DESEMPENHO GENOTÍPICO DE LINHAGENS DE ARROZ DE TERRAS ALTAS UTILIZANDO METODOLOGIA DE MODELOS MISTOS (¹)

VANDERLEY BORGES (2); ANTONIO ALVES SOARES (3*); MOIZÉS SOUZA REIS (4); MARCOS DEON VILELA RESENDE (5); VANDA MARIA OLIVEIRA CORNÉLIO (4); NATÁLIA ALVES LEITE (6); ANTONIO RODRIGUES VIEIRA (4)

RESUMO

Avaliou-se o desempenho de genótipos de arroz de terras altas utilizando metodologia de modelos mistos. Foram utilizados dados de produtividade de grãos dos ensaios de valor de cultivo e uso (VCU) do programa cooperativo de melhoramento de arroz de terras altas, desenvolvido em Minas Gerais, no período de 1997/1998 a 2007/2008. Realizou-se análise de *deviance* para verificar a significância dos efeitos de genótipos e suas interações com locais e anos, obtendo-se a estabilidade e a adaptabilidade genotípicas, com os métodos da média harmônica dos valores genotípicos. Os efeitos de genótipos, genótipos x locais e genótipos x anos foram estatisticamente significativos (p≤0,05). As linhagens e cultivares mais estáveis foram: Curinga-3, CNA 8983, Guarani, BRSMG Caravera e CNA 8824. Com maior adaptabilidade, estabilidade e produtividade de grãos, simultaneamente, destacaram-se a BRSMG Caravera, Curinga-3, MG 1089, MG 1097 e CNA 8436. A BRSMG Caravera, entre todas as cultivares e linhagens avaliadas de 1997 a 2008, foi a de melhor desempenho pela MHPRVG, ou seja, maior estabilidade, adaptabilidade e produtividade de grãos, simultaneamente, proporcionando aos orizicultores de Minas Gerais alta segurança no seu cultivo.

Palavras-chave: Oryza sativa, REML, BLUP, estabilidade genotípica, adaptabilidade.

ABSTRACT

GENOTYPIC PERFOMANCE OF LINES OF THE UPLAND RICE USING MIXED MODEL

The objective of this study was to evaluate the performance of genotypes of upland rice using mixed models methodology. Were evaluated data from yield tests of value for cultivation and use (VCU) from the cooperative improvement program of upland rice, developed in Minas Gerais during 1997/1998 to 2007/2008. Analysis of deviance was done to test the significance of the effects of genotypes and their interactions with sites and years, being obtained the stability and adaptability genotypic using the methods of the harmonic mean of genotypic values. The effects of genotypes, genotype x sites and genotype x year were statistically significant (p \leq 0.05). The lines and cultivars Curinga-3, CNA 8983, Guarani, BRSMG Caravera and CNA 8824 were more stable, with greater adaptability, stability and yield, while the highlights were the BRSMG Caravera, Curinga-3, MG 1089, MG 1097 and CNA 8436. The BRSMG Caravera among all the cultivars and lines evaluated from 1997 to 2008, showed the best performance by MHPRVG, ie, greater stability, adaptability and yield while providing rice farmers from Minas Gerais a better crop.

Key words: Oryza sativa, REML/BLUP, adaptability, genotypic stability.

⁽¹) Recebido para publicação em 13 de outubro de 2009 e aceito em 12 de abril de 2010.

⁽²⁾ Universidade Federal de Lavras / Pós-Graduação em Fitotecnia, 37200-000 Lavras (MG). E-mail: vanderley-agro@ig.com.br.

⁽³⁾ Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras (MG). E-mail: aasoares@ufla.br (*) Autor correspondente.

⁽⁴⁾ Empresa de Pesquisa Agropecuária de Minas Gerais, Caixa Postal 176, 37200-000 Lavras (MG). E-mail: moizes@epamig.ufla.br; vanda. cornelio@epamig.ufla.br.

⁽⁵⁾ Embrapa Florestas, Caixa Postal 319, 83411-000 Colombo (PR). E-mail: marcos.deon@ufv.br.

⁽⁶⁾ Bolsista de iniciação científica da UFLA. E-mail: alvesnat@gmail.com.

1. INTRODUÇÃO

O perfeito conhecimento da interação genótipos x ambientes é de extrema importância nos programas de melhoramento. É com base nele que se torna possível a seleção de genótipos com adaptação ampla ou específica, a escolha de locais de seleção e a determinação do número ideal de ambientes e de genótipos a serem avaliados durante a seleção (Fox et al., 1997). Assim, inferências e ordenamento sobre os valores genotípicos de tais genótipos são necessários. Considerando que os valores genotípicos são os verdadeiros valores de cultivo e uso (VCU), a análise de dados provenientes de experimentos de VCU em multilocais deve ser realizada sob modelos que ajustem de forma acurada os valores genotípicos livre dos efeitos ambientais, tais como blocos, locais, anos dentre outros.

Os métodos utilizados para estudos da interação genótipos x ambientes e de adaptabilidade e estabilidade são embasados na análise de variância (Anava), ou seja; sobre médias fenotípicas (Biudes et al., 2009; Silva e Duarte, 2006; Morais et al., 2008; Silva et al., 2008). Métodos de estudos de adaptabilidade e estabilidade com base em modelos mistos (REML/BLUP - Restricted Maximum Likelihood/ Best Linear Unbiased Prediction) ainda são raros. Um modelo alternativo com base em modelo misto, para estudos de adaptabilidade e estabilidade, é a Média Harmônica da Performance Relativa dos Valores Genotípicos (MHPRVG), preconizado por Resende (2004; 2007a).

