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INTRODUCTION

Shiga-like toxin-producing Escherichia coli 
(STEC) is a foodborne pathogen, which forms a part of 
the normal microflora of the intestinal tract of warm-
blooded animals, including humans. Transmission 
occurs through consumption of food and/or water 
contaminated by fecal matter, from person to person, 
or direct contact with the feces of carriers  (TORRES-
ARMENDÁRIZ, 2016; FENG et al. 2016).

Shiga toxin-producing Escherichia coli 
is an emerging pathogen of great importance both 
to human health, owing to the severity of symptoms 
it causes, including death, and with negative effects 
on tourism, food industry, and export of products 

(TORRES-ARMENDÁRIZ, 2016). Pathogenicity of 
this bacterium is associated with different virulence 
factors, including shiga toxin type 1 and type 2 (Stx1 
and Stx2); type 1 toxins are also produced by Shigella 
dysenteriae (PENNINGTON 2010; SÁNCHEZ 
et al. 2010). Another virulence factor is intimin, 
an adhesive factor associated with colonization 
processes involving destruction of the microvilli 
of the intestinal mucosa (SÁNCHEZ et al., 2010). 
These organisms can cause a variety of mild to 
severe symptoms, including watery diarrhea, bloody 
diarrhea (hemorrhagic colitis), and hemolytic uremic 
syndrome (HUS) (MENARD et al., 2004). 

Several traditional methods of food 
preservation based on heat treatments, such as 
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ABSTRACT: Shiga-like toxin-producing Escherichia coli (STEC) is an important source of food contamination that presents risks to human 
health. Several industrial food processes eliminate this microorganism; however, these processes can alter the characteristics of the product. 
Alternative methods of preservation have been identified as an option to control these foodborne pathogens. The purpose of this study was to 
evaluate the action of bacteriocins produced by Enterococcus durans MF5 in STEC cells. Cell-free supernatant (CFS) containing enterocins 
from the MF5 isolate was tested over different time points (6, 18, and 24 h). Enterocins present in the crude CFS showed inhibition against 
STEC at all time points. In the investigation of cell integrity, using propidium iodide and fluorescence microscopy, considerable cell death was 
observed within 6 h of the cells being in contact with the enterocins, which was also observed at the 18 and 24 h time points. These results 
showed that the enterocins produced by the MF5 isolate have potential use in the control of STEC.
Key words: bacteriocin, spot-on lawn assay, STEC.

RESUMO: Escherichia coli, produtora de toxina Shiga-like (STEC), apresenta riscos à saúde humana, constituindo uma importante 
fonte de contaminação na indústria de alimentos. Diversos processos industriais eliminam esse microrganismo, contudo podem alterar as 
características do produto. Métodos alternativos de conservação tem sido uma opção para controlar esse microrganismo de alimentos. O 
objetivo desta pesquisa foi avaliar a ação de bacteriocinas produzidas por Enterococcus durans  MF5 em células de E. coli STEC. Foram 
utilizados sobrenadante livre de células (CFS) contendo enterocina, nos tempos 6, 18 e 24 horas de incubação. A enterocina presente no 
CFS bruto apresentou inibição contra E. coli STEC em todos os tempos testados. Na observação da integridade celular utilizando iodeto de 
propídio e observação em microscópio de fluorescência, observou-se que em 6h da célula em contato com a enterocina, já havia considerável 
morte celular, estendendo até os tempos de 18 e 24 horas. Os resultados obtidos mostraram que a enterocina produzida pelo isolado MF5 
apresenta uso potencial no controle de E. coli STEC.
Palavras-chave: bacteriocina, ensaio spot-on lawn, STEC.
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pasteurization and sterilization, are effective in the 
control of STEC. However, these processes have 
negative effects on the final product, such as the loss 
or reduction of nutrients, or alteration of sensorial 
characteristics (SAUCEDA, 2011). Furthermore, 
these methods are not applicable to the preservation 
of raw products, such as meats and milk (NAJIM & 
DAHER, 2014). Alternatives to traditional methods of 
preservation have been proposed, and can be used alone 
or in combination to contribute to the preservation and 
safety of food. Examples of alternative treatments 
include the use of essential oils (SOLORZANO-
SANTOS & MIRANDA-NOVALES, 2012), organic 
acids, and bacteriocins (peptides) (GARCÍA et al. 
2010; ROLDÁN et al. 2011). 

