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1 Introduction

An n ×n nonzero matrix D = (di j ) is called a Euclidean distance matrix (EDM)

if there exist points p1, p2, . . . , pn in some Euclidean space <r such that

di j = ||pi − p j ||2 for all i, j = 1, . . . , n,

where || || denotes the Euclidean norm.

Let pi , i ∈ N = {1, 2, . . . , n}, be the set of points that generate an EDM

D. An m-partition π of D is an ordered sequence π = (N1, N2, . . . , Nm) of

nonempty disjoint subsets of N whose union is N . The subsets N1, . . . , Nm are

called the cells of the partition. The n-partition of D where each cell consists
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of a single point is called the discrete partition, while the 1-partition of D with

only one cell is called the single-cell partition.

An m-partition π = (N1, N2, . . . , Nm) of an EDM D is said to be equitable

if for all i, j = 1, . . . , m (case i = j included), there exist non-negative scalars

αi j such that for each k ∈ Ni , the sum of the squared Euclidean distances from

pk to all points pl , l in N j , is equal to αi j . i.e.,

∀ k ∈ Ni ,
∑

l∈N j

dkl = αi j , for all i, j = 1, . . . , m. (1)

The notion of equitable partitions for graphs, which was introduced by Sachs

[13], is related to, among others, automorphism groups of graphs and distance-

regular graphs [4]. Schwenk [15] used equitable partitions to find the eigenvalues

of the adjacency matrix of a graph. Hayden et al. [7] also used equitable parti-

tions, albeit under the name block structure, to investigate EDMs generated by

points lying on a collection of concentric spheres. In particular, they devised

an algorithm for finding the least number of concentric spheres containing the

points that generate a given EDM. Their investigation was based on the block

structure of EDMs and the corresponding eigenvectors.

Many of the results on the spectra of graphs obtained using equitable parti-

tions have analogous counterparts in the case of EDMs. In particular, we show

(see Theorem 3.1) that the characteristic polynomial of an EDM can be written

as the product of the characteristic polynomials of two matrices associated with

partitions. Theorem 3.1 is then used to determine the characteristic polynomials

of regular EDMs and non-spherical centrally symmetric EDMs. We also present

methods for constructing cospectral EDMs and non-regular EDMs with exactly

three distinct eigenvalues.

Recently, EDMs have received a great deal of attention for their many impor-

tant applications. These applications include, among others, molecular confor-

mation problems in chemistry [2], multidimensional scaling in statistics [9], and

wireless sensor network localization problems [16].

We denote the identity matrix of order n by In and the n-vector of all 1’s

by en . En,m = eneT
m denotes the n × m matrix of all 1’s, and En = eneT

n

denotes the square matrix of order n of all 1’s. The subscripts of I , e and E

will be deleted if the order is clear from the context. For a matrix A, diag A
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denotes the vector consisting of the diagonal entries of A. Finally, the spec-

trum of a matrix A, denoted by σ(A), is the multiset of the eigenvalues of A.

If A has eigenvalues λ1, . . . , λk with multiplicities m1, . . . , mk respectively,

then σ(D) = {λm1
1 , . . . , λ

mk
k }.

2 Preliminaries

Let D be an n×n EDM, the dimension of the affine span of the points p1, . . . , pn

that generate D is called the embedding dimension of D. Let Jn := In − eneT
n /n

denote the orthogonal projection on subspace

M := e⊥ =
{

x ∈ <n : eT x = 0
}
. (2)

It is well known [14, 18] that a symmetric matrix D with zero diagonal is an

EDM if and only if D is negative semidefinite on M . Hence, EDMs have exactly

one positive eigenvalue. Let SH denote the subset of n × n symmetric matrices

with zero diagonal; and let SC denote the subset of n × n symmetric matrices A

satisfying Ae = 0. Following [3], let T : SH → SC and K : SC → SH be the

two linear maps defined by

T (D) := −
1

2
J D J, (3)

and

K(B) := diag (B)eT + e(diag (B))T − 2B. (4)

It, then, immediately follows [3] that T and K are mutually inverse, and that

D in SH is an EDM of embedding dimension r if and only if T (D) is positive

semidefinite of rank r .

