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Impact of streptozotocin-induced 
diabetes on experimental masseter 
pain in rats

Abstract:  This study aimed to assess the influence of streptozotocin 
(STZ)-induced diabetes on the nociceptive behavior evoked by the 
injection of hypertonic saline (HS) into the masseter muscle of rats. 
Forty male rats were equally divided into four groups: a) isotonic saline 
control, which received 0.9% isotonic saline (IS), (Ctrl-IS); b) hypertonic 
saline control, which received 5% HS (Ctrl-HS); c) STZ-induced 
diabetic, which received IS, (STZ-IS); d) STZ-induced diabetic, which 
received HS (STZ-HS). Experimental diabetes was induced by a 
single intraperitoneal injection of STZ at dose of 60 mg/kg dissolved 
in 0.1 M citrate buffer, and 100 μL of HS or IS were injected into the 
left masseter to measure the nociceptive behavior. Later on, muscle 
RNA was extracted to measure the relative expression of the following 
cytokines: cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), 
and interleukins (IL)-1β, -2, -6, and -10. One-way analysis of variance 
(ANOVA) was applied to the data (p < 0.050). We observed a main effect 
of group on the nociceptive response (ANOVA: F = 11.60, p < 0.001), 
where the Ctrl-HS group presented the highest response (p < 0.001). 
However, nociceptive response was similar among the Ctrl-IS, STZ-IS, 
and STZ-HS group (p > 0.050). In addition, the highest relative gene 
expression of TNF-α and IL-6 was found in the masseter of control rats 
following experimental muscle pain (p < 0.050). In conclusion, the loss 
of somatosensory function can be observed in deep orofacial tissues of 
STZ-induced diabetic rats.

Keywords: Diabetes Mellitus; Diabetic Neuropathies; Nociception; 
Masseter Muscle; Pain.

Introduction

Diabetes mellitus (DM) is a chronic metabolic disease characterized by 
hyperglycemia, which results from failure of insulin secretion or action. 
The worldwide population prevalence is estimated at 8.3%.1

Diabetic peripheral neuropathy (DPN) is a common complication of 
DM that is associated with somatosensory alterations. DPN can affect 
up to 50% of diabetic patients and is one of the main causes of morbidity 
and mortality.2 Patients with DPN may experience signs and symptoms 
of somatosensory amplification, e.g., spontaneous pain, hyperalgesia 
to mechanical and thermal stimuli and mechanical allodynia, but also 
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signs and symptoms of sensory loss, e.g. numbness 
and mechanical and thermal hypoesthesia.3,4 These 
somatosensory phenotypes are more pronounced 
in the distal parts of superficial tissues, especially 
in the lower extremities.2-4 

Nevertheless, the etiopathogenesis mechanisms 
of DPN are not well established yet. Currently, 
prevention, diagnostic, and therapeutic strategies 
for DPN are deficient due to the various forms of 
pathogenesis of systemic and cellular disorders in 
glucose and lipid metabolism.5-7 These abnormalities 
lead to the activation of complex biochemical 
pathways, including increased tumor necrosis 
factor (TNF-α), interleukin (IL)-1β, IL-2, IL-6, IL-10, 
and cyclooxygenase-2 (COX-2).6,7 In addition, genes 
involved in neuronal damage, cyclooxygenase-2 
activation, and low-grade inflammation are activated.7 
Recently, many experimental and clinical studies 
have shown an important role of long-term low-
grade inflammation in DPN pathogenesis, suggesting 
that inflammation is the common denominator of 
nerve damage and pain in diabetes.7-10 It seems that a 
systemic inflammatory process occurs in peripheral 
neuropathy, particularly if the peripheral neuropathy 
is associated with neuropathic pain.9 

The administration of a single dose of streptozotocin 
(STZ), an antibiotic extracted from Streptomyces 
Achromogenes, which selectively destroyed β-cells in 
pancreatic islets, is associated with early neuropathic 
phenotypes in animal experiments.11-13 For instance, 
signs of somatosensory amplification such as orofacial 
thermal hyperalgesia and signs of somatosensory 
loss such as lower limb mechanical hypoalgesia have 
been identified in rodents following a single dose 
of STZ.14,15 These investigations have contributed to 
better elucidate neuropathic pain mechanisms related 
to diabetes.11 Nonetheless, potential consequences of 
DPN for the sensitivity of deep tissues, e.g. skeletal 
muscles, are not sufficiently reported. Although 
there is evidence that STZ-induced diabetes can 
modulate the activity of the adenyl cyclase system 
in skeletal muscles of rats,16 behavior phenotyping 
associated with experimental muscle pain has not 
been investigated so far.   

