding PCFs
all have high nonlinearity and flattened dispersion, and PCF
A, PCF B and PCF C has negative dispersion, near zero dis-
persion and positive dispersion around 800nm, respectively.
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FIG. 9: Nonlinear coefficient curves and the total dispersion curves
as a function of wavelength for hybrid cladding PCFs.

We can obtain high nonlinearity PCFs by adjusting the
structure parameters of the proposed hybrid cladding PCF. The
hybrid cladding PCFs have high nonlinearity and flattened dis-
persion from 630nm to 970nm. The hybrid cladding PCF can
have flattened dispersion, which can bring spectral broaden-
ing through fission of higher-order solitons [19-21]. The hy-
brid cladding PCF have the important action for by using Ti:
Sapphire laser to study the nonlinear effect of ultra short laser
pulses in PCF. So we proposed hybrid cladding PCF with high
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nonlinear coefficient and dispersion flattened which is suited
for supercontinuum generation.

4. CONCLUSIONS

Using a vectorial FEM, we have computed the nonlinear co-
efficient and the dispersion properties of a novel PCF with hy-
brid cladding which has different pitches and air-holes diam-
eters. The results indicate that Λ1 have decisive influence on
the tendency of waveguide dispersion curves, and d1/Λ1 gen-
erally influences the size and position of waveguide dispersion.
By reducing Λ1 or increasing d1/Λ1, we can obtain high non-
linear coefficient of PCFs, and properly increasing d2/Λ2 can

obtain higher nonlinear coefficient and maintain the dispersion
flattened. Using a hybrid cladding structure and adjusting the
cladding structure parameters, we have obtained the high non-
linearity dispersion flattened PCF. The hybrid cladding PCF
we proposed is capable to possess of both high nonlinear co-
efficient and flattened dispersion. It is useful for the hybrid
cladding PCF for their applications in nonlinear fiber optics.
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