O método MHPVG fornece, simultaneamente, a adaptabilidade, a estabilidade e a produtividade em uma mesma medida e na mesma escala do caráter avaliado. Além disso, o modelo ajusta os efeitos de locais e blocos dentro de locais e anos no vetor de efeitos fixos, contemplando dessa forma todos os graus de liberdade disponíveis nas fontes de variação referentes a locais e blocos dentro de locais e anos. Dessa forma, para os valores genotípicos preditos obtidos para um dado genótipo, em cada local, simultaneamente, são utilizados os dados de todos os locais e anos. Nesse caso, de acordo com Resende (2007a), os efeitos aleatórios (genótipos, interação genótipos x locais, interação genótipos x anos, interação genótipos x locais x anos) são preditos com maior precisão, uma vez que todo o conjunto de dados é utilizado, bem como os ruídos da interação são eliminados quando se produzem os BLUP's.

Bastos et al. (2007) utilizaram o método MHPRVG na avaliação da interação genótipos x ambientes em cana-de-açúcar em sete ambientes de Minas Gerais. Neste estudo, os autores destacam, entre outras conclusões que, pelo método MHPRVG, tem-se a vantagem de se interpretar diretamente os valores genéticos para produtividade, adaptabilidade e estabilidade, simultaneamente. Com a cultura do

feijoeiro, Carbonell et al. (2007) estudaram a estabilidade de cultivares e linhagens em diferentes ambientes no Estado de São Paulo, utilizando os métodos MHPRVG, LIN e BINNS (1988) e ANNICCHIARICO (1992), concluindo que os métodos selecionaram praticamente as mesmas linhagens. Contudo, o método MHPRVG seleciona com base em valores genéticos e os demais se baseiam em valores fenotípicos. Na cultura do arroz, ainda não há registro do uso de modelos mistos (REML/BLUP), portanto, é importante realizar trabalhos que possam testar e justificar a utilização desse método.

Na metodologia de modelos mistos com dados desbalanceados os efeitos do modelo não devem ser testados via teste F, tal como se faz no método da análise de variância (RESENDE, 2007a). Nesse caso, para os efeitos aleatórios, o teste cientificamente recomendado, a fim de verificar a significância dos efeitos do modelo, é o teste da razão de verossimilhança (likelihood ratio test ou LRT) por meio de uma análise de deviance. Esta análise foi sugerida por RESENDE (2007a) e é análoga ao método de Nelder e Wedderburn (1972) para variáveis discretas, a qual indica a qualidade do ajuste do modelo. A deviance é uma estatística derivada da razão entre as verossimilhanças do modelo completo, ou modelo saturado, em relação ao modelo sem o efeito que se deseja testar, ou modelo reduzido.

O objetivo deste trabalho foi estudar o desempenho genotípico de cultivares e linhagens de arroz de terras altas, avaliadas em Minas Gerais, no período de 1997/1998 a 2007/2008, utilizando modelo misto.

2. MATERIAL E MÉTODOS

Foram utilizados os resultados de produtividade de grãos obtidos dos ensaios de valor de cultivo e uso (VCU) do programa cooperativo de melhoramento de arroz de terras altas, desenvolvido em Minas Gerais, em parceria com UFLA, EPAMIG, e Embrapa Arroz e Feijão, no período de 1997/1998 a 2007/2008, envolvendo 107 cultivares e linhagens, testadas em 11 diferentes locais, ao longo dos 11 anos agrícolas. A relação dos locais por ano agrícola é mostrada na tabela 1 e a de cultivares e linhagens, por ano agrícola, estão apresentadas na tabela 2.

Para as análises estatísticas, utilizou-se o seguinte modelo linear:

$$y_{ijkn} = \mu + g_i + b_{jkn} + a_k + l_n + ga_{ik} + gl_{kn} + gal_{ikn} + gbal_{ijkn}$$

em que: y_{ijkn} é o valor da observação referente ao tratamento i na repetição j, no ano k dentro do local n; g_i é o efeito do genótipo i; μ é a média geral; b_{jkn} é o efeito do bloco j dentro do ano k dentro do local n; a_k é o efeito do ano de plantio k; l_n é o efeito do local n; ga_{ik}

Ano agrícola	Local dos experimentos
1997/98	Lambari, Lavras, Patos de Minas
1998/99	Felixlândia, Lambari, Lavras, Patos de Minas, Patrocínio e Uberaba
1999/00	Felixlândia, Lambari, Lavras, Paracatu, Patos de Minas, Patrocínio, Uberaba
2000/01	Felixlândia, Lambari, Lavras, Patos de Minas, Patrocínio e Uberaba
2001/02	Felixlândia, Lambari, Patos de Minas, Uberaba, Uberlândia e Viçosa
2002/03	Lambari, Lavras, Patos de Minas, Patrocínio, Uberaba, Uberlândia e Viçosa
2003/04	Felixlândia, Lambari, Patos de Minas, Patrocínio, Piumhi e Viçosa
2004/05	Felixlândia, Lambari, Lavras, Patos de Minas, Patrocínio e Viçosa
2005/06	Lambari, Lavras, Patos de Minas, Patrocínio e Piumhi
2006/07	Lambari, Lavras, Patos de Minas, Patrocínio, Piumhi e São Sebastião do Paraíso
2007/08	Lambari, Lavras, Patos de Minas, Patrocínio, Piumhi e São Sebastião do Paraíso

Tabela 1. Relação dos 11 anos agrícolas e dos 11 locais, onde se realizaram os experimentos

é o efeito da interação genótipos x anos de plantio; $gl_{\rm kn}$ é o efeito da interação genótipos x locais; $gal_{\rm ikn}$ é o efeito da interação genótipos x anos x locais; $gbal_{\rm ijkn}$ é o erro ou resíduo aleatório.