Based on the above, the primary aim of the 
present study was to assess the influence of 

STZ-induced diabetes on the nociceptive behavioral 
response evoked by an intramuscular injection of 
hypertonic saline (HS) into the masseter muscle 
of rats. We hypothesized that the nociceptive 
behavioral responses would differ between  
STZ-induced diabetes rats and control rats without 
diabetes. In addition, we investigated the influence 
of STZ-induced diabetes and HS injection on the 
gene expression of the following inflammatory 
biomarkers: TNF-α, interleukins (IL)-1β, -2, -6 and 
-10, and COX-2.

Methods

Animals
The present study was conducted in 40 male 

Wistar rats (200-250 g) maintained under controlled 
conditions of temperature (23 ± 2°C), humidity 
and light-dark cycle (12 h), and with access to food 
and water “ad libitum”. The experiments were 
conducted during the light phase of the circadian 
cycle, between 8 and 17 hours. The examiner initially 
manipulated each animal for a period of 3 days before 
the beginning of the experiments. Experimental 
protocols were approved by the Ethics Committee 
on Animal Education and Research, Bauru School of 
Dentistry, University of São Paulo (#005/2015) and 
conducted in accordance with accepted standards 
of humane animal care, as outlined in the Ethical 
Guidelines.17 This study complies with ARRIVE 
guidelines, UK Animals (Scientific Procedures) Act 
(1986), EU Directive 2010/63/EU for experiments on 
animals, National Institutes of Health Guidance 
for the Care and Use of Laboratory Animals (NIH 
Publications No. 8023), Federal Law No. 11,794/08 
(Arouca Law), and the Brazilian Practice Guideline 
for the Care and Use of Animals for Scientific and 
Teaching Purposes (DBPA).

The rats were equally divided into four 
independent groups: 1) normoglycemic control 
rats that received 0.9% isotonic saline (IS) (n = 10, 
Ctrl-IS); 2) normoglycemic control rats that received 
hypertonic saline 5% (HS), (n = 10, Ctrl-HS); 3) 
STZ-induced diabetic rats that received IS (n = 10, 
STZ-IS); 4) STZ-induced diabetic rats that received 
HS (n = 10, STZ-HS). One hour after the beginning 
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of the orofacial nociception tests, the animals were 
euthanized by an intraperitoneal overdose injection 
of sodium thiopental (Thiopentax®, Cristália-Química 
e Farmacêutica, São Paulo, Brazil) (150 mg/kg i.p.), 
associated with an intramuscular injection of the 
anesthetic lidocaine hydrochloride (Xylestesin®, 
Cristália-Química e Farmacêutica, São Paulo, Brazil) 
(10 mg/kg i.m.).

Induction of diabetes
Twenty Wistar male rats were weighed to calculate 

the amount of STZ (Streptozotocin - Sigma-Aldrich 
Co. LLC.) to be injected. Experimental diabetes was 
induced by a single intraperitoneal injection of STZ 
at dose of 60 mg/kg dissolved in 0.1 M citrate buffer, 
pH 4.5.18 Hyperglycemia was confirmed 72 h after 
STZ injection in a peripheral blood sample obtained 
from the animal’s tail, using glucometer One Touch 
Ultra (One Touch® - Johnson & Johnson, Medical 
Devices & Diagnostic Group, São José dos Campos, 
Brazil). Blood glucose level above 250 mg/dL  
was required to be considered diabetic and be 
included in the study.19

Nociceptive behavioral test 
Fourteen days after the STZ-induced diabetes, 

orofacial nociceptive behavior was assessed in 
rats lightly anesthetized with thiopental sodium 
40 mg/kg, i.p. (Thiopentax®, Cristalia - Chemicals 
and Pharmaceuticals, São Paulo, Brazil). The level of 
“light” anesthesia was determined by providing a 
noxious pinch to the tail or hind paw with serrated 
forceps. Animals typically respond to noxious 
tail stimulation with an abdominal contraction 
and a withdrawal reflex of the hind paw within 
30 minutes after the initial anesthesia.20 Thus, the 
experiments continued only after the rats presented 
clear reflex responses for each noxious stimulus, 
as previously described.20 Therefore, with the rats 
lightly anesthetized, but displaying reflex responses, 
100 μL of HS or IS was injected into the mid-region 
of the left masseter muscle, at a depth of 5 mm.20 A 
single examiner quantified the nociceptive behavioral 
response, which was determined by counting the 
numbers shaking responses of the hind paw for a 
period of two minutes.20 