Let D be an n × n EDM of embedding dimension r generated by the points

p1, . . . , pn in <r . Then the n × r matrix

P =







p1T

...

pn T







is called a realization of D. Given an EDM D, a realization P of D can be ob-

tained by factorizing T (D) into T (D) = P PT . Note that if P is a realization

Comp. Appl. Math., Vol. 27, N. 3, 2008



“main” — 2008/10/13 — 23:12 — page 240 — #4

240 ON THE EIGENVALUES OF EUCLIDEAN DISTANCE MATRICES

of D, then P ′ = P Q is also a realization of D for any r × r orthogonal matrix

Q. Obviously, P and P ′ in this case are obtained from each other by a rigid

motion such as a rotation or a translation.

An EDM D is said to be spherical if the points that generate D lie on a hyper-

sphere, otherwise, it is said to be non-spherical. It is well known [6, 17] that an

EDM D of embedding dimension r is spherical if and only if rank D = r + 1,

and that D is non-spherical if and only if rank D = r + 2. A spherical EDM D is

said to be regular if the points p1, . . . , pn that generate D lie on a hyper-sphere

whose center coincides with the centroid of p1, . . . , pn . It is not difficult to

show that [12, 8] an EDM D is regular if and only if e is an eigenvector of D

corresponding to the eigenvalue 1
n eT De.

3 Equitable partition for EDMs

It immediately follows from (1) that the discrete partition of D is always equi-

table with αi j = di j ; while the single-cell partition of D is equitable if and only

if D is regular. In the latter case, α11 = 1
n eT De. It also follows from (1) that

∀ i = 1, . . . , m and ∀ k ∈ Ni we have (De)k =
m∑

j=1

αi j . (5)

Let π = (N1, N2, . . . , Nm) be an m-partition of an n × n EDM D where

|Ni | = ni for i = 1, . . . , m. Define the n × m matrix Pπ = (pi j ) such that

pi j =

{
n−1/2

j if i ∈ N j

0 otherwise.
(6)

Pπ is called the normalized characteristic matrix [5] of π since its j th column

is equal to n−1/2
j times the characteristic vector of N j , and since PT

π Pπ = Im .

Next we present a lemma whose graph adjacency matrix counterpart was

proved by Godsil and McKay [5].

Lemma 3.1. Let π be an m-partition of an EDM D. Then π is equitable if and

only if there exists an m × m symmetric matrix S = (si j ) such that

D Pπ = Pπ S. (7)

Furthermore, if π is an equitable partition then si j = (ni/n j )
1/2 αi j .
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Proof. Assume that π is equitable then for all k ∈ Ni and for all j = 1, . . . , m

we have

(D Pπ)k j = n−1/2
j

∑

l∈N j

dkl = n−1/2
j αi j = (ni )

−1/2

(
ni

n j

)1/2

αi j = (Pπ S)k j ,

where si j = (ni/n j )
1/2αi j .

On the other hand, assume that (7) holds for some partition π . Then for all

k ∈ Ni and all j = 1, . . . , m, we have

(D Pπ)k j = n−1/2
j

∑

l∈N j

dkl = (Pπ S)k j = (ni )
−1/2si j .

Therefore,
∑

l∈N j
dkl = (n j/ni )

1/2si j , which is independent of k. Hence π is

equitable. �

Given an m-partition π of EDM D with m ≤ n − 1, let P̄π be the n × (n −

m) matrix such that [Pπ P̄π ] is an orthogonal matrix. Let χA(λ) denote the

characteristic polynomial of matrix A. Then we have the following two results:

Theorem 3.1. Let π be an equitable m-partition of an n × n EDM D, where

m ≤ n − 1. Then

χD(λ) = χS(λ) χS̄(λ), (8)

where S is defined in (7) and S̄ = P̄T
π D P̄π .

Proof. It follows from (7) and the definition of P̄π that PT
π D P̄π = S PT

π P̄π = 0.

Thus,

det

(

λ In −

[
PT

π

P̄T
π

]

D
[
Pπ P̄π

]
)

= det

[
λIm − PT

π D Pπ 0

0 λIn−m − P̄T
π D P̄π

]

.

Hence,

det(λIn − D) = det(λIm − S) det(λIn−m − S̄). �

Note that in case of discrete partitions, i.e., in case m = n, we have S = D

thus χD(λ) = χS(λ) follows trivially. An analogous result for graphs, namely

that the characteristic polynomial of S divides the characteristic polynomial of

a graph was obtained by Mowshowitz [10], and by Schwenk [15].
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Theorem 3.2. Let π be an equitable m-partition of an n × n EDM D, where

m ≤ n − 1. Then

χS̄(λ) divides χ−2T (D)(λ), (9)

where S̄ is as defined in Theorem 3.1.