Na forma matricial, o modelo correspondente é:

$$y = Xb + Zg + Qga + Tgl + Ugla + e$$

Sendo: y o vetor de observações; *b* o vetor dos efeitos das combinações bloco-local-ano (efeitos fixos do modelo) somados à média geral; *g* o vetor de efeitos genotípicos, *g* (assumido como aleatórios); *ga* o vetor dos efeitos da interação de genótipos x anos, *ga* (aleatórios); *gl* o vetor dos efeitos das interações de genótipos x locais, *gl* (aleatório); *gla* o vetor dos efeitos da interação tripla genótipos x locais x anos, *gla* (assumidos como aleatórios); *e* o vetor de erros (aleatórios). X, Z, Q, T e U representam as matrizes de incidência para os referidos efeitos respectivamente.

Os efeitos de anos, locais e bloco/anos/locais são agrupados no efeito *b*, pois são efeitos puramente ambientais (RESENDE, 2007a). A estrutura de médias e variâncias é dada conforme RESENDE (2007a) e as equações de modelo misto para o modelo adotado são:

$$\begin{pmatrix} \hat{b} \\ g \% \\ ga \% \\ gl \% \\ gl w \end{pmatrix} = \begin{pmatrix} X'X & X'Z & X'Q & X'T & X'U \\ Z'X & Z'Z + I\lambda_1 & Z'Q & Z'T & Z'U \\ Q'X & Q'Z & Q'Q + I\lambda_2 & Q'T & Z'U \\ T'X & T'Z & T'Q & T'T + I\lambda_3 & T'U \\ U'X & U'Z & U'Q & U'T & U'U + I\lambda_4 \end{pmatrix}^{-1} \begin{pmatrix} X'y \\ Z'y \\ Q'y \\ T'y \\ U'y \end{pmatrix}$$

Sendo

$$\lambda_{1} = \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} = \frac{1 - h_{g}^{2} - c_{ga}^{2} - c_{gl}^{2} - c_{gla}^{2}}{h_{g}^{2}},$$

$$\lambda_{2} = \frac{\sigma_{e}^{2}}{\sigma_{ga}^{2}} = \frac{1 - h_{g}^{2} - c_{ga}^{2} - c_{gl}^{2} - c_{gla}^{2}}{c_{ga}^{2}},$$

$$\lambda_{3} = \frac{\sigma_{e}^{2}}{\sigma_{gl}^{2}} = \frac{1 - h_{g}^{2} - c_{ga}^{2} - c_{gl}^{2} - c_{gla}^{2}}{c_{gl}^{2}},$$

$$\lambda_4 = \frac{\sigma_e^2}{\sigma_{gla}^2} = \frac{1 - h_g^2 - c_{ga}^2 - c_{gl}^2 - c_{gla}^2}{c_{gla}^2} e h_g^2$$
é a herdabilidade

no sentido amplo e c² corresponde a coeficientes de determinação de cada efeito respectivo.

Os valores da média harmônica dos valores genotípicos (MHVG) para a avaliação da estabilidade, da performance relativa dos valores genotípicos (PRVG) para a adaptabilidade e da média harmônica da performance relativa dos valores genotípicos (MHPRVG) para a estabilidade, a adaptabilidade e a produtividade, simultaneamente, para todos os genótipos foram obtidos conforme as expressões:

$$MHVG = \frac{l}{\sum_{i=1}^{l} \frac{1}{VG_{j}}}, PRVG = \frac{1}{l} \left(\frac{\sum VG_{j}}{M_{j}} \right) e$$

$$MHPRVG = \frac{l}{\int_{0}^{l} \frac{1}{VG_{j}}} e$$

$$MHPRVG = \frac{l}{\sum_{l=1}^{l} \frac{1}{PRVG_{i}}}$$

em que l: número de locais; VG: valor genotípico; j: genótipos.

A significância dos efeitos do modelo foi estimada pela análise de *deviance*, conforme recomendações de RESENDE (2007a). As *deviances* foram obtidas por meio de análises com e sem os efeitos de *g*, *ga*, *gl* e *gla*. Em seguida, subtraiu-se de cada *deviance* do modelo completo a deviance sem o referido efeito, e confrontando-o com o valor do qui-quadrado com um grau de liberdade,