Analysis of cytokine gene expression 
through quantitative polymerase chain 
reaction (qPCR)

A 1-cm² fragment of the left masseter muscle 
was obtained one hour after the nociceptive 
behavioral test, and RNA was extracted using 
RNeasy Mini Kit (Qiagen®, Germany) for further 
analysis of cytokines expression through qPCR. 
The qPCR experiment was conducted according to 
the manufacturer’s guidelines (Applied Biosystems, 
USA) using specific probes for each cytokine. For 
the experiment, the following assays from Applied 
Biosystems were used: COX-2 (#Rn01483828_m1), 
TNF-α (# Rn01525859_g1), IL-1β (# Rn00580432_
m1), IL-2 (#Rn00587673_m1), IL-6 (#Rn01410330_
m1), and IL-10 (# Rn00563409_m1). The experiment 
was conducted in a plate of 384 wells under the 
following cycling conditions: initial temperature 
of 95°C for 10 minutes for activation of the Taq 
polymerase, followed by 45 cycles of 95°C for 15 
seconds and 60°C for 1 minute. Negative control 
experiments without cDNA were also performed. 
Calculations for determining the relative levels 
of gene expression were made from triplicate 
measurements of the target gene normalized to 
β-actin, using the 2-ΔΔct method.

Statistical Analysis 
Data from the nociceptive behavioral response 

and relative cytokine expression were assessed for 
normal distribution using the Kolmogorov-Smirnov 
test, and a log10 transformation was performed when 
the test results were significant considering an alpha 
level of 5% (p < 0.050). The following variables were 
log10 transformed: COX-2, IL-1β, and IL-6. Data were 
reported as means and standard deviation (SD).

One-way analysis of variance (ANOVA) was 
computed to assess mean differences among the 
groups regarding the nociceptive behavioral response 
and relative cytokine expression. When appropriate, 
post-hoc analyses were performed using Tukey’s 
Honestly Statistical Difference (HSD). A prior planned 
Bonferroni correction lowered the significance level 
to 2.5% (p = 0.025) as the cut-off point to establish 
the statistical significance adjusted for multiple 
comparisons. The nociceptive response (main 
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outcome) was considered one family of comparison 
and cytokines were regarded as another family 
(secondary outcomes). Therefore, the family-wise 
error rate was established considering 2 multiple 
comparisons and, according to the Bonferroni formula 
(0.050 / k, where k = number of comparisons), an 
alpha level of p = 0.025 was set up.

Results

Nociceptive behavioral response
There was a main effect of group on the nociceptive 

response (ANOVA: F = 11.60, p < 0.001, partial  
η2 = 0.49), where the Ctrl-HS group presented the 
highest number of hind paw shaking behavior (Tukey: 
p < 0.001) (Figure 1). In addition, the nociceptive 
response was similar among the Ctrl-IS, STZ-IS, and 
STZ-HS groups (Tukey: p > 0.050). 

Cytokine relative gene expression
There was a main effect of group on gene 

expression of the following cytokines (Figure 2): 
TNF-α (Figure 2A) (ANOVA: F = 8.56, p = 0.001, 

partial η2 = 0.61), where the masseter of Ctrl-HS group 
presented the highest expression (Tukey: p < 0.034); 
IL-1β (Figure 2B) (ANOVA: F = 7.36, p = 0.002, partial 
η2 = 0.58), where the masseter of Ctrl-HS group 
presented a higher expression when compared to 
the Ctrl-IS (Tukey: p = 0.002), and STZ-IS masseter 
(Tukey: p = 0.015); IL-6 (Figure 2C) (ANOVA: F = 18.56,  
p < 0.001, partial η2 = 0.77), where the masseter of 
Ctrl-HS group presented the highest expression 
(Tukey: p < 0.001). In addition, gene expression of 
COX-2, IL-2, and IL-10 were similar among the groups 
(Tukey: p > 0.050) (Figures 2D, 2E, and 2F). 

Discussion

The present study aimed primarily to assess the 
behavioral phenotyping evoked by intramuscular 
injection of HS into the masseter muscle of STZ-induced 
diabetic rats, but also the relative expression of pro 
and anti-inflammatory cytokines. The main findings 
were: a) the impact of experimental muscle pain on 
the nociceptive behavioral response was significantly 
lower in STZ-induced diabetic rats compared to 
normoglycemic controls; b) normoglycemic control 
rats had the highest relative expression of TNF-α and 
IL-6 genes in the masseter following experimental 
muscle pain. 