Compared to chemical preservatives, 
bacteriocins and bacteriocin-producing bacteria have 
been proposed as a safe and effective alternative for 
the control of foodborne pathogens (GÁLVEZ, et al., 
2010; LUCERA et al., 2012). 

Bacteriocins are ribosomally-synthesized 
antimicrobial proteins/peptides produced by several 
bacterial genera, and can kill or inhibit the growth 
of other bacteria either of the same species or across 
genera (broad spectrum of activity). However, 
bacteriocins from lactic acid bacteria (LAB) are 
generally not active against E. coli or other gram-
negative bacteria (COTTER et al. 2013). 

Enterocins are a class of cationic 
bacteriocins produced by Enterococcus and are active 
against gram-negative and gram-positive bacteria;  
they are resistant to a great range of temperatures 
and pH levels, apart from being easily destroyed by 
digestive proteases. Moreover, they present a broad 
spectrum of activity against gram-positive and gram-
negative microorganisms (MARTÍNEZ-BUENO 
& GÁLVEZ, 2017), which makes them of great 
technological interest.

The present research evaluated the inhibitory 
action of enterocins against serotypes of STEC.

MATERIALS   AND   METHODS

Bacterial isolates
Enterococcus durans MF5 was isolated 

from whey, harbored enterocin-encoding genes (entA, 
entB, and entX) and bacteriocin-producing (data not 
shown). The strain belongs to the Laboratory of Basic 
and Applied Microbiology of the Federal University 
of Technology - Paraná (Londrina, PR, Brazil). 

Shiga toxin-producing Escherichia coli 
was obtained from the bacterial collection of Medical 
Microbiology Laboratory at  the Universidade 

Estadual de Londrina (Londrina, PR, Brazil). 
Polymerase chain reaction (PCR) confirmed the 
presence of stx1 and stx2+ genes. 

Stock cultures were stored at -20 °C, 
in Brain Heart Infusion (BHI) Broth (Acumedia-
Neogen) supplemented with 20% (v/v) glycerol 
(Gibco). 

Hemolytic activity
The hemolytic activity of the Enterococcus 

isolate was examined on blood agar supplemented 
with 5% sheep blood; 10 μL of an overnight culture 
of Enterococcus was inoculated onto blood agar 
plates, which were incubated at 37 °C for 48 h. Clear 
colonies were considered hemolytic. 

Screening for enterocin activity against 
enterohemorrhagic Escherichia coli

Screening for enterocin activity was 
performed using the spot-on lawn assay (OGAKI, et al., 
2016). One milliliter of chloroform was deposited on the 
covers of plates of E. durans MF5 strains, previously 
incubated on BHI agar (Himedia) at 37 °C for 24 h, and 
closed for 20 min; the plates were subsequently opened 
to allow the residual chloroform to evaporate. The 
number of enterohemorrhagic Escherichia coli (STEC) 
was adjusted to 1×109 cells/mL, using the McFarland 
nephelometric scale, with 1×108 cells/mL inoculated 
into soft BHI agar (0.8%), which was poured onto the E. 
durans MF5 plates forming an overlay. Plates were then 
incubated at 37 °C for 24 h; bacteria were considered 
bacteriocin-producers if inhibition zones were evident 
around the colonies.

Determination of bacteriocin production and 
antimicrobial activity 

The cell free supernatants (CFSs) of the 
previously selected isolates were collected, following 
a modified version of that described by AMMOR et 
al., (2006).  Enterococcus durans MF5 was adjusted 
to 0.5 McFarland standard in Man-Rogosa Sharpe 
(MRS) broth (Acumedia-Neogen), before being 
incubated at 37 ºC at 180 rpm, for 24 h. The CFS was 
obtained by centrifugation at 12,000 × g for 15 min. 
To avoid the inhibitory effects of organic acids and 
hydrogen peroxide (H2O2), the pH of the CFS was 
adjusted to 6.5 with 1 M NaOH, before catalase (0.5 
mg/mL) was added. The CFS was filtered through 
a 0.22 µm pore size filter (Millipore, Merck). The 
antimicrobial activity of the CFS was quantified 
through a microtiter plate assay. Briefly, overnight 
cultures of STEC were adjusted to 0.5 McFarland 
standard in BHI, before 100 μL was transferred into 
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each well of a 96-well polystyrene microtiter plate, 
together with 100 μL of CFS-containing bacteriocins; 
for the control, 100 μL of MRS broth was added to 
each well in place of the CFS-containing bacteriocins. 
Plates were incubated at 37 ºC for 6, 18, and  24 h. 
Absorbance was measured at 540 nm (O.D.540 nm).