abela 2. Relação das cultivares e linhagens avaliadas nos ensaios de valor de cultivo e uso (VCU), por ano agrícola, no período de 1997/1998 a 2007/2008, em Minas Gerais **BRSMG** Conai **3RA** 042156 BRA 042160 **BRA** 032033 CMG 1366 **3RS** Pepita CG3-118-6 Relâmpago CMG 1152 CMG 1124 CMG 1304 2007/2008 CMG 1154 CMG 1167 CMG 1289 2007/2008 CMG 1174 CMG 1164 BRSMG BRSMG MG 1097 Curinga Caravera **BRSMG** Canastra **BRSMG** Conai CAPRI-L-100 CNAs 9027-3 CNAs 9027-2 CG3-118-6 3RA 01506 BRS Pepita BRA 01596 YIN LU 31 Relâmpago CMG 1124 2006/2007 2006/2007 MG 1102 BRSMG MG 1097 Caravera MG 1101 **BRSMG** Curinga Canastra Carisma BRSMG laponês Caiapó BRSMG Conai CNAs 8957-1 CNAs 10217 CNAs 10227 **BRA** 01506 3RA 01596 BRSMG Relâmpago YIN LU 31 MG 1066-1 2005/2006 2005/2006 Curinga-3 Caravera MG 1102 MG 1097 MG 1101 Canastra MG 1089 MG 1103 BRSMG Japonês Carisma Caiapó BRSMG Conai CNAs 8817-2 CNAs 8957-1 CNAs 8938-1 CNAs 10260 CNAs 10217 CNAs 10227 Relâmpago YIN LU 31 2004/2005 2004/2005 MG 1078 Curinga-3 MG 1097 Caravera MG 1084 BRSMG MG 1089 MG 1093 BRSMG Canastra Carisma Japonês Caiapó **BRSMG** Conai CRO 97505-5 CNAs 10217 CNAs 10227 CNAs 10260 Carisma-SP Relâmpago 2003/2004 2003/2004 Caravera MG 1089 MG 1084 MG 1095 MG 1093 MG 1078 MG 1087 MG 1088 MG 1085 MG 1086 BRSMG BRSMG Canastra Guarani Caiapó CRO97505-5 **BRS** Colosso CNAs 10255 CNAs 10227 CNAs 10260 **BRS** Pepita **CNAs 9026 CNAs 8983 CNAs** 9023 GUARANI 2002/2003 2002/2003 Primavera MG 1081 MG 1066 MG 1074 MG 1077 MG 1080 BRSMG Canastra CONAI 3RSMG Conai Carisma Caiapó BRS **3RS** Colosso CRO 97505 CNAs 9026 **CNAs 9045 3RS** Pepita **CNAs 8817 CNAs 8983** CNAs 9060 CNAs 9027 CNAs 8824 CNAs 9021 2001/2002 Primavera 2001/2002 MG 1066 MG 1067 BRSMG Carisma Curinga Canastra Guarani Caiapó BRS s.d. **BRS** Colosso CNAs 8938 CRO 97422 CRO 97505 CNAs 8817 CNAs 8824 CNAs 8983 Carisma-SP **CNAs 8957** CNAs 8960 BRS Primavera Confiança MG 1057 2000/2001 BRSMG 2000/2001 MG 1066 MG 1043 IAC 202 Curinga Canastra Guarani Caiapó **BRS** Talento CNAs 8818 **CNAs 8983 CNAs 8817** CNAs 8822 CNAs 8824 **CNAs 8962** 1999/2000 Confiança Primavera 999/2000 MG 1045 IAC 1437 MG 1046 MG 1044 BRSMG Curinga IAC 202 Canastra Carisma Guarani Caiapó L 95-2 BRS BRS Bonança **BRS** Talento 1998/1999 CNA 8436 BRS Primavera CNA 8536 CNA 8707 **CNA 8712** CG3-1519 CNA 8711 CNA 8798 **CNA 8693** CNA 8541 6661/866 Confiança IAC 1483 Douradão Canastra IAC 202 Guarani Carisma Caiapó BRS Bonança **BRS** Talento CNA 8436 1997/1998 CNA 8564 CNA 8535 CNA 8552 CNA 8553 CNA 8543 **CNA 8536** 8661/166 CNA 8541 Primavera CNA 8551 Confiança IAC 1483 Douradão CNA 856 Carisma Canastra Guarani Caiapó

a 1% e 5% de probabilidade. Matematicamente: $LRT = -2ln \left(\frac{MV\ do\ modelo\ reduzido}{MV\ do\ modelo\ completo} \right), \ \ \text{sendo} \ \ \ln \ \ o$

logaritmo neperiano e MV máxima verossimilhança.

As análises foram realizadas com o aplicativo SELEGEN REML/BLUP (RESENDE, 2007b).

3. RESULTADOS E DISCUSSÃO

O resultado da análise de deviance para efeitos de genótipos e os efeitos das interações genótipos x locais, genótipos x anos e genótipos x locais x anos, seus respectivos componentes de variância e coeficientes de determinação na análise conjunta dos 11 locais e 11 anos, é apresentado na tabela 3. Verificou-se, pela análise de deviance, que os efeitos de genótipos, das interações genótipos x local e genótipos x anos, bem como seus componentes de variância (Vg, Vgl e Vga) e coeficientes de determinação (h^2 , c_{gl}^2 e c_{ga}^2) dos respectivos efeitos, foram estatisticamente significativos (p≤0,05). Portanto, apenas o efeito da interação tripla genótipos x locais x anos, assim como seus respectivos componentes de variância (Vgla) e coeficientes de determinação (c_{gla}^2) não o foram. A análise de deviance evidenciou, assim, a presença de variabilidade genética entre as linhagens testadas e interação de locais e anos com cada genótipo individualmente.

Atroch et al. (2000), que estudaram a adaptabilidade e estabilidade fenotípicas de nove linhagens de arroz de terras altas testadas em Minas Gerais em quatro locais e três anos, identificaram interação significativa para genótipos x locais, genótipos x anos e genótipos x locais x anos. Ainda, conforme os autores, a magnitude da interação genótipos x locais (de 63.155,000) foi mais expressiva que a interação genótipos x anos (de 22.728,000), sugerindo que se deveriam testar as linhagens, como forma de otimizar o programa de melhoramento de arroz de terras altas, em um número maior de locais do que de anos. No presente estudo, a

magnitude da interação Vgl foi ligeiramente superior a Vga (Tabela 3), corroborando com os resultados de Atroch et al. (2000). Assim, o comportamento dos genótipos nesse estudo foi semelhante ao avaliado por esses autores, à exceção apenas aos efeitos da interação tripla genótipos x locais x anos. Todavia, pelos valores genotípicos, as diferenças entre os efeitos das interações de genótipos x locais (deviance de 19.444,21) e genótipos x anos (deviance de 19.443,79) foram de baixa magnitude e próximas entre si.

Os coeficientes de determinação (c_{gl}^2 para a interação genótipos x locais; c_{ga}^2 para a interação genótipos x anos e c_{gla}^2 para a interação genótipos x locais x anos) indicam o quanto cada componente contribui para a variância fenotípica total. Dessa forma, as interações genótipos x locais; genótipos x anos e genótipos x locais x anos contribuíram com 5,08%, 4,68% e 1,9% respectivamente.