Proof. It follows from (5) and the definition of P̄π that P̄T
π De = 0 and

P̄T
π e = 0. Thus,

P̄T
π T (D)Pπ = 0 and P̄T

π T (D)P̄π = −
1

2
P̄T

π D P̄π = −
S̄

2
.

Hence,

det

(

λ In + 2

[
PT

π

P̄T
π

]

T (D)
[
Pπ P̄π

]
)

= det

[
λIm + 2PT

π T (D) Pπ 0

0 λIn−m + 2 P̄T
π T (D) P̄π

]

.

Therefore,

det
(
λIn + 2T (D)

)
= det

(
λIm + 2PT

π T (D)Pπ

)
det

(
λIn−m − S̄

)
. �

4 Applications of Theorem 3.1

In this section we show that Theorem 3.1 provides a new method for determin-

ing the characteristic polynomials of regular EDMs and non-spherical centrally

symmetric EDMs. It also provides a method for constructing cospectral EDMs.

Let Vn be the n × (n − 1) whose columns form an orthonormal basis for

subspace M defined in (2), i.e., Vn has full column rank and satisfies

V T
n en = 0, V T

n Vn = In−1, VnV T
n = Jn =

(
In − eneT

n /n
)
. (10)

4.1 χD(λ) of regular EDMs

The characteristic polynomial of a regular EDM was obtained in [8, 1]. The

method used in [1] is based on a characterization of the nullspace of an EDM in

terms of its Gale subspace. Next we determine the characteristic polynomial of

regular EDMs as a corollary of Theorem 3.1.
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Corollary 4.1 ([8, 1]). Let D 6= 0 be an n × n regular EDM of embedding

dimension r, then

χD(λ) = λn−r−1

(
λ −

1

n
eT De

) r∏

i=1

(λ + 2μi ),

where μi , for i = 1, . . . , r , are the nonzero eigenvalues of T (D).

Proof. Let D be an n ×n regular EDM. Then, as we remarked earlier, the one-

cell partition π of D, in this case, is equitable. Since Pπ = 1√
n e and P̄π = Vn

we have S = 1
n eT De and S̄ = V T

n DVn = −2 V T
n T (D)Vn . Thus,

χS(λ) = λ −
1

n
eT De and χS̄(λ) = λn−r−1

r∏

i=1

(λ + 2μi )

since the nonzero eigenvalues of S̄ are equal to the nonzero eigenvalues of the

matrix −2T (D). �

4.2 χD(λ) of non-spherical centrally symmetric EDMs

Let D1 be the 2n × 2n EDM generated by the points p1, . . . , pn, . . . , p2n ,

where pn+i = −pi for all i = 1, . . . , n. Assume that D1 is non-spherical. Then

D1 is called a non-spherical centrally symmetric EDM. It is easy to see that

D1 =

[
D A

A D

]

,

where D is the n × n EDM generated by the points p1, . . . , pn , and

A = diag (T (D)) eT
n + en diag (T (D))T + 2T (D). (11)

The characteristic polynomial of D1, which was obtained in [1] using a char-

acterization of the nullspace of an EDM in terms of its Gale subspace, is given

by

χD1(λ) = λ2n−r−2

(
λ2 − λ

1

2n
eT

2n D1e2n −
2n

xT
1 x1

) r∏

i=1

(λ + 2μi ), (12)
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where r is the embedding dimension of D1, μi , i = 1, . . . , r , are the nonzero

eigenvalues of T (D1), and x1 ∈ <2n is the unique vector satisfying

D1x1 = e2n, eT
2nx1 = 0, and x1 ⊥ Nullspace of D1. (13)

Note that such x1 satisfying (13) exists since D1 is non-spherical. A simple

method to compute x1 is given in [1]. Next, we establish (12) using Theorem 3.1.

The n-partition π of D1 corresponding to the normalized characteristic matrix

Pπ =
1

√
2

[
In

In

]

is, obviously, equitable. Since

P̄π =
1

√
2

[
In

−In

]

,

it immediately follows that S = PT
π D1 Pπ = D + A = 2 (diag (T (D)) eT

n +

en diag (T (D))T ) and S̄ = P̄T
π D1 P̄π = D − A = −4T (D). Hence, the

nonzero eigenvalues of S̄ = the nonzero eigenvalues of −4T (D) = the nonzero

eigenvalues of −2T (D1) since

T (D1) =

[
T (D) −T (D)

−T (D) T (D)

]

=

[
1 −1

−1 1

]

⊗ T (D), (14)

where ⊗ denotes the Kronecker product. Hence, χS̄(λ) = λn−r ∏r
i=1(λ + 2μi ),

where μi , i = 1, . . . , r , are the nonzero eigenvalues of T (D1).