HS has been adequately used for induction of 
orofacial experimental muscle pain both in animal 
and human studies.6,21 Intramuscular injection of HS 
into the masseter muscle triggers trigeminal spinal 
nucleus neurons, which process the information 
from the afferent fibers of the masticatory muscle, 
resulting in a measurable and stereotyped nociceptive 
behavioral response.20,22 Our results demonstrated 
that HS evoked a significantly high nociceptive 
response only in the normoglycemic control rats, 
which indicates chemical hypoalgesia in diabetic 
rats following a single dose of STZ. So far, sensory 
loss has been reported to occur mainly in superficial 
tissues of STZ-induced diabetic rodents.12 Our 
results indicated that the neuropathic consequences 
of diabetes could also affect the afferent fibers of 
deep tissues, probably through the same underlying 
mechanisms associated with mechanical and 
thermal hypoalgesia, i.e. vascular and metabolic 

Figure 1. Mean number of hind paw shakes (nociceptive 
behavioral response). Ctrl-IS = normoglycemic control 
rats which received isotonic saline 0.9% (n=10). STZ-IS = 
streptozotocin-induced diabetic rats which received isotonic 
saline 0.9% (n=10). Ctrl-HS = normoglycemic control rats 
which received hypertonic saline 5% (n=10). STZ-HS = 
streptozotocin-induced diabetic rats which received hypertonic 
saline 5% (n=10). Error-bars indicate standard deviation (SD) 
of the mean. *p<0.050 compared to the other groups.
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alterations from the hyperglycemia levels can 
cause axonal degeneration and nerve fiber loss.2,4 
This sensory deprivation might impact orofacial 
motor function, as sensory feedback is important for 
appropriate motor activity, in particular rhythmic 
movements such as mastication.23,24 However, 

further investigations are required to investigate 
the relationship between orofacial pain and jaw 
function in DPN animal models. 

In the present study, the expression of pro- and 
anti-inflammatory cytokines in the masseter muscle 
was also investigated 1 hour after the induction of 

*p < 0.050 compared to the other groups. 
Error-bars indicate standard deviation (SD) of the mean.

Figure 2. Relative expression of tumor necrosis factor (TNF-α) in the left masseter. Ctrl-IS = normoglycemic control rats which 
received isotonic saline 0.9% (n = 10). STZ-IS = streptozotocin-induced diabetic rats which received isotonic saline 0.9% (n = 10). 
Ctrl-HS = normoglycemic control rats which received hypertonic saline 5% (n = 10). STZ-HS = streptozotocin-induced diabetic 
rats which received hypertonic saline 5% (n = 10). Error-bars indicate standard deviation (SD) of the mean.
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nociception by HS and 14 days after the induction of 
experimental diabetes. The normoglycemic control 
rats injected with HS presented the highest relative 
expression of TNF-α and IL-6 mRNA. Likewise, 
this group had higher IL-1β expression compared 
to the normoglycemic control and STZ-induced 
diabetic rats injected with IS. The high level of 
mRNA expression in normoglycemic control rats in 
contrast with STZ-induced diabetic rats is probably 
the result of neurogenic inflammation that can 
lead to the antidromic release of substance P and 
calcitonin gene-related peptide (CGRP).25,26 These 
neuropeptides might have activated resident cells, 
especially resident macrophages, which in turn 
enhanced the expression of inflammatory cytokines.27 
Considering that neurogenic inflammation depends on 
appropriate encoding and transmission of nociceptive 
stimuli,25 the absence of high expression of the above 
cytokines in STZ-induced diabetic rats could be 
considered a consequence of axonal degradation and 
nerve fiber loss, which might also be related to the 
observed hypoalgesic response. Such behavioral and 
biochemical outcomes could correspond to the sensory 
loss profile of neuropathic pain.28,29 Nonetheless, 
considering that we did not assess nerve structural 
changes, this interpretation should be considered 
with caution.  

This study has some important limitations that 
need to be addressed: a) we only assessed early 
effects of STZ-induced diabetes; b) we did not assess 
superficial tissue sensitivity, so that a correlation of 
sensory changes between different tissues could 
not be verified; c) sensory changes and cytokine 
expressions were not assessed over time, which 
is important for a comprehensive understanding 
of the neurophysiological consequences of STZ-
induced diabetes.   

Conclusion 

Loss of somatosensory function was observed in 
deep orofacial tissues of STZ-induced diabetic rats. 
Therefore, musculoskeletal sensory assessment should 
be encouraged to better elucidate the neuropathic 
consequences of diabetes in animal experiments. 
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