Estabilidade dos valores genotípicos / MHVG

A MHVG – média harmônica dos valores genotípicos – computa a estabilidade e a produtividade de grãos, simultaneamente. Assim, a seleção baseada na MHVG contempla esses dois atributos conjuntamente. Como a MHVG penaliza a instabilidade, quando genótipos são avaliados em diversos locais, o resultado é que a nova média obtida é ajustada por essa penalização.

O resultado da avaliação da MHVG para as 25 cultivares e linhagens superiores das 107 testadas nos 11 locais e 11 anos é relatado na tabela 4. Como mencionado, os valores da MHVG são os próprios valores da produtividade de grãos, penalizados pela instabilidade, o que certamente facilita a seleção das linhagens produtivas e ao mesmo tempo mais estáveis. A instabilidade climática e a heterogeneidade dos solos são maiores nas condições tropicais. Esta condição exige que as cultivares recomendadas aos agricultores devam aliar produtividade de grãos e maior estabilidade. Portanto, o critério MHVG atende exatamente essas duas premissas que a cultivar deve apresentar.

Tabela 3. *Deviance,* componentes de variância e coeficientes de determinação referentes à análise conjunta global envolvendo 107 cultivares e linhagens testadas em 11 locais e 11 anos. 1997/1998 a 2007/2008

Efeito	Deviance	LRT (χ^2)	Componentes de variância	Coeficientes de determinação	
Genótipos	19453,87+	15,20**	Vg = 57742,19	$h^2g = 0.097$	
Genótipos x locais	19444,21+	5,54*	Vgl = 30266, 24	$c^2gl = 0,0508$	
Genótipos x anos	19443,79+	5,12*	Vga = 27878,57	$c^2ga = 0.0467$	
Genótipos x locais x anos	19438,58+	$0,\!08^{\mathrm{ns}}$	$Vgla = 11352,16^{ns}$	$c^2gla = 0.02^{\rm ns}$	
Resíduo		-	Ve = 468824,32	$c^2 res = 0,84$	
Modelo Completo	19438,67	-	-	$c^2 total = 1,00$	

^{*:} Deviance do modelo ajustado sem os efeitos correspondente. * e **: Significativo pelo teste qui-quadrado a 5% (3,84) e 1% (6,63) respectivamente.

Tabela 4. Estabilidade dos valores genotípicos (MHVG), adaptabilidade dos valores genotípicos (PRVG), valores genotípicos médios capitalizado pela interação (PRVG*MG), estabilidade e adaptabilidade de valores genotípicos (MHPRVG) e valores genotípicos médios nos locais (MHPRVG*MG) para produção de grãos de cultivares e linhagens de arroz avaliadas em Minas Gerais, no período de 1997/1998 a 2007/2008

Genótipo	MHVG ¹	Genótipo	PRVG	PRVG*MG ^a	Genótipo	MHPRVG	MHPRVG*MG
Curinga-3	3965,7404	BRSMG Caravera	1,1583	4079,2178	BRSMG Caravera	1,1575	4076,3951
CNA8983	3935,5052	Curinga-3	1,1346	3995,6427	Curinga-3	1,1342	3994,3049
Guarani	3932,2042	MG1089	1,0842	3818,1402	MG1089	1,0834	3815,3367
BRSMG Caravera	3925,6388	MG1097	1,0812	3807,8344	MG1097	1,0807	3806,0925
CNA8824	3898,9942	CNA8436	1,0784	3797,9539	CNA8436	1,0782	3796,9495
BRS Primavera	3892,9927	BRA01506	1,0734	3780,1209	BRA01506	1,0732	3779,4792
IAC 202	3881,9464	BRA01596	1,0650	3750,6794	BRA0151596	1,0648	3749,9076
MG 1044	3847,5332	CNA8983	1,0619	3739,5941	CNA8983	1,0614	3738,0063
BRS Talento	3831,1953	Guarani	1,0617	3738,8621	Guarani	1,0609	3736,0658
Carisma	3791,9405	CNA8536	1,0609	3736,1965	CNA8536	1,0607	3735,6471
MG 1089	3784,6090	BRS Colosso	1,0568	3721,7246	BRS Colosso	1,0563	3720,0135
CNA 8436	3776,5669	Carisma	1,0565	3720,5658	Carisma	1,0562	3719,5867
BRS Colosso	3766,6489	CNA 8541	1,0553	3716,6242	CNA 8541	1,0552	3716,1395
CRO 97505	3753,6273	CRO 97505	1,0532	3709,1384	CRO 97505	1,0531	3708,8900
CNAs 8817	3753,3675	MG1084	1,0525	3706,7537	MG1084	1,0523	3705,7963
CNAs 10227	3752,0841	CG3-118-6	1,0519	3704,4213	CG3-118-6	1,0518	3704,0213
CNA 8536	3714,4728	CNA10227	1,0519	3704,4102	CNA10227	1,0517	3703,7696
CNA 8541	3695,5609	CNA8824	1,0518	3704,3109	CNA8824	1,0517	3703,6673
Genótipo	$MHVG^1$	Genótipo	PRVG	PRVG*MG*	Genótipo	MHPRVG	MHPRVG*MG
MG 1081	3693,0454	IAC202	1,0518	3704,0770	IAC202	1,0514	3702,9104
MG 1084	3676,6225	BRS Primavera	1,0501	3698,2976	BRS Primavera	1,0499	3697,3111
MG 1097	3657,6763	BRS Pepita	1,0447	3679,2935	BRS Pepita	1,0446	3678,8670
CRO 97595-5	3645,5295	BRSMG Conai	1,0436	3675,3468	BRSMG Conai	1,0436	3675,1000
BRS Pepita	3625,9889	MG1044	1,0428	3672,6262	MG1044	1,0421	3670,1552
BRSMG Conai	3622,2405	BRSMG Relâmpago	1,0420	3669,7384	BRSMG Relâmpago	1,0418	3668,9247
CNAs 8818	3615,2055	BRS Talento	1,0391	3659,4915	BRS Talento	1,0389	3658,6243

^a: Média geral do experimento.