In order to establish (12), we still need to determine χS(λ). To this end, note

thatT (D1)D1e2n = 2nT (D1) diag (T (D1)) = 0, where the first equality follows

from (4). Then we have the following technical lemma.

Lemma 4.1. Let D1 be an 2n × 2n non-spherical EDM satisfying

T (D1)D1e2n = 0.

Then

D1e2n =
eT

2n D1 e2n

2n
e2n +

2n

xT
1 x1

x1, (15)

where x1 satisfies (13).
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Proof. Let 〈 y 〉 denote the subspace generated by y ∈ <2n . Then it is shown

in [1] that

Nullspace of T (D1) = 〈 e2n 〉 ⊕ 〈 x1 〉 ⊕ Nullspace of D1.

Thus,

D1e2n = βe2n + γ x1, (16)

for some scalars β and γ . The result follows by multiplying equation (16) from

the left with eT
2n and xT

1 respectively. �

Therefore, it follows from (15) that xT
1 = (xT xT ) for some vector x ∈ <n

and

Sen = (D + A)en =
eT

2n D1 e2n

2n
en +

2n

xT
1 x1

x . (17)

Now, from the definition of Vn in (10) we have V T
n SVn = 0. Hence,

χS(λ) = det




λIn −






V T
n

eT
n√
n




 S

[
Vn

en√
n

]





= det















λIn−1 −
2
√

n

xT
1 x1

V T
n x

−
2
√

n

xT
1 x1

xT Vn λ −
1

2n
eT

2n D1e2n















.

Thus,

χS(λ) = λn−2

(
λ

(
λ −

1

2n
eT

2n D1e2n

)
−

4n

(xT
1 x1)2

xT VnV T
n x

)

= λn−2

(
λ

(
λ −

1

2n
eT

2n D1 e2n

)
−

2n

xT
1 x1

)
,

since xT VnV T
n x = x T x = xT

1 x1/2. Hence, (12) is established.

4.3 Constructing cospectral EDMs

Two EDMs are said to be cospectral if they have the same eigenvalues, i.e., if

they have the same characteristic polynomial. In this subsection, we present a

method for constructing two cospectral EDMs.
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Given a scalar μ > 1 and an n × n regular EDM D generated by the points

p1, . . . , pn , let D1 and D2 be the two 2n × 2n EDMs constructed from D as

follows. D1 is generated by the 2n points p1, p2, . . . , pn , −μp1, −μp2, . . .,

−μpn; and D2 is generated by the 2n points p1, p2, . . . , pn, μp1, μp2, . . .,

μpn . Next we show that D1 and D2 are cospectral.

Since D is regular, we have diag (T (D)) = eT
n Den

2n2 en . Thus it follows from

(3) and (4) that

D1 =

[
D A1

A1 μ2 D

]

, and D2 =

[
D A2

A2 μ2 D

]

,

where

A1 =
1

2n2
eT

n Den
(
μ2 + 1

)
eneT

n + 2 μT (D), (18)

and

A2 =
1

2n2
eT

n Den
(
μ2 + 1

)
eneT

n − 2 μT (D). (19)

Note that A1en = A2en = 1
2n eT

n Den(μ
2 + 1)en . Therefore, the 2-partition π

of D1 and D2 corresponding to the normalized characteristic matrix

Pπ =
1

√
n

[
en 0

0 en

]

is equitable. Since

P̄π =

[
Vn 0

0 Vn

]

,

it immediately follows that

S1 = PT
π D1 Pπ =

1

n
eT

n Den






1
1

2
(μ2 + 1)

1

2
(μ2 + 1) μ2




 = PT

π D2 Pπ = S2.

Furthermore,

S̄1 = P̄T
π D1 P̄π =

[
V T

n DVn −μV T
n DVn

−μV T
n DVn μ2V T

n DVn

]

=

[
1 −μ

−μ μ2

]

⊗ V T
n DVn,
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and

S̄2 = P̄T
π D2 P̄π =

[
V T

n DVn μV T
n DVn

μV T
n DVn μ2V T

n DVn

]

=

[
1 μ

μ μ2

]

⊗ V T
n DVn.