Fluorescence microscopy 
Coverslips (13 mm) were placed in the 

wells of 24-well plates containing 500 μL overnight 
cultures of STEC (0.5 McFarland standard) in BHI, 
together with 500 μL of CFS-containing enterocins; 
for the control, 500 μL of MRS broth was added to 
each well in place of the CFS-containing enterocin. 
Plates were incubated at 37 ºC for 6, 18, and 24 h. 
Samples were washed twice with PBS and incubated 
with 30 μg/mL of propidium iodide (PI, reconstituted 
in PBS) (Sigma-Aldrich, Germany), at room 
temperature in the dark for 15 min (JOHNSON; 
CRISS, 2013). After incubation, the staining solution 
was aspirated, the coverslips were washed with PBS, 
and the cells were viewed using an epifluorescence 
microscope (Zeiss, Germany). Cells with a reddish 
color were considered non-viable.

Statistical analysis 
Data were evaluated using one-way 

ANOVA and Tukey’s test considering p<0.05 
as significant to establish significant differences 

between the antimicrobial activity of the isolates and 
the control.

RESULTS   AND   DISCUSSION

The use of enterocins to successfully 
inhibit pathogenic microorganisms in food products 
has resulted in interest in novel tests and studies 
related to their antimicrobial activity, production, 
and characterization, which is necessary for the 
development of new strategies in the control of 
food contamination.

The development of biopreservation 
technologies with LAB and/or their metabolites 
represents protection of food against microbial 
contamination through the bacterial production of 
several anti-microbial substances including organic 
acids, hydrogen peroxide, and bacteriocins (PERIN 
et al., 2013).

In this study, we used the enterocin called 
MF5, produced by the E. durans MF5 isolate. In the 
screening test, the MF5 isolate showed antimicrobial 
activity against STEC, characterized by the clear 
zone around the colony (Figure 1A), indicative 
of cell death. The activity of the CFS was not 
influenced by the neutralized CFS; the elimination 
of hydrogen peroxide produced the same results, 
demonstrating the antimicrobial activity was due 
to CSF and not hydrogen peroxide. No hemolytic 

Figure 1 - (A) Spot-on-lawn methodology showing the translucid halo around the 
colony Enterococcus durans MF5 indicating Escherichia coli STEC cell 
death; (B) Optical density measurement and inhibition of STEC in the 
absence and presence of enterocin. *P <0.05, indicating the statistically 
significant difference between the numbers of bacteria treated and not 
with enterocin. 
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activity was observed under the test conditions. 
Hemolysin production may increase the risk of 
enterococci infections.

Cellular growth of STEC, and its inhibition 
by enterocins, was measured by optical density 
(Figure 1B). We observed that the cell growth of the 
control remained constant up to 24 h of testing; in 
contrast, in the presence of enterocins, we observed 
inhibition within 6 h of treatment, remaining up to 
24 h. That is, the decrease of initial STEC growth 
with CFS was permanent and affected the cellular 
development even after 18 and 24 h.

For STEC, enterocin produced by E. 
durans MF5 showed a significant reduction (p<0.05) 
in cell viability at 6, 18 and 24 h incubation,  when 
compared to control; however, there was no 
significant difference between the incubation times 
when the cells were treated with enterocin.

It is worth mentioning that the enterocins 
used in this study were free in the CFS, i.e., they 
were not concentrated and purified. Furthermore, 
the cellular concentration of STEC was at higher 
concentrations (1×108 CFU/mL) than those reported 
in foods, suggesting that at lower concentrations, the 
efficiency of antagonism may be greater. 

To confirm the antimicrobial action on 
STEC, following exposure to enterocin MF5, the 
cells were treated with PI and observed immediately 
through fluorescence microscopy. Figure 2 shows 
representative images of the effect of the enterocins 
on STEC. Resultant images confirmed the loss of 
cellular integrity of STEC exposed to enterocins, 
characterized by a reddish coloration. In the absence 
of enterocins (control) there are a limited number of 
dead cells observed, while the addition of enterocins 
resulted in clustering of cells and a larger number of 
dead cells (reddish color). 