Pelos resultados da MHVG, verificou-se que, dentre as cultivares comerciais, as que melhor associam produtividade com estabilidade, em ordem decrescente, são: a Guarani, a BRSMG Caravera, a BRS Primavera, a IAC 202, a BRS Talento, a Carisma, a BRS Colosso, a BRS Pepita e a BRSMG Conai. A linhagem MG 1097, em vias de lançamento, também, se destacou nesse quesito. Entre as cultivares atualmente mais aceitas no mercado, destacam-se a BRSMG Caravera e a BRS Primavera (um dos genitores da BRSMG Caravera) com bom desempenho em diferentes condições ambientais, e boa estabilidade.

A BRSMG Caravera, a BRS Primavera e outras cultivares relacionadas pela MHVG, atenderam também ao critério de Cruz et al. (1989), quando afirmam que o genótipo de comportamento ideal deve possuir elevada

média de produtividade de grãos e baixa sensibilidade às mudanças de ambiente. SCAPIM et al. (2000) também ressaltaram que a maior estabilidade está associada, obrigatoriamente, à maior produtividade.

Soares et al. (2007), em estudo de estabilidade dos ensaios dos VCU do ano 2004/2005 em dez ambientes (locais) pelos métodos de LIN e BINNS (1988) e ANNICCHIARICO (1992), identificaram a linhagem MG 1097 como a mais produtiva e a mais estável, seguida da linhagem Curinga-3. Este estudo corrobora o ótimo desempenho da linhagem Curinga-3, primeira classificada pelo ordenamento MHVG. Por outro lado, no presente trabalho, a linhagem MG 1097 classificou-se apenas na 21.ª posição. Os mesmos autores, estudando a estabilidade das 13 cultivares e linhagens comuns aos anos agrícolas 2003/2004 e 2004/2005 identificaram a

BRSMG Caravera como a produtiva e a mais estável, seguida da linhagem MG 1089.

É natural e esperado que a utilização de diferentes métodos de estudo de estabilidade, como também a quantidade de locais, altere a classificação dos genótipos em estudo (Vencovsky e Barriga, 2002; Cruz et al., 2004). Entretanto, o método MHVG por ser obtido com base em REML/BLUP e ser trabalhado com a recíproca dos valores fenotípicos (1/y), conduz a resultados que é função da média harmônica dos dados (1/H) (Resende, 2004). Dessa forma quanto menor o desvio-padrão do desempenho genotípico através dos locais, maior será a média harmônica de seus valores genotípicos. Além disso, a MHVG penaliza os valores genotípicos de cada genótipo pela instabilidade (Resende, 2007a), o que garante maior precisão e acurácia no ordenamento dos genótipos dentro e dentre locais.

Adaptabilidade de valores genotípicos / PRVG

Adaptabilidade é a capacidade de as linhagens serem responsivas de forma vantajosa à melhoria do ambiente (Mariotti et al., 1976), portanto, essa é uma característica, de grande valor e procurada pelos fitomelhoristas para as novas cultivares. Para identificar essa característica, é necessário utilizar métodos apropriados e, dentre os existentes, está a performance relativa dos valores genotípicos (PRVG) que capitaliza a capacidade de resposta de cada linhagem à melhoria do ambiente. Os resultados desse estudo estão apresentados na tabela 4 para as 25 cultivares e linhagens superiores para essa característica. Utilizando-se o produto da PRVG pela média geral (3706,26 kg ha¹), obteve-se a coluna PRVG x MG para os 25 genótipos superiores, valor genotípico médio, capitalizado pela interação.

Observando os valores da PRVG x MG, constatouse que a cultivar BRSMG Caravera, no conjunto das 107 cultivares e linhagens avaliadas, foi a de maior adaptabilidade genotípica associada à produtividade de grãos, respondendo, assim, com grande vantagem à melhoria dos ambientes. Destacaram-se também, dentre as cultivares comerciais, em ordem decrescente, a Guarani, a Carisma, a BRS Colosso, a IAC 202, a BRS Primavera, a BRS Pepita, a BRSMG Conai, a BRSMG Relâmpago e a BRS Talento. Por coincidência, à exceção da BRSMG Relâmpago, todas as outras sete cultivares estão entre as 25 de maior estabilidade, agregando adaptabilidade e estabilidade genotípicas. A linhagem MG 1097, também exibe excelente adaptabilidade genotípica, ocupando a quarta posição (Tabela 4). Esse estudo confirmou a boa performance das cultivares lançadas e, ou recomendadas para Minas Gerais nos quesitos adaptabilidade e estabilidade genotípicas, dando segurança aos agricultores no plantio dessas cultivares.

Estabilidade e adaptabilidade de valores genotípicos / MHPRVG

O método da média harmônica da performance relativa dos valores genotípicos (MHPRVG), que se baseia em valores genotípicos preditos, via modelos mistos, agrupa em uma única estatística, a estabilidade, a adaptabilidade e a produtividade, facilitando, de modo singular, a seleção de genótipos superiores. A MHPRVG das 25 cultivares e linhagens superiores, dentre as 107 avaliadas, nos 11 anos e 11 locais, bem como o produto da MHPRVG pela média geral (3706,26 kg ha⁻¹), são apresentados na tabela 4. A MHPRVG*MG fornece os valores genotípicos de cada cultivar e/ou linhagem penalizados pela instabilidade e capitalizados pela adaptabilidade. Assim, a tabela 4 agrupa em uma única estatística, além da MHVG e PRVG, a estabilidade, a adaptabilidade e a produtividade de grãos, simultaneamente, das 25 melhores cultivares e linhagens.