But the eigenvalues of S̄1 are equal to the eigenvalues of S̄2. In particular, the

nonzero eigenvalues of S̄1 = the nonzero eigenvalues of S̄2 = (1 + μ2) times the

nonzero eigenvalues of V T
n DVn = (1 + μ2) times the nonzero eigenvalues of

−2T (D). Therefore, D1 and D2 are two cospectral EDMs. Furthermore, D1

and D2 are not regular since μ > 1.

5 Constructing EDMs with three distinct eigenvalues

EDMs have two or more distinct eigenvalues since the eigenvalues of an EDM

D can not all be equal. Moreover, EDMs with exactly two distinct eigenvalues

are precisely those generated by the standard simplex, i.e., EDMs of the form

D = γ (E − I ) for some scalar γ > 0. The problem of obtaining a complete

characterization of EDMs with exactly three distinct eigenvalues, just like its

graph counterpart, seems to be difficult.

Neumaier [11] introduced the notion of strength for distance matrices as a mea-

sure of their regularity. According to Neumaier regular EDMs are of strength

1 while regular EDMs with three distinct eigenvalues, where one of the eigen-

values is a zero are of strength 2. The following theorem follows from a more

general result due to Neumaier [11].

Theorem 5.1. Let D be a regular EDM with exactly three distinct eigenvalues

such that its off-diagonal entries have exactly 2 or 3 distinct values. Then any

two rows (columns) of D are obtained from each other by a permutation.

Next we present two classes of non-regular EDMs with exactly 3 distinct

eigenvalues. The first class consists of non-regular EDMs of order n+1 obtained

from n ×n regular EDMs with 3 distinct eigenvalues by adding one row and one

column of equal entries.

Theorem 5.2. Let D be an n × n regular EDM such that σ(D) =
{
eT De/n,

−λ
r1
1 , −λ

n−1−r1
2

}
. Assume that either

(
eT De/n + λ1

)
λ1 = n α2 or

(
eT De/n +
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λ2
)
λ2 = n α2 for some α ≥ 1

2n2 eT De, α 6= 1
n(n−1)

eT De. Let γ be some positive

scalar. Then

D1 = γ

[
D α en

α eT
n 0

]

is a non-regular EDM of order n + 1 with exactly 3 distinct eigenvalues.

Proof. It is easy to see that D1 is a non-regular EDM since α 6= 1
n(n−1)

eT De.

Now assume (eT De/n + λ1)λ1 = nα2. Let V be the n × (n − 1) matrix whose

columns form an orthonormal basis for subspace M defined in (2), thus V V T =

J = I − eeT /n. Let

Q =

[
en/

√
n 0 V

0 1 0

]

.

Then

QT D1 Q = γ






eT De/n α n1/2 0

α n1/2 0 0

0 0 V T DV




 .

But it is well known [1, 8] that σ(−2T (D)) = σ(V V T DV V T ) =
{

− λ
r1
1 ,

−λ
n−1−r1
2 , 0

}
. Thus σ(V T DV ) =

{
− λ

r1
1 , −λ

n−1−r1
2

}
. Furthermore, the sub-

matrix [
eT De/n α n1/2

α n1/2 0

]

has eigenvalues −λ1 and 1
n eT De + λ1. The result follows since Q is an orthog-

onal matrix. �

Note that, taking α = 1
2n2 eT De in Theorem 5.2 is equivalent to placing point

pn+1 at the center of the hyper-sphere containing p1, . . . , pn . Also, note that

if α = 1
n(n−1)

eT De, then D1 becomes a regular EDM.

The second class consists of non-regular EDMs of order n + 1 obtained from

EDMs of the form D = λ(En − In), λ > 0, by adding one row and one column

of equal entries. The proof of the next theorem is similar to that of Theorem 5.2.

Theorem 5.3. Let γ be a positive scalar and α ≥ (n − 1)/2n, α 6= 1. Then

D1 = γ

[
En − In α en

α eT
n 0

]
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is a non-regular EDM with exactly 3 distinct eigenvalues, i.e., σ(D1) =
{
λ1, −λ2, −γ n−1

}
where

λ1 =
1

2
γ (n − 1 +

√
(n − 1)2 + 4α2n)

and

λ2 =
1

2
γ (n − 1 −

√
(n − 1)2 + 4α2n).
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