Propidium iodide is a membrane 
impermeant intercalator DNA that only stains cells 
with compromised membrane integrity, presenting 
with the reddish coloration (LEWENZA et al., 2018; 
ROCHA et al., 2019). Our data shows the intensity of 
the reddish color in the first 6 h of STEC in contact 
with the enterocins (Figure 2); therefore, indicating 
the penetration of PI. These data corroborated the 
OD values observed in figure 1B. The reddish color 
intensified with 24 h of treatment, emphasizing the 
cell death of STEC. 

Enterocins, like most bacteriocins, 
mainly target the cytoplasmic membrane of cells, 

Figure 2 - Fluorescence microscopy image (1000x) showing cells stained with 
propidium iodide. Cells labeled with reddish staining indicate membrane 
rupture. (A) Escherichia coli STEC control without enterocin treatment; 
(B) STEC treated with enterocin for 6 hours; (C) 18 hours and (D) 24 
hours.
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forming pores which affects the transmembrane 
potential and/or the pH gradient, and results in the 
leakage of intracellular molecules crucial for cellular 
maintenance (CLEVELAND et al., 2001). 

Aside from its antimicrobial activity, 
other properties that make enterocins a promising 
food preservative are their sensitivity to proteolytic 
enzymes, thermal stability, and maintenance of 
antimicrobial activity after storage at refrigeration 
temperature (data not shown). In addition, our 
results showed the inhibitory activity of CFS to be 
independent of the addition of chelators such as 
EDTA, SDS, or triton; this is contrary to studies 
that reported these agents to be necessary for the 
functioning of bacteriocins against gram-negative 
bacteria (DES FIELD et al., 2017). 

 While E. faecium and E. faecalis are 
known producers of enterocins, E. hirae, E. mundtii, 
and E. durans have been identified as potential 
producers (JAOUANI et al., 2014).

Many of these enterocins have been tested 
in various food products, targeting gram-positive 
and gram-negative pathogens such as Listeria 
monocytogenes, Listeria inoccua, Bacillus cereus, 
Staphylococcus aureus, Clostridium sp, Klebsiella 
sp, Acinetobacter sp, and Pseudomonas sp (KHAN et 
al., 2010; ROCHA et al., 2019).

Only two bacteriocins produced by LAB, 
nisin and pediocin, are commercially used as food 
preservatives. However, these bacteriocins are not 
active against gram-negative bacteria (CALO-MATA 
et al., 2008; HAMMAMI et al., 2010). Therefore, it 
is necessary to characterize additional bacteriocins 
produced by other LAB genera and elucidate their 
potential application in food safety.

Several authors have reported the 
difficulty of inhibition of gram-negative bacteria by 
bacteriocins; AHMADOVA et al (2013) and ACUÑA 
and BARROS-VELÁZQUEZ (2015) did not observe 
an inhibitory effect by purified enterocins against 
strains of E. coli and Salmonella. ALAKOMI et 
al. (2003) and YILDIRIM et al. (2014) reported 
the antagonistic action of the enterocin KP against 
E. coli O157:H7 and Salmonella only when the 
enterocins were combined with EDTA or sodium 
tripolyphosphate. These reports differ from the 
results obtained in this study, where the action of 
the enterocin MF5 on STEC was observed without 
the addition of an ion chelator. This indicated that 
the enterocin produced by our isolate has a more 
satisfactory inhibitory activity.

One hypothesis explaining the difficulty of 
action of bacteriocins against gram-negative bacteria 

is that involving the presence of lipopolysaccharides 
(LPS) anchored in the outer membrane of the 
microorganisms (ANANOU et al., 2010; MUÑOZ et 
al., 2007). The outer membrane acts as a permeability 
barrier to the action of antimicrobial compounds, 
preventing the penetration of bacteriocins, and making 
it difficult to bind to the site of action (YETHON & 
WHITFIELD, 2001; FIELD et al., 2016).

Nevertheless, it is worth mentioning that 
in this study we used enterocin without concentration 
or purification, we obtained promising results. 
Other studies have also reported the efficacy of 
unpurified enterocins against gram positive bacteria 
(CAMARGO et al. 2016; AL ATYA et al. 2016;  
ROCHA et al. 2019).  

Here, we have shown that enterocins 
present in the CFS of E. durans MF5 showed 
inhibitory activity against STEC, and the results are 
very promising, since our tests were performed with 
enterocins diluted in the culture medium supernatant; 
we proposed that the concentration and purification of 
the same enterocins will provide enhanced results in 
the reduction of food pathogens. Results of this study 
may have important implications for the development 
and implementation of new strategies to control 
enterohemorrhagic Escherichia coli.
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