Resende (2004) comparou essa metodologia com o de Lin e Binns (1988) e o de annicchiarico (1992), utilizando valores genotípicos e observou que elas fornecem resultados análogos. Entretanto, a MHPRVG, além de ser estimada por REML/BLUP, fornece os resultados na própria escala de avaliação do caráter.

As cinco melhores linhagens, considerando todos os ambientes deste estudo, com base no método MHPRVG, foram: BRSMG Caravera, Curinga-3, MG 1089, MG 1097 e CNA 8436. Assim, a BRSMG Caravera respondeu, em média, 1,16 vezes a média dos locais em que foi cultivada, já, a Curinga-3 respondeu 1,13 vezes, e assim sucessivamente para as demais linhagens.

As outras cultivares comerciais que se destacaram entre as 25 melhores, nos quesitos produtividade de grãos, estabilidade e adaptabilidade, simultaneamente, foram a Guarani, a BRS Colosso, a Carisma, a IAC 202, a BRS Primavera, a BRS Pepita, a BRSMG Conai, a BRSMG Relâmpago e a BRS Talento. Destas, estão em desuso ou muito pouco plantadas, a Guarani, a BRS Colosso e a IAC 202, sendo a Guarani por problemas de qualidade de grãos e as outras duas pela alta suscetibilidade a brusone da panícula. As linhagens MG 1097 e CG3 118-6 se destacaram no tocante às três características, conjuntamente, ocupando a quarta e décima sexta posições, respectivamente, no ordenamento pela MHPRVG.

Vale ressaltar que a linhagem CNA 8436, que não foi lançada como cultivar, foi avaliada somente em 1997/1998 e 1998/1999, no entanto, aparece como uma das mais estáveis, adaptadas e produtivas (quinto no ordenamento pela MHPRVG, com produtividade de 3796,95 kg ha⁻¹). Essa alta estabilidade e adaptabilidade

podem estar superestimadas, pois tal linhagem foi avaliada em pequeno número de ambientes.

Observando-se as cinco cultivares e linhagens seguintes, em destaque na tabela 4, para MHPRVG (BRA 015506, BRA 01596, CNAs 8983, Guarani e CNA 8536) é pertinente salientar que o comportamento delas são semelhantes entre si e muito próximos às cultivares e linhagens ordenadas na terceira, quarta e quinta posições e todas responderam de 1,06 a 1,08 vezes a média dos locais onde foram cultivadas.

Estudos utilizando o método MHPRVG foram realizados em outras espécies. Em cana-de-açúcar, para o caráter tonelada de cana por hectare (TCH), OLIVEIRA et al. (2005) observaram valores para MHPRVG igual a 1,28 e 1,19 para os clones ordenados em primeiro e segundo lugares respectivamente. Nesse estudo os clones foram avaliados em três locais em um único ano. No trabalho de Bastos et al. (2007), também com cana-de-açúcar, os valores para MHPRVG do primeiro e segundo clones, no ordenamento geral, foram de 1,21 e 1,17, respectivamente. Com feijão, Carbonell et al. (2007) relataram valores de MHPRVG iguais a 1,11 e 1,10 para o primeiro e segundo genótipo, respectivamente, valores esses relativamente próximos aos do presente trabalho (1,16 e 1,13 respectivamente).

Em síntese, em BRSMG Caravera e Curinga-3 houve superioridade média de 15,7% e 13,8% respectivamente, sobre a média geral dos 107 genótipos, nos 11 locais e nos 11 anos. Já, a MG 1089 teve superioridade de apenas 8%, e assim sucessivamente (Tabela 4). Portanto, a BRSMG Caravera e a Curinga-3 foram bem superiores às demais, pela MHPRVG, de forma simultânea, para adaptabilidade, estabilidade e produtividade, confirmando seus desempenhos nas análises MHVG e PRVG. Das cinco melhores cultivares e linhagens selecionadas pela MHVG, apenas a BRSMG Caravera e a Curinga-3 foram coincidentes para PRVG e MHPRVG. O único material que esteve em primeira ou segunda posição no ordenamento pelos três métodos, simultaneamente, foi a Curinga-3

Nenhuma das linhagens que entrou no último ano da análise (2007/2008) está entre as 25 superiores, o que de certa forma, já era esperado, uma vez que pelo critério do método REML/BLUP materiais que aparecem menos nas avaliações são mais penalizados pelo efeito "shrinkage". As predições de pequenas amostras (tratamentos) são mais penalizadas, ocasionando redução de seus valores.

4. CONCLUSÕES

1. As linhagens de arroz de terras altas desenvolvidas para plantio em Minas Gerais apresentam

ótima performance para estabilidade, adaptabilidade e produtividade grãos, simultaneamente.

- 2. A BRSMG Caravera, entre todas as cultivares e linhagens avaliadas de 1997 a 2008, foi a de melhor desempenho pela MHPRVG, ou seja, maior estabilidade, adaptabilidade e produtividade de grãos, simultaneamente, proporcionando aos orizicultores de Minas Gerais alta segurança no seu cultivo.
- 3. A metodologia de modelos mistos é uma estatística de fácil aplicação e de grande utilidade na avaliação de ensaios de valor de cultivo e uso, sobretudo na seleção e no descarte de linhagens a cada ano agrícola.

AGRADECIMENTOS

À Fapemig, ao CNPq, à UFLA, à Epamig e a Embrapa Arroz e Feijão, que possibilitaram o desenvolvimento deste trabalho.

REFERÊNCIAS

ANNICCHIARICO, P. Cultivar adaptation and recommendation from alfalfa trials in northern Italy. **Journal of Genetics and Plant Breeding**, v.46, p.269-278, 1992.

ATROCH, A.L.; SOARES, A.A.; RAMALHO, M.A.P. Adaptabilidade e estabilidade de linhagens de arroz de sequeiro testadas no Estado de Minas Gerais. **Ciência e Agrotecnologia**, v. 24, p.541-548, 2000.

BASTOS, I.T.; BARBOSA, M.H.P.; RESENDE, M.D.V.; PETERNELLI, L.A.; SILVEIRA, L.C.I.; DONDA, L.R.; FORTUNATO, A.A.; COSTA, P.M.A.; FIGUEIREDO, I.C.R. Avaliação da interação genótipo x ambiente em cana-deaçúcar via modelos mistos. **Pesquisa Agropecuária Tropical**, v.37, p.195-203, 2007.

BIUDES, G.B; CAMARGO, C.D.O.; FERREIRA FILHO, A.W.P.; PETTINELLI JUNIOR, A.; FOLTRAN, D.E.; CASTRO, J.L.; AZEVEDO FILHO, J.A. Adaptabilidade e estabilidade de linhagens de diaplóides de trigo. **Bragantia**, v.68, p.63-74, 2009.

CARBONELL, S.A.M.; CHIORATO, A.F.; RESENDE, M.D.V.; DIAS, L.A.S.; BERALDO, A L.A.; PERINA, E.F. Estabilidade de cultivares e linhagens de feijoeiro em diferentes ambientes no estado de São Paulo. **Bragantia**, v.66, p.193-201, 2007.

CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C.S. **Modelos biométricos aplicados ao melhoramento genético**. vol.1, 3.ed. Viçosa: UFV, 2004. 480p.

CRUZ, C.D.; TORRES, R.A.; VENCOVSKY, R. An alternative approach to the stability analysis proposed by Silva and Barreto. **Revista Brasileira de Genética**, v.12, p.567-580, 1989.

FOX, P.N.; CROSSA, J.; ROMAGOSA, I. Multi-environment testing and genotype-environment interaction. In: KEMPTON, R.A.; FOX, P.N. (Ed.). **Statistical methods for plant variety evaluation**. New York: Chapman & Hall, 1997. p. 117-138.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. **Canadian Journal of Plant Science**, v. 68, p. 193-198, 1988.

MARIOTTI, J.A.; OYARZABAL, E.S.; OSA, J.M.; BULACIO, A.N.R.; ALMADA, G.H. Analisis de estabilidad y adaptabilidad de genotipos de caña de azucar. **Revista Agronomica del Noroeste Argentino**, v.13, p.105-27, 1976.

MORAIS, L.K.; MOURA, M.F.; VENCOVSKY, R.; PINHEIRO, J.B. Adaptabilidade e estabilidade fenotípica em soja avaliada pelo método de Toler. **Bragantia**, v.67, p. 275-284, 2008.

NELDER, J.A; WEDDERBURN, R.W.M. Generalized linear model. **Journal Royal Statistic Society**, v.135, p.370-384, 1972.

OLIVEIRA, R.A.; RESENDE, M.D.V.; DAROS, E.; BESPALHOK FILHO, J.C.; ZAMBON, J.L. C.; IDO, O.T.; WEBER, H.; KOEHLER, H.S. Genotypic evaluation and selection of sugarcane clones in three environments in the state of Paraná. Crop Breeding and Applied Biotechnology, v.5, p.426-434, 2005

RESENDE, M.D.V. Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas, 2007a. 561p.

RESENDE, M. D. V. **SELEGEN–REML/BLUP**: sistema estatístico e seleção genéticacomputadorizada via modelos lineares mistos. Colombo: Embrapa Florestas, 2007b. 361p.

RESENDE, M.D.V. **Métodos estatísticos ótimos na análise de experimentos de campo**. Colombo: Embrapa Florestas, 2004. 65p. (Documentos 100)

RESENDE, M.D.V. **Genética biométrica e estatística no melhoramento de plantas perenes**. Brasília: Embrapa Informação Tecnológica, 2002. 975p.

RESENDE, M.D.V.; DUARTE, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. **Pesquisa Agropecuária Tropical**, v.37, p.182-194, 2007.

SCAPIM, C.A.; OLIVEIRA, V.R.; BRACCINI, A.L.; CRUZ, C.D.; ANDRADE, C.A.; VIDIGAL, M.C.G. Yield stability im maize (Zea mays L.) and correlation among the parameters of the Eberhart and Russel; Lin and BINNS and Hühn models. **Genetics and Molecular Biology**, v.23, p.387-393, 2000.

SILVA, W.C.J.; DUARTE, J.B. Métodos estatísticos para estudo de adaptabilidade e estabilidade fenotípica em soja. **Pesquisa Agropecuária Brasileira**, v.41, p.23-30, 2006.

SILVA, F.L.; SOARES, P.C.; CARGNIN, A.; SOUZA, M.A.; SOARES, A.A.; CORNÉLIO, V.M.O.; REIS, M.S. Methods of adaptability and stability analysis in irrigated rice genotypes in Minas Gerais, Brazil. **Crop Breeding and Applied Biotechnology**, v.8, p.119-126, 2008.

SOARES, A.A.; REIS, M.S; CORNÉLIO, V.M.O.; SOARES, P.C.; VIEIRA, A.R.; SOUZA, M.A. Stability of upland rice lines in Minas Gerais, Brazil. **Crop Breeding and Applied Biotechnology**, v.7, p.394-398, 2007.

VENCOVSKY, R.; BARRIGA, P. **Genética biométrica no fitomelhoramento